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 The maximum energy consumption of stone cutting machines is one of the important 
cost factors during the process of cutting construction stones. Accurately predicting and 
estimating the maximum energy consumption performance of the cutting machine, 
along with estimating the cutting costs, can help approach the optimal cutting operating 
conditions to reduce energy consumption and minimize machine depreciation. 
However, due to the uncertainty and complexity of building stone textures and 
properties, determining the maximum energy consumption of the device is a difficult 
and challenging task. Therefore, this paper employs the rock engineering system 
method to solve the aforementioned problem. To this end, 120 test samples were 
collected from a marble factory in the Mahalat region of Iran, representing 12 types of 
carbonate rocks. The input parameters considered for the analysis were the Mohs 
hardness, uniaxial compressive strength, Young's modulus, production rate, and 
Schimazek’s F-abrasiveness factors. In the study, 80% of the collected data, equivalent 
to 96 data points, were utilized to construct the model using the rock engineering 
system-based method. The obtained results were then compared with other regression 
methods including linear, power, exponential, polynomial, and multiple logarithmic 
regression methods. Finally, the remaining 20 percent of the data, comprising 24 data 
points, were used to evaluate the accuracy of the models. Based on the statistical 
indicators, namely root mean square error, mean square error, and coefficient of 
determination, it was found that the rock engineering system-based method 
outperformed other regression methods in terms of accuracy and efficiency when 
estimating the maximum energy consumption. 
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1. Introduction 

Decorative stones play a significant role as 
mineral reserves, contributing to a country's non-
oil exports and generating substantial income. 
Cutting building stones using gang saw machines 
poses a significant challenge in the industry. 
Accurate prediction and estimation of cutting 
capabilities based on physical and mechanical 
characteristics are crucial for cost estimation and 
designing stone processing plants. A 
comprehensive understanding of cutting 
equipment capabilities allows the production 
planners to enhance processing speed and increase 
production. To meet the demand for high-quality 

and competitive products in global markets, the 
industry requires advanced technology and tools 
for stone extraction and processing. Proper 
utilization of equipment and a thorough 
understanding of their performance can greatly 
improve efficiency. Saw cutting equipment with 
high production capacity and competitive cutting 
quality is commonly used in processing plants [1-
13]. Considering the maximum energy 
consumption (MEC) of cutting devices in 
processing factories, the energy consumption 
depends not only on the type of device and 
equipment but also on the type of stone. Stones 
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with higher quartz content and greater hardness 
require more energy for cutting. Therefore, 
predicting and estimating the MEC for various 
types of stones is crucial for cost reduction and 
optimizing production capacity in stone 
processing factories [14-27]. 

Limited research has been conducted in the 
field of gang saw cutting. Early studies by Lons 
(1970) examined cutting and expanding forces of 
diamond segments in saw machines, establishing 
a loose correlation between cutting pressures and 
diamond wear [28]. Mancini et al. (1992) 
analyzed the parameters influencing stone cutting 
machine performance by simulating saw cutting 
in the laboratory and comparing the results with 
field performance [29,30]. Kapur et al. (2011) 
conducted field and laboratory tests on carbonate 
stones to investigate the relationship between their 
mechanical and physical characteristics and the 
specific energy of the saw machine. Their 
research work provided valuable insights, 
especially regarding the uniaxial compressive 
strength (UCS) and Brazilian tensile strength as 
predictive parameters [31,32]. Neves et al. (2016) 
studied the prediction of cutting efficiency using 
multi-blade saws through multiple regression 
methods [33]. Bayram (2013) predicted stone 
cutting ability based on the stone characteristics 
index, considering parameters such as tensile 
strength, UCS, hardness coefficient, and 
brittleness [34]. Mikaeil et al. (2014) used 
multiple regression analysis to predict gang saw 
machine vibration based on operating 
characteristics and rock fragility indices [35]. 
Korman et al. (2015) studied the relationship 
between specific cutting energy and cutting speed 
of the gang saw machine, observing a direct 
relationship between specific energy and saw 
speed reduction [36]. Dormishi et al. (2018) 
studied rock engineering characteristics (texture 
coefficient) on 14 different carbonate rock 
samples to predict gang saw energy consumption 
using regression methods [37]. Ziaei et al. (2020) 
utilized regression analysis to estimate wear in 
andesite stone sawing operations, correcting the 
F-Schimazek abrasive factor [38]. Mikael et al. 
(2021) predicted energy consumption of 
construction stone cutting machines through 
laboratory and statistical studies on 12 different 
types of soft and hard stones [39]. Shaffiee 
haghshenas et al. (2022) predicted and measured 
the amperage of the gang saw machine using 
laboratory tests and statistical studies on 12 
different types of stones [40]. 

While laboratory, field, and regression 
methods provide satisfactory accuracy, the 
varying and uncertain input values of stone 
parameters limit their precision. Additionally, 
these methods often require significant time and 
financial resources. Hence, the use of smart 
methods and algorithms to predict gang saw 
performance has gained prominence, addressing 
the limitations associated with experimental, 
analytical, numerical, regression, laboratory, and 
field methods [41-52]. 

The primary focus of this article lies in 
utilizing the RES method, a cost-effective and 
efficient approach capable of accommodating 
uncertainties in rock parameter values. This 
method also allows for the simultaneous analysis 
of multiple variables influencing gang saw 
maximum energy consumption, ensuring highly 
accurate performance evaluations of stone cutters. 
Consequently, the RES method has been 
extensively applied in various engineering 
challenges, particularly within the domains of 
rock and mining mechanics. These applications 
span risk and vulnerability assessment following 
the Songun copper mine explosion [53], 
predicting TBM drilling machine's underground 
penetration rate [54], estimating rock 
fragmentation and explosion outcomes in mines 
across Chile and Canada [55], enhancing rock 
mass conditions in subterranean passageways, 
dams, and foundations through material injection 
[56], quantitative analysis of gas and explosion 
risks in coal mines [57], predicting maximum 
ground surface settlement due to tunneling using 
earth pressure balance shield tunneling (TBM-
EPB) [58], assessing risks associated with rock-
embedded pile shafts [59], generating landslip 
estimation maps for Sallekular in the Jama River 
Gorge [60], fire risk prognosis in coal mine strata 
[61], anticipating fragmentation and rock tossing 
threats resulting from explosions in the 
Sarcheshme copper mine [62], estimating and 
predicting rock mass deformation modulus [63], 
exploring coal mine methane gas drainage 
potential [64], and conducting safety factor 
assessments and risk evaluations for circular 
failures [65]. 

As previously mentioned, aside from the type 
of cutting machine employed, the machine's 
energy consumption is of paramount importance. 
However, it's essential to recognize that the 
energy consumption of the machine is 
significantly influenced by the characteristics of 
the stone, encompassing factors like texture and 
strength. Thus a meticulous examination of the 
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stones regarding their strength and texture is 
imperative at the initial stage. Given that stone 
parameters exhibit variations at each location and 
harbor numerous uncertainties, one must delve 
into the inherent characteristics of the stone at 
each specific point. This inherent variability in 
stone attributes translates to divergent energy 
requirements for cutting the stone at different 
points. If the energy consumption remains 
uniform across all stones, it not only accelerates 
machine depreciation but also runs the risk of 
device failure, ultimately leading to reduced 
production in the processing plant. Given the 
heightened sensitivity of this matter, the use of 
conventional methods such as experimental, 
analytical, and numerical techniques, which fail to 
account for the inherent uncertainties and 
complexities within the stone, proves insufficient 
in addressing these challenges. Moreover, the 
multitude of parameters influencing the machine's 
energy consumption cannot be collectively 
considered, often yielding models that lack 
generality and are applicable only to specific 
contexts. Direct approaches including field and 
laboratory tests are likewise unsuitable due to 
their impracticality stemming from time, cost, and 
repetitive testing requirements. Therefore, in 
resolving these multifaceted challenges, the 
utilization of the rock engineering system method 
emerges as a potent solution. This method offers 
the capacity to obtain precise energy consumption 
estimations for stone cutting machines at any 
given point with minimal time and cost outlays, 
alongside a high degree of accuracy and minimal 
margin of error. In essence, this research work 
endeavors to introduce and elucidate a formidable 
tool for engineers and researchers operating in the 
realm of rock engineering. With this method at 
their disposal, engineers and researchers can 
adeptly anticipate energy consumption for stone 
cutting machines at any specific stone location, 
ensuring optimal operations with minimal errors. 
Embracing this methodology holds the potential 
to boost the production of building stones within 

processing facilities. Simultaneously, by 
optimizing the energy consumption of cutting 
machines, the extent of wear and tear on the 
machinery is curtailed, leading to minimized 
cutting costs. 

In this study, the uncertainty associated with 
input parameters was addressed by utilizing 120 
data points from a stone processing plant in the 
Mahalat region of Iran. These data points 
represented 12 different types of carbonate rocks. 
The aim of this research work was to develop a 
model based on the RES method, considering five 
crucial and interconnected factors that 
significantly influence the evaluation of gang saw 
performance. Subsequently, the effectiveness of 
the RES technique was assessed by employing 
statistical indicators such as root mean square 
error (RMSE), mean square error (MSE), and 
coefficient of determination (R2). These indicators 
were used to evaluate the accuracy and predictive 
power of the non-linear and complex model 
generated by the RES method. Furthermore, for 
comparative analysis, multiple regression methods 
were also applied to the same input parameters 
and data. This allowed for a comparison of the 
performance of the RES method with that of 
traditional regression approaches. 

2. Gang Saw Apparatus 

The gang saw machine is commonly used for 
sawing building stones. Among its crucial factors, 
the MEC holds great significance, which is 
influenced by various parameters including rock 
hardness, rock texture (such as shape and size of 
stone grains), porosity, density, modulus of 
elasticity, wear, UCS, and tensile strength. The 
hardness of the stone also plays a significant role. 
Figure 1 illustrates the functioning of the gang 
saw machine employed in this study [66]. 
Additionally, Table 1 provides an overview of the 
specifications and features of the gang saw 
machine used in the studied area. 

 
Figure 1. Illustration of the gang saw machine used in this paper [66]. 
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Table 1. Operational characteristics of the gang saw machine [66]. 
Characteristic Value 

Cutting length 3300 mm 
Cutting width 1440 mm 
Main engine power 55 Kw 
Cutting height 1950 mm 
Max. No. of blades 50 n 
Total weight of machine 47 ton 
Blade length 4400 mm 
Blade run 750 mm 

 
3. Model Dataset 

To evaluate the performance of MEC in the 
gang saw machine, this research work focused on 
the marble factories located in the Mahalat region 
of Iran. Twelve different carbonate stones were 
examined, and rock blocks were collected from 
these factories for laboratory testing purposes. 
The objective was to obtain rock samples of 

sufficient size that would yield all the required 
test specimens from a single piece of a particular 
rock type. Each block sample underwent a 
meticulous examination to ensure the absence of 
macroscopic flaws, fractures, partings or 
alteration zones. Table 2 presents information on 
the locations, names of the analyzed rocks, and 
their corresponding MEC in the studied area. 

Table 2. Names of rocks, MEC values, and locations for the analyzed rocks [66]. 
Commercial name Name of quarry Average of MEC (Ampere) 

Kerman Marble Mirzaei 105.5 
Darebokhari Travertine Kohbar 96.1 
Abbas Abad Travertine Abbas Abad 97 
Chocolate Travertine Kashan 86.9 
Takab Travertine Takab 93.7 
Harsin Marble Harsin 110.3 
Laybid Marble Laybid 105.5 
Ghorveh Marble Ghorveh 104 
Atashkoh Travertine Atashkoh 104 
Khalkhal Travertine Khalkhal 85.5 
Hajiabad Travertine Hajiabad 98.3 
Azarshahr Travertine Azarshahr 88.1 

 
In order to evaluate the performance of the 

gang saw, a total of 120 tests were conducted on 
12 types of carbonate rocks. The selection of input 
parameters is crucial as it significantly impacts the 
output. In this article, the following input 
parameters were considered: Mohs hardness 

(Mh), UCS, Young's modulus (YM), production 
rate (V), and Schimazek’s F-abrasiveness factors 
(SF-a). The output parameter was the MEC. Table 
3 presents some of the input parameters along 
with their corresponding MEC values. 

Table 3. Part of input and output data for modeling [66]. 
Inputs Output 

SF-a (N/mm) UCS (MPa) YM (GPa) V Mh MEC (Ampere) 
0.0361088 61.5 21 17 2.9 97 
0.0361088 61.5 21 37 2.9 102 
0.0361088 61.5 21 14 2.9 96 
0.0361088 61.5 21 27 2.9 100 
0.0361088 61.5 21 23 2.9 100 
0.0361088 61.5 21 20 2.9 99 

 
Furthermore, Table 4 provides statistical 

features of the input and output data including 
minimum, maximum, average, and standard 

deviation values, offering a summary of the 
dataset used in the analysis. 
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Table 4. Description of input and output dataset statistics. 
Statistical index Mh YM (GPa) UCS (MPa) V SF-a (N/mm) MEC (Ampere) 

Minimum 2.2 14.5 50.50 8 0.02 81 
Maximum 4.3 32 72 37 0.17 118 
Mean 3.13 22.22 62.02 21.975 0.0637 97.88 
Standard deviation 0.64 4.98 6.49 9.21 0.0446 8.39 
Range 2.1 17.5 21.50 29 0.15 37 

 
To gain a better understanding of the data 

distribution, Figure 2 illustrates the distribution 
functions of the input and output data. The 

histogram was generated using the SPSS 
statistical software [67]. 

 
Figure 2. Distribution functions of input and output data. 

Figure 3 presents the correlation scatter matrix 
between the input and output data. Positive 
correlation indicates a direct relationship, while 

negative correlation suggests an inverse relation 
between the output and input data. 
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Figure 3. Correlation scatter matrix for input and output data. 

4. Statistical Modeling 
4.1. Multiple linear regression (MLR) Analysis 

When there is a linear relationship between the 
dependent variable (output parameter) and 
multiple independent variables (input parameters), 
it can be represented by a mathematical equation. 
In this case, the mathematical equation for 
multiple regression is as follows: 

y = C1 + C2x2 + C3x3 + … Cnxn + e (1) 
In Equation (1), y represents the dependent 

parameter, x denotes the independent parameters, 
e is the relationship error, and C1,C2,C3,...Cn 

represent unknown regression coefficients that 
need to be determined. A smaller deviation 
between the points on the regression line indicates 
better prediction accuracy, while a higher 
dispersion and deviation around the regression 
line decrease the model's predictive quality. 

In this study, a multiple linear regression 
analysis was performed using the statistical 
software SPSS. The dependent variable was 
MEC, and the independent variables were Mh, 
UCS (MPa), SF-a (N/mm), YM (GPa), and V. 
The resulting predicted model is as follows: 

 

13.941 1.387 ( ) 2.001 0.755 ( ) 29.768 ( ) 0.317MEC UCS MPa Mh YM GPa SF a N mm V        (2) 

 
To assess multicollinearity, an evaluation was 

conducted to determine if there were any 
significant correlations among the independent 
variables. Multicollinearity can lead to incorrect 
conclusions due to duplicated data from the 
independent variables. The variance inflation 
factor (VIF), which ranges from 1 to ∞, is 

commonly used to assess the strength of the linear 
relationship. If VIF > 10, it indicates potential 
issues with the established relationship [68]. In 
this article, according to Table 5, the VIF values 
for the independent variables in Equation (2) were 
determined. 
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Table 5. Collinearity and MLR coefficients for Equation (2). 

Independent 
variables 

Unstandardized 
coefficients Standardized 

coefficients 
β 

95.0% 
Confidence 

interval for B 

Collinearity 
statistics t values R2 

Standard 
error of 
estimate B Std. 

error 
Lower 
bound 

Upper 
bound Tolerance VIF 

Constant 13.941 4.889  4.227 23.654   2.851 

0.947 2.87 

UCS (MPa) 1.387 0.152 1.076 -1.690 -1.085 0.11 9.09 9.118 
Mh 2.001 0.864 0.146 0.284 3.718 0.286 3.496 2.315 

YM (GPa) -0.755 0.188 -0.428 0.382 1.127 0.101 9.885 -4.021 
SF-a (N/mm) 29.768 7.995 0.165 -45.652 -13.884 0.586 1.706 3.723 

V 0.317 0.032 0.337 -0.381 -0.254 0.992 1.008 9.927 
 

Table 6 presents the regression results and 
analysis of variance (ANOVA) for Equation (2). 
The F model value and significance (Sig.) are 
used to evaluate the significance of the model. In 
this study, the F value is 156.750, and the Sig. 

value is 0.000, which is less than the significance 
level of 0.05. This indicates that the null 
hypothesis can be rejected, suggesting that the 
independent variables have a significant effect on 
the MEC. 

Table 6. Variance analysis for Eq. (2). 
 Sum of squares df Mean square F Sig. 

Regression 6461.947 5 1292.389 156.750 0.000 
Residual 742.042 90 8.245   
Total 7203.990 95    

 
4.2 Multivariate regression models 

To further evaluate the performance of the 
gang saw as the dependent variable, multivariate 
regression analysis was conducted using various 
models, including exponential, power, 

polynomial, and logarithmic models, with the 
same dataset and independent variables. The 
mathematical formulas for each model and their 
corresponding R2 values are provided: 

The power model (with R2 = 0.7946) is: 

 

푀퐸퐶 = 5.481(푈퐶푆(푀푃푎)) . (푀ℎ) . (푌푀(퐺푃푎)) . (푆퐹 − 푎(
푁
푚푚))

. (푉) .  (3) 

 
The exponential model (with R2 = 0.7644) is: 
 

푀퐸퐶 = 푒푥푝( 2.991 + 0.025푈퐶푆(푀푃푎) + 0.014푀ℎ− 0.001푌푀(퐺푃푎) + 0.248푆퐹 − 푎(
푁
푚푚

) + 0.0001푉) (4) 

 
The polynomial model (with R2 = 0.8719) is: 
 

푀퐸퐶 = 18.379 − (−1.251푈퐶푆(푀푃푎)) − (−0.517푀ℎ ) − (0.0001푌푀(퐺푃푎) ) + (3092.244푆퐹 − 푎(
푁
푚푚) )

+ (0.00000001푉 ) 

(5) 

 
The logarithmic model (with R2 = 0.845) is: 
 

푀퐸퐶 = −210.361 + 72.608 푙푛(푈퐶푆(푀푃푎)) + 8.523 푙푛(푀ℎ) − 11.409 푙푛(푌푀(퐺푃푎)) + 1.715 푙푛( 푆퐹

− 푎(
푁
푚푚)) + 12.016 푙푛( 푉) (6) 
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5. Rock Engineering Systems (RESs) 

Considering that rock engineering projects 
including geotechnics and rock mechanics involve 
numerous uncertainties and complexities, existing 
conventional methods such as experimental, 
numerical, and analytical approaches may not 
encompass all the factors affecting a specific issue 
and often have limitations. Therefore, an 
alternative method that can account for the 
complexities and all the influential factors in the 
system is needed. The RES approach serves as a 
suitable solution. This approach was first 
introduced by Hudson in 1992, and has since been 
widely used to tackle problems with multiple 
complex parameters [69]. RES is an engineering 
strategy that comprehensively considers the 
primary and secondary objectives of an issue, 
providing a confident evaluation that can be 
applied to engineering projects with diverse goals. 
By considering the problem as a real system and 

utilizing system thinking, RES offers a novel 
solution to complex engineering problems [70]. 

In the RES approach, the interactions between 
factors within the system are also taken into 
account, in addition to considering all the 
individual factors. These interactions can be 
systematically examined by organizing them into 
an interaction matrix. As shown in Figure 4, an 
interaction matrix is a square matrix where the 
effective and influential parameters are placed 
along the main diagonal, and the interactions 
between the parameters are located in the non-
diagonal regions. Figure 4 illustrates a 
hypothetical system with two parameters, A and 
B, where parameter A is positioned in the upper 
left section and parameter B is positioned in the 
lower right section. The upper right section 
indicates the effect of A on B, and the lower left 
section represents the effect of B on A. 

 
Figure 4. Concept of interaction matrix in RES [69]. 

To assess the severity of parameter influences 
on the system, the interaction matrix needs to be 
coded. Hudson has provided five different coding 
methods for the interaction matrix: explicit 
method, probabilistic expert semi-quantitative 
(PESQ) method, continuous quantitative coding 
(CQC) [71], binary method, and expert semi-
quantitative (ESQ) method [69]. Among these 
methods, the ESQ method is often preferred due 
to its simplicity and high accuracy  [54]. Table 7 
demonstrates that the coding is performed using 
five levels ranging from 0 to 4. According to 
expert opinions, a score of 4 indicates a 
significant dependence and connection between 

two parameters, while a score of 0 implies no 
effect between the two parameters. 

After completing the coding of the interaction 
matrix, it is possible to create a cause-effect 
diagram. The cause-effect diagram represents the 
relationship between parameters and the system. 
The "cause" (C) of a parameter on the system is 
determined by the sum of the numerical values in 
each row, which is obtained by adding the 
algebraic sums of each row and column. 
Similarly, the "effect" (E) of the system on the 
parameter is the algebraic sum of the values in 
each column. The cause and effect values of each 
parameter are plotted on the horizontal and 
vertical axes, respectively, creating a cause-effect 
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diagram (Figure 4). The location of each point in 
the diagram represents the interaction state of the 
parameter. A higher numerical value of the sum of 
cause and effect values (C + E) indicates a greater 
intensity of interaction with the system. 
Conversely, a higher numerical value of cause and 
effect subtraction (C - E) indicates lower 
dominance of that factor on the system. The sum 
of cause and effect values (C + E) is used to 
obtain the weight (ai) of each parameter, as shown 
in Equation (7) [72]. 

Table 7. The ESQ method [69]. 
Code number Concept 

0 No interaction 
1 Low interaction 
2 Moderate interaction 
3 High interaction 
4 Intense interaction 

 

1 1

( ) 100
( )

i i
i n n

i ii i

C Ea
C E

 


 

 
 (7) 

Benardos & Kaliampakos [72] proposed the 
vulnerability index (VI) to assess the risk of 
collapse in loose areas of underground structures 
excavated using TBM. The vulnerability index is 
calculated using Equation (8): 

1 max

100 i
i

i

QVI a
Q

   (8) 

where ai represents the weight of the ith 
parameter obtained from Equation (8), Qmax 
denotes the maximum value (rating) of the 
parameters, and Qi  represents the value of each 
parameter. Table 8 provides the classification of 
the vulnerability index, where higher values 
indicate greater project risk, and values 
approaching zero indicate lower project risk [72]. 
In this research work, the vulnerability index is 
used to create a model for predicting the 
performance evaluation of the gang saw. 

Table 8. Classification of the VI [72]. 
Risk description Low-medium Medium-high High-very high 

VI 0-33 33-66 66-100 
Category І ІІ ІІІ 

 
5.1 Parameters affecting MEC 

The MEC model is constructed based on the 
RES method, using the essential parameters listed 
in Table 9 as input variables. 

 
 

Table 9. Input variables used to build the RES-based model. 
 Parameter Symbol 

P1 Uniaxial compressive strength UCS (MPa) 
P2 Mohs hardness Mh 
P3 Young modulus YM (GPa) 
P4 Schimazek’s F-abrasiveness factors SF-a (N/mm) 
P5 Production rate V 

 
5.2 Interaction matrix 

To create the interaction matrix, five effective 
factors on gang saw performance evaluation were 
identified, and a 5*5 matrix was created. The 
matrix was scored by the experts and engineers in 
the field of rock mechanics and geotechnical 
engineering using the ESQ method, as shown in 
Table 10. 

Using the cause and effect values from the 
interaction matrix, a cause-effect diagram is 

generated (Figure 5). The geometric location C = 
E represents the main diameter. Parameters 
located in the lower right corner of the diagram 
dominate the system, while parameters placed in 
the upper left part are influenced by the system. In 
this study, parameter 1 (UCS) is completely under 
the effect of the system, while parameters 4 and 5 
(SF-a and V) have the greatest impact on the 
system. 
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Table 10. Effect of input parameters on MEC in the interaction matrix. 
P1 4 3 3 4 
0 P2 0 2 4 
1 0 P3 1 4 
0 0 0 P4 1 
0 0 0 0 P5 

 
Figure 5. Cause-effect plot for principal parameters of MEC. 

Table 11 provides the weight (ai), effect (E), 
dominance (C-E), cause (C), and interactive 
intensity (C+E) of each parameter. 

With the presence of C + E, the histogram of 
the intensity of interaction of the system can be 
drawn according to Figure 6. In general, the 
higher the interaction intensity of a system, the 
more potentially unstable the system is because 

there is a greater chance that a small change in 
that parameter will significantly affect the 
behavior of the system. According to Figure 6, 
which shows that parameters 1 and 4, i.e. UCS 
and SF-a, have the highest intensity of interaction, 
it is clear that a small change in these two 
parameters will significantly affect the behavior of 
the system. 

Table 11. Weighting of the key variables MEC. 
Main factor C E C-E C+E ai (%) 

UCS (MPa) 14 1 13 15 27.77 
Mh 6 4 2 10 18.51 
YM (GPa) 6 3 3 9 16.66 
SF-a (N/mm) 1 6 -5 7 12.96 
V 0 13 -13 13 24.07 
Total 27 27 0 54 100 
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Figure 6. Cause-effect values for principal parameters of MEC. 

5.3 Rating of parameters 

To obtain the vulnerability index, it is 
necessary to rank the parameters affecting the 
evaluation of the performance of the gang saw. 
The ranking of parameters is based on the 
judgment of experts and engineers in the field of 
stone engineering in five classes from 0 to 4. In 

this case, if a parameter gets a rank of 0, it 
indicates the worst or most unfavorable state, and 
if a parameter gets a rank of 4, it indicates the best 
or most favorable state. Table 12 shows the 
ranking range of parameters affecting the gang 
saw performance. 

Table 12. Suggested ratings and ranges. 
Number Parameters Values and ratings 

1 UCS (MPa) 
Value < 55 55-60 60-65 65-70 > 70 
Rating 0 1 2 3 4 

2 Mh Value < 2.71 2.71-2.79 2.79-3.8 3.8-3.89 > 3.89 
Rating 0 1 2 3 4 

3 YM (GPa) Value < 16.5 16.5-20 20-27 27-31 > 31 
Rating 0 1 2 3 4 

4 SF-a (N/mm) Value < 0.036 0.036-0.039 0.039-0.0831 0.0831-0.09 > 0.09 
Rating 0 1 2 3 4 

5 V Value < 14.6 14.6-21 21-29 29-34 > 34 
Rating 0 1 2 3 4 

 
5.4 Risk analysis and performance evaluation 
of gang saw 

This study used 120 data points to evaluate the 
gang saw performance. Among the 120 data, 80% 
of the data, i.e. 96 data, were used to calculate the 
vulnerability index (VI) in order to build a 

relationship using the RES-based method, and the 
remaining 20%, i.e. 24 data, were used to evaluate 
the built relationship. To better understand this 
issue, Table 13 provides an example calculation 
of the vulnerability index for dataset number 1. 

Table 13. Values, ratings, and vulnerability indices for dataset number 1. 
Parameters YM (GPa) Mh V SF-a (N/mm) UCS (MPa) 

Value or description 21 2.9 8 0.0361088 61.5 
Value rating (Qi) 2 2 0 1 2 
Weighting (% ai) 16.66 18.51 24.07 12.96 27.77 

VI 62.27 
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Furthermore, the variations of VI for the 96 
data points are displayed in Figure 7. The average 
VI, which is 53.18, indicates the presence of the 
second group of risks (medium to high). 

As mentioned, after obtaining the VI values for 
the 120 data points, regression analysis can be 
performed based on the RES method. As clear 
from Figure 8, polynomial regression analysis was 
performed with a coefficient of determination of 
0.9116 to build a relationship with the 96 data 

points. Since the developed relationship has a 
high coefficient of determination, it can be 
concluded that the developed model (Eq. (9)) has 
good accuracy for performance evaluation of the 
gang saw in the training stage. 

20.0002 0.3438 117.84MEC VI VI     (9) 

 

 
Figure 7. VI for the sample of data points. 

 
Figure 8. MEC-VI prediction model. 
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6. Results and Evaluation of Model 
Performance 

As explained, 24 data out of 120 data were 
used to evaluate the built models. Table 14 shows 

some of the predicted values of linear, power, 
exponential, polynomial, logarithmic, and RES-
based relationships with real values for the 24 
data points. 

Table 14. Comparison of the values obtained from the built and measured models of MEC. 

VI Measured MEC 
Predicted MEC 

Linear Power Exponential Polynomial Logarithmic RES 
65.27 93 92.8 84.29 95.72 98.74 84.84 94.54 
59.25 96 94.7 87.22 95.78 98.79 95.41 96.76 
53.24 100 97.55 98.89 99.83 99.38 98.80 98.96 
53.24 100 98.82 99.86 99.87 100.17 100.92 98.96 
47.22 100 99.82 100.51 95.93 101.17 98.22 101.15 
41.22 102 101.99 101.8 99.97 105.67 105.08 103.33 

62.037 94 94.49 92.09 100.83 100.54 94.38 95.74 
62.037 94 95.44 93.9 100.86 97.96 93.97 95.74 

87.5 85 88.85 84.07 80.46 88.82 82.64 86.22 
81.48 87 91.7 86.66 83.54 89.41 88.61 88.49 

 
The correctness of the constructed models has 

been assessed using three statistical indices: MSE, 
RMSE, and R2. In this evaluation, if the MSE and 
RMSE statistical indicators tend to zero and the 
R2 value tends to 1, it indicates that the built 
models are highly accurate and the predicted 
values for evaluating the performance of the gang 
saw are closer to the true values [73-76]. The 
equations for these criteria are as follows: 
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In the above equations, n represents the 
number of samples, tk represents the real amount, 
and t̂n represents the prediction value for the kth 
observation. Table 15 presents the statistical index 
values of the models built for 24 data points using 
linear, power, exponential, polynomial, 
logarithmic, and RES method. From the results, it 
is evident that the model developed using the 
RES-based method has higher accuracy compared 
to other models, with statistical indices MSE = 
0.03, RMSE = 0.175, and R2 = 0.9791, for 
evaluating the gang saw performance. 

Table 15. Performance results of different constructed models. 
Models MSE RMSE R2

 Observations 
Linear 0.0481 0.219 0.8224 24 
Power 0.0541 0.232 0.7946 24 
Exponential 0.06 0.246 0.7644 24 
Polynomial 0.0394 0.198 0.8719 24 
Logarithmic 0.042 0.205 0.8451 24 
RES 0.030 0.175 0.9791 24 

 
Additionally, Figure 9 illustrates the accuracy 

radar chart for the models built using different 
methods: linear, power, exponential, polynomial, 

logarithmic, and RES method. The chart assesses 
the MSE and R2 statistical performance of each 
model. 
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Figure 9. Comparing the outcomes and assessing the MSE and R2 statistical performance for all built models. 

To better understand and compare the values 
obtained from the models built in Table 14, a 
comparison between the RES-based model and 

other regression methods can be drawn for 24 data 
points, as shown in Figure 10. 

 
Figure 10. Comparison of measured and predicted MEC using polynomial model, exponential model, 

logarithmic model, power model, and RES-based model. 

The results of this paper indicate that the actual 
gang saw performance values closely match the 
predicted values obtained from the RES-based 
method, compared to other regression methods. 
This high accuracy of the built model suggests its 
reliability. Considering the consideration of 
uncertainty in the developed model, the 

relationship established by the RES method can 
be utilized in other projects (case studies). 
Furthermore, for better visualization, Figure 11 
demonstrates the alignment of the actual values 
with the predicted values of the gang saw 
performance, representing the superior 
performance of the RES-based model. 

0.82

0.79

0.76

0.84

0.97

0.048

0.054

0.060.039
0.042

0.03

Linear

Power

Exponential

Polynominal

Logarithmic

RES

Linear

Power

Exponential

Polynominal

Logarithmic

RES

MSE

R2

0.87

0

20

40

60

80

100

120

140

0 5 10 15 20 25 30

M
E

C
 (A

m
pe

re
)

Number of samples

Linear Model
Power Model
Exponential Model
Polynominal Model
Logarithmic Model
RES Model
Measured



Fattahi, and Ghaedi Journal of Mining & Environment, Vol. 15, No. 1, 2024 
 

359 

 
Figure 11. Comparison of measured and predicted MEC for the RES-based model. 

7. Conclusions 

In today's stone processing factories, achieving 
precise stone cutting is essential to minimize costs 
and time. Accurately estimating the MEC of stone 
cutting machines is crucial in approaching optimal 
cutting conditions, reducing energy consumption, 
and minimizing machine depreciation. However, 
due to the complexity and uncertainty of building 
stone textures and properties, determining the 
MEC of the machine is challenging. Traditional 
methods such as regression, experimental, 
analytical, laboratory, and field methods have 
limitations in accuracy, simplifying the problem 
and disregarding uncertainties. 

To address these challenges, this study 
proposed a novel approach based on the RES to 
evaluate the performance of gang saw machines in 
mining engineering. The RES method considers 
the nonlinearity and complexity of soil and rock 
behavior and incorporates the influence of key 
parameters on gang saw performance estimation. 
By developing a comprehensive and non-linear 
model, the RES method enables more accurate 
and reliable predictions of gang saw behavior. 

To validate the effectiveness of the RES-based 
approach, data from 120 test samples representing 
12 types of carbonate rocks were collected from a 
marble factory in the Mahalat region of Iran. Five 
influential parameters including UCS, Mh, YM, 
SF-a, and V were considered for estimating the 
MEC of gang saw machines. 

The results of this study demonstrated that the 
RES-based method outperformed other regression 
methods in estimating the MEC of gang saw 
machines. The statistical indicators including 
MSE, RMSE, and R2 indicated the superior 

accuracy and efficiency of the RES-based method. 
The RES approach considers uncertainties, avoids 
simplifications, and accounts for critical factors, 
providing mining engineers and rock mechanics 
specialists with a robust tool to tackle challenges 
related to rock behavior. 

The implications of this study are significant 
for the engineers and researchers involved in 
mining and geotechnical operations. Accurate 
assessment of the maximum gang saw energy in 
mining and stone projects enables improved 
design, increased production, reduced costs, and 
shorter processing time in stone factories, leading 
to enhanced overall productivity. The RES-based 
method offers valuable insights and supports 
decision-making processes, empowering 
engineers to make informed judgments regarding 
gang saw machines. 

In conclusion, the RES approach presented in 
this study represents a powerful tool to enhance 
the accuracy of estimating the MEC of gang saw 
machines in mining applications. The findings 
illustrate how the RES method can help engineers 
overcome challenges and advance gang saw rock 
cutting, ultimately boosting productivity and 
efficiency in mining and geotechnical operations. 
The application of the RES approach has the 
potential to revolutionize the fields of mining 
engineering and rock mechanics, contributing to 
sustainable and efficient stone processing in the 
industry. Further research and implementation of 
the RES method in various mining projects can 
lead to significant advancements and 
improvements in energy efficiency and cost-
effectiveness. By embracing the RES approach, 
mining engineers and rock mechanics specialists 
can drive innovation and achieve optimal results 
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in stone cutting processes, paving the way for a 
more sustainable and productive future in the 
mining industry. 
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  چکیده:

عملکــرد  نیو تخم ــ قی ــدق ین ــیبشیاســت. پ یساختمان يهابرش سنگ ندیدر فرآ  يانهیاز عوامل مهم هز  یکیبرش سنگ    يهانیدر ماش  يمصرف حداکثر انرژ
 شیفرســا اهشو ک ــ يکاهش مصرف انرژ يبرا نهیبه يبرداربهره طیشرا نییبه تع تواندیبرش، م يهانهیهز نیحداکثر دستگاه برش، به همراه تخم  يمصرف انرژ

 یدشوار و چالش فهیحداکثر دستگاه وظ يمصرف انرژ نییتع ،یساختمان يهاسنگ اتیساختار و خصوص یدگیچیو پ تیعدم قطع  لیدستگاه کمک کند. اما به دل
 ــاز  یش ــینمونــه آزما 120منظــور،  نی. به اکندیحل مشکل فوق استفاده م يسنگ برا یمهندس ستمیمقاله از روش س نیا ن،یاست. بنابرا کارخانــه مرمــر در  کی

 يموهس، مقاومت فشــار یشامل سخت لیتحل يمورد نظر برا يورود ي. پارامترهاشودشامل میرا  ینوع سنگ کربنات  12شد که    يآورجمع  رانیمنطقه محلات ا
ســاخت  ينقطه داده هستند، برا 96شده که معادل  يآورجمع يهاهداد از ٪80مطالعه،  نیبود. در ا مازكیش شیو فاکتور سا  دی، نرخ تولیانگمحوره، مدول  تک

 ،یتــوان ،یخط ونیاز جمله رگرس ونیرگرس يهاروش ریبه دست آمده با سا ج یسنگ استفاده شدند. سپس نتا یمهندس ستمیبر س  یمدل با استفاده از روش مبتن
 ــارز ينقطه داده هستند، برا 24ها که شامل از داده ماندهیدرصد باق  20  ت،یشدند. در نها  سهیچندگانه مقا  یتمیو لگار  ياچندجمله  ،يانفجار ها دقــت مــدل یابی

 ســتمیبر س یمشخص شد که روش مبتن ن،ییتع بیمربعات خطا، مربع متوسط خطا و ضر  نیانگیم  یقیبه عبارت دق  ،يآمار  يهااستفاده شدند. بر اساس شاخص
  .کندیحداکثر بهتر عمل م يمصرف انرژ نیدر تخم ییاز نظر دقت و کارآ ونیرگرس يهاروش ریسنگ نسبت به سا یمهندس

  ی.سنگ ساختمان ون،یرگرس يهاروش ،يآمار يهاسنگ، شاخص یمهندس ستمیحداکثر، س يمصرف انرژ کلمات کلیدي:

 

 

 

 


