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 Drilling of exploratory boreholes is one of the most important and costly steps in 
mineral exploration, which can provide us with accurate and appropriate information 
to continue the mining process. There are limitations on drilling the target boreholes, 
such as high costs, topographical problems in installation of drilling rigs, restrictions 
caused by previous mining operation etc. The advances in artificial intelligence can 
help to solve these problems. In this research, we used python as one of the most 
pervasive and the most powerful programming languages in the field of data analysis 
and artificial intelligence. In this method mean shift algorithms have been used to 
cluster data, random forest to estimate clusters, and gradient boosting to estimate iron 
grade. Finally, in the studied area of Choghart in Central Iran, more than 91% 
accuracy was achieved in detection of ore blocks. Also, the results of the neural 
network indicate the mean square error (MSE) and mean absolute error (MAE) in the 
training data, respectively equal to 0.001 and 0.029, in the test data is 0.002 and 0.03, 
and in the validation boreholes, we reached a maximum of 0.06 and 0.2. 
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1. Introduction 

Exploration boreholes are one of the most 
important and costly steps in mineral exploration, 
which can provide us with accurate and appropriate 
information to continue the mining process. There 
are limitations on drilling the target boreholes, such 
as high costs, topographical problems in 
installation of drilling rigs, restrictions caused by 
previous mining operation etc. The use of artificial 
intelligence and its superiority over other methods 
in solving non-linear problems can be one of the 
best solutions to reduce exploratory drilling. Due 
to their structure, neural networks can provide 
mining engineers with simpler and less expensive 
ways to achieve more accurate results [1]. 

AI- based methods can overcome the problems 
caused by the traditional methods with a more 
realistic strategy; because these methods can 
understand the hidden relationships between 

different input and output parameters in nonlinear 
and complex spatial conditions. 

The methods based on artificial intelligence are: 
1. Artificial neural network methods (operator) 

2. Optimization methods (optimizer) 

3. Fuzzy logic method (normalizer) 

4. Clustering methods (classifier) [2]. 

Data clustering is an unsupervised method in 
artificial neural networks. Clustering is used to 
show the difference, and indeed, we do not 
anticipate simply dividing the data into different 
clusters. Understanding clustering models is the 
key to realize the differences and similarities 
between different clustering algorithms. 
Understanding clustering models is the key to 
knowing the differences and similarities between 
different clustering algorithms. In the clustering 
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method, the members of each cluster are tried to 
have the most similarity to each other based on the 
used variables, and also the members of different 
clusters have the most differences. The most 
important of these clusters are partition-based 
clustering, hierarchical clustering, density-based 
clustering, model-based clustering, and fuzzy 
clustering [3]. 

A good clustering should have features such as 
scalability, acceptability of data types, extraction 
of clusters with different shapes, ability to deal 
with noise and incomplete data, insensitivity to 
data entry, no need to specify input parameters, and 
accept big data [4]. 

Python was designed in the late 1980s by Guido 
van Rossum, with a dynamic system with an 
emphasis on readability and rapid prototyping. 
Python is currently the premier programming 
language for scientific computing, data science, 
and machine learning, and it enhances performance 
and productivity by using low-level libraries and 
appropriate APIs. 

The most important strengths of this 
programming language are as follows: 

1. Ease of use while ensuring computational 
efficiency 

2. Create efficient libraries with lower-level code 
than other programming languages 

3. Parallel processing of operations 

4. A free and available programming language 

5. Portability between different operating systems 
[5]. 

Many researchers have employed different 
artificial neural networks for grade estimation in 
the recent years. For example, a Radial Basis 
Function (RBF) network has been used 
successfully for grade estimation in an iron deposit 
in England, and the results obtained have been 
compared with the geostatistical models [6]. In 
another case, a four-level perceptron network (4L-
MLP) has been used on the modified magnetic data 

to estimate the iron grade [7]. Badel has compared 
one of the newer kriging methods called the 
median indicator kriging with the artificial neural 
networks for grade estimation in an iron ore deposit 
[8]. The grade estimation results of a Choghart iron 
ore deposit obtained from a back-propagation 
neural network have been compared with the 
results of a Support Vector Machine (SVM) [9]. In 
another research work, the artificial neural 
networks and geostatistics have been integrated 
using ANNMG to optimize the mineral reserve 
evaluation in the SW Sierra Leone [10]. 
Nezamolhosseini has applied a multi-layer 
perceptron (MLP) neural network to estimate the 
storage of Choghart mine using the exploratory 
boreholes data [11]. In another article, the 
comparison between the Local Linear Radial Basis 
Function using Skewed Gaussian activation 
(LLRBF-SG) and older neural networks such as 
Differential Evolution (DE), Cuckoo Search (CS), 
Covariance Matrix Adaptation Evolution (CMAE), 
Artificial Bee Colony (ABC), Improved Artificial 
Bee Colony (IABC) were used to estimate the 
phosphate grade in Bafgh Esfordi [12]. Alimoradi 
has estimated the silver grade in Zarshuran gold 
mine by involving the boreholes spatial data and 
the data obtained from the Induced Polarization 
(IP) geophysical method with the cuckoo search 
machine learning algorithm. The results show that 
grade values can be accurately estimated from 
geophysical data, especially in areas without 
drilling operations data [13]. All of these research 
works have illustrated that artificial neural 
networks can be used as a reliable approach to 
obtain the most accurate grade estimations. 

The mean shift algorithm is a clustering method 
for the analysis of complex spaces and non-
parametric properties to determine the maximum 
probability function. Application domains of this 
algorithm include cluster analysis in machine 
learning and image processing. This algorithm is 
based on data density, and can automatically adjust 
the number of clusters [14]. 
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Figure 1. How to select centers in each step in the mean shift algorithm [15]. 

The problem of this algorithm is in determining 
the bandwidth, which is a difficult operation. To 
determine the bandwidth, the results of clustering 
estimation have been used and the best bandwidth 
with appropriate estimation has been selected by 
repeating different numbers [16]. This algorithm is 
available in the sci-kit-learn library in python 
programming language. 

Random forest or random decision forests is a 
combined learning method for classification, 
regression, which is based on a structure consisting 
of a large number of decision trees, on the training 
time and output of classes (classification), or for 
the average predictions of each tree. They work 
separately [17]. Random forests are suitable for 
decision trees that are pre-fitted in the training 
complex. Also, this algorithm is very user-friendly, 

and has only two network input parameters, which 
are the number of trees and subset variables, which 
usually the network response is not very sensitive 
to the value of these parameters [18]. 

The decision tree is an algorithm that is easy to 
understand and interpret, but a single tree may not 
be sufficient to learn the properties of the model. 
Random forest algorithm, on the other hand, is a 
tree-based algorithm that uses the properties of 
several trees to make decisions. Also, the decision 
tree algorithm is extremely vulnerable in terms of 
over-training and over-fitting, but this problem can 
be easily overcome by performing random forest 
regression. Another important feature of this 
algorithm is its low variance in regression. This 
algorithm uses averaging to improve performance 
and control the overfitting [19]. 
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Figure 2. Random forest performance procedure and integration of results of several decision trees [19]. 

This algorithm is also available in the sci-kit-
learn library and the ensemble sub-library in the 
python programming language. 

The gradient boosting algorithm is a machine 
learning method for regression and classification 
problems that are typically generated from a 
prediction model in the form of a set of weak 
prediction models, typically a decision tree. It 
builds this model step by step, like other amplifier 
methods, and generalizes the variable performance 

of the decision tree by allowing arbitrary 
optimization. The gradient boosting algorithm is an 
integrated, high-performance, stable algorithm; it 
can control noise data well, and has a high 
estimation ability to predict non-linear data [20]. 

Figure 3 shows the training process and 
progress of the gradient boosting algorithm based 
on the error function and iteration of the training 
process: 

 
Figure 3. Gradient boosting training process [21]. 
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Gradient boosting is a decision tree-based 
algorithm developed with the Ada Boost method. 
The correct understanding of the error function 
depends on the parameter should be optimized. 
One of the most important features of this method 
is that it allows the user to specify the error function 
according to its needs [22]. 

The main difference between this method and 
random forest is that in this method the decision 
trees form a network in the direction of each other, 
while in random forest the trees form a network 
together. It is completely observable in Figure 4. 
[22]. 

 
Figure 4. Difference between random forest algorithm and gradient boosting algorithm [22]. 

In this study, the gradient boosting algorithm is 
used to estimate the iron grade in the last step. This 
algorithm can also be used in the sci-kit-learn 
library in python programming language. 

In the beginning of the study, data mine 
software is used for composite data & then they are 
reviewed & pre- processed with SQL2014 
software; in the main stage, the required code is 
implemented in python programming language 
(Python 3.7) and in Spyder environment of the 
Anaconda package. 

2. Choghart iron Deposit 

Central Iran zone is located within the Alpine-
Himalayan orogenic system, which evolved during 
the closing of Palettes Ocean. This zone is located 
in the northeast of Zagros-Makran belt connected 
to the NeoThetis ocean suture along with the other 
areas of Cimmerian block of Iran (Alborz and 

Sanandaj-Sirjan). The microcontroller separately 
described the continents of central and eastern Iran 
with fault boundaries including three crustal areas 
of Lut, Tabas, and Yazd blocks with a north-south 
orientation that are adjacent from east to west, 
respectively. Tabas and Yazd blocks are separated 
by a long, complex arched structural belt called 
Kashmar-Kerman tectonic zone (It is also called 
Posht-Badam block). Located 12 km NE of the city 
of Bafgh in Iran, Choghart mine is one of the 
biggest iron ores in this country. The main orebody 
at Choghart is in the form of a roughly vertical, 
discordant, pipe-shaped body plunging 73°NNW, 
and has been explored to a depth of 600 m. 
Different types of volcanic (intrusive and extrusive 
alkali rhyolites) and metamorphous rocks occur in 
the vicinity of the deposit. Syenite, pyroxenite, 
gabbro, granite, and alkali rhyolites are the major 
components of the volcanic rocks of Choghart 
deposit [23].  
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Figure 5. Satellite photo illustrating location of the drilling points [23]. 

 
Figure 6. a) The position of Central Iran in relation to the Zagros and Alborz joints; B) Landscape map of 

Central Iran blocks; C) Geological map of Bafgh-Saghand block with the location of iron oxide-apatite, 
manganese and lead, and zinc deposits [24]. 

A 

B 
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Figure 6. a) The position of Central Iran in relation to the Zagros and Alborz joints; B) Landscape map of 

Central Iran blocks; C) Geological map of Bafgh-Saghand block with the location of iron oxide-apatite, 
manganese and lead, and zinc deposits [24]. 

The oldest rocks at Bafq mining district are 
composed of Mesoproterozoic metamorphic 
schists covered by the Neoproterozoic to 
Cretaceous units. Bafq region is one of the most 
important mineralized zones of central Iran with 
the upper Precambrian metamorphic-sedimentary 
rocks and rift series of Precambrian-Paleozoic [25]. 

The Cambrian Volcano Sedimentary Unit 
(CVSU), as the major host of Bafq Fe-P-REE 
deposits, is composed of Rizu-Desu series and 
Esfordi Formation. The CVSU is made up of felsic 
tuff, sandstone and micro-conglomerate, mafic, 
and felsic volcanic rocks, pyritic siltstone-shale, 
volcanoclastic beds and tuffaceous shale, dolomite 
and dolomitic limestone [26]. 

Potassic, phyllic, argillic, and propylitic are the 
major alteration types, and they are attended by 

the veins to veinlets of quartz, quartz magnetite, 
and Fe–hydroxides filling [27]. 

3. Methodology 

In this section, the background of surveys and 
observations about the borehole datasets are 
presented. Then, considering that only coordinates 
and degrees are available, the proposed method 
will be as follow: According to have degrees and 
coordinates in different dimensions, data are 
clustered and models are created to estimate these 
categories. Finally, the model proceeds to estimate 
the grade according to different clusters. 

 

 

C 
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3.1. Data preparation 

The information used in this paper is obtained 
in the form of assay, collar, and survey data from 
the raw data. After entering this information into 
the data environment, the boreholes were 
composited to unify the sampled lengths. 
Composition is a length-dependent operation. 
Since the mining operations have been carried out 
in the studied area before our research and the 
extraction blocks have been considered as 10 
meters, the composite has been considered based 
on the length of the extraction blocks and the limit 
grade. A total of 2264 data was obtained, of which 
2 boreholes in the center and 2 boreholes in the 
exploration area were excluded from the data set as 
validation boreholes. The statistical adjustments 
related to the other data used in the neural network 
training and testing is as follows, and the data of 
these four boreholes has been completely excluded 
from the network process. 

 

3.2. Data statistical studies 

The learning data sets from the Pandas library 
in python environment is extracted as follows: 

Table 1. Statistical parameters of the studied data. 
Parameter  Grade value 

Mean 12.9 
Std. deviation 11.9 
Minimum 0 
25% 0 
50% 12.3 
75% 20.86 
Maximum 62.68 
Variance 142 

 
Notable points include the large amount of zero 

data in the measured values, which can be related 
to the low accuracy of sampling and borehole 
analysis as well as human error; this can inevitably 
lead to some errors. 

 
Figure 7. Diagram of how the boreholes are positioned according to the measured grade. 

In the picture above, the position of the 
boreholes can be seen according to the measured 
grade. Although the distance between the 
boreholes and the position of the boreholes is not 

regular, their distance from each other is 
approximately 100 meters. Also, the frequency of 
zero-k data with a dark color has been illustrated, 
indicating low accuracy in measured grades. 

Low 
grade 
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Figure 8. Procedural diagram of available information from boreholes. 

According to Figure 8, it can be easily 
understood that the length of the boreholes is not 
regular, which is due to the limitations created by 
the topography of the area. This issue can make 
difficulty in network training process, especially in 

places where there is not enough data for network 
training in terms of height. 

To further investigate this scattering in different 
directions, diagrams of the degree of change in 
different directions are given as below: 

 
Figure 9. Ore grade changes in the X-Y direction. 
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Figure 10. Ore grade changes in the X-Z direction. 

 
Figure 11. Carat changes in the Y-Z direction. 

Looking more closely at the ore grade change 
diagrams, it can be seen that the changes are more 
severe along the Z-axis, and the depth parameter 
will play more important role in predicting the final 
ore grade. Due to the data scattering, an algorithm 
which is resistant to the out-of-noise data is needed. 
This algorithm can cluster data with small 
amounts. Also, the nonlinear behavior of the data 

and their unpredictability are quite evident in these 
graphs. 

3.3. Data pre-processing 

To prepare the data for use in neural networks, 
it is necessary to pre-process the data first. At this 
stage, after examining the data in terms of validity 
and usability and deleting invalid data, the data is 
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normalized. This is done to equalize the effect of 
large and small data, and all data will be within a 
certain range. 

In this paper, the Min-Max model is used to 
normalize the data and the data is defined in the 
range of [0,1]. The python programming language 
uses a preprocessing library to do this. In this 
method, each set of data is mapped to arbitrary 
intervals whose minimum and maximum values 

are already known. In this way, any desired interval 
can be converted to a new interval with just a 
simple conversion. Suppose that attribute A is to be 
mapped from the data set between minA to maxA 
to the new range newMin to newMax. For this 
purpose, any initial value such as v in the initial 
interval will be converted to a new value v' in the 
new interval according to the following equation: 

 
3.4. Main shift clustering algorithm 

Mean shift is a procedure for locating the 
maxima of the modes of a density function. This is 
an iterative method, and we start with an initial 
estimate. The Kernel function determines the 
weight of nearby points for re-estimation of the 
mean. Typically, a Gaussian Kernel on the distance 
to the current estimate is used: 

௜ݔ)ܭ − (ݔ =  ݁ି௖‖௫೔ି௫‖మ. 

The weighted mean of the density in the 
window determined by K is: 

(ݔ)݉ =  
∑ ௜ݔ)ܭ − (ೣ)௜௫೔∈ேݔ(ݔ

∑ ௜ݔ)ܭ − (ೣ)௫೔∈ே(ݔ

 

where N(x) is the neighborhood of x, is a set of 
points for which K(xi) ≠ 0 [28]. 

The difference of m(x) – x is called mean shift 
in Fukunaga and Hostetler. The mean shift 
algorithm now sets m(x)→x, and repeats the 
estimation until m(x) converges [29]. 

Although the mean shift algorithm has been 
widely used in many applications, a rigid proof for 
the convergence of the algorithm using a general 
Kernel in a high dimensional space is still not 
known [30]. However, the one-dimensional case 
has limited real world applications. Also, the 
convergence of the algorithm in higher dimensions 
with a finite number of the (or isolated) stationary 
points has been proved [30,31]. However, 
sufficient conditions for a general Kernel function 
to have finite (or isolated) stationary points have 
not been provided. 

3.5. Random forests algorithm 
3.5.1. Tree learning 

Decision trees are a popular method for various 
machine learning tasks. Tree learning comes 
closest to meeting the requirements for serving as 
an off-the-shelf procedure for data mining because 

it is invariant under scaling and various other 
transformations of feature values, is robust to 
inclusion of irrelevant features, and produces 
inspectable models. However, they are seldom 
accurate [32]. 

In particular, trees that are grown very deep tend 
to learn highly irregular patterns: they over-fit their 
training sets, i.e. have low bias, but very high 
variance. Random forests are a way of averaging 
multiple deep decision trees, trained on different 
parts of the same training set, with the goal of 
reducing the variance [32]. 

This comes at the expense of small increase in 
the bias and some loss of interpretability, but 
generally greatly boosts the performance in the 
final model. Forests are like the pulling together of 
decision tree algorithm efforts. Taking the 
teamwork of many trees thus improving the 
performance of a single random tree. Though not 
quite similar, forests give the effects of a K-fold 
cross-validation [33]. 

3.5.2. Bagging 
The training algorithm for random forests 

applies the general technique of bootstrap 
aggregating, or bagging, to tree learners. Given a 
training set X = x1, ..., xn with responses Y = y1, ..., 
yn, bagging repeatedly (B times) selects a random 
sample with replacement of the training set and fits 
trees to these samples: 
For b = 1, ..., B: 

1. Sample, with replacement, n training examples 
from X, Y; call these Xb, Yb. 

2. Train a classification or regression tree fb on Xb, 
Yb. 

After training, predictions for unseen samples x' 
can be made by averaging the predictions from all 
the individual regression trees on x': 
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መ݂ =  
1
ܤ

 ෍ ௕݂(ݔᇱ)
஻

௕ୀଵ

 

or by taking the majority vote in the case of 
classification trees. 

This bootstrapping procedure leads to better 
model performance because it decreases the 
variance of the model, without increasing the bias. 
This means that while the predictions of a single 
tree are highly sensitive to noise in its training set, 
the average of many trees is not, as long as the trees 
are not correlated. Simply training many trees on a 
single training set would give strongly correlated 
trees (or even the same tree many times, if the 
training algorithm is deterministic); bootstrap 
sampling is a way of de-correlating the trees by 
showing them different training sets [34]. 

3.5.3. From bagging to random forests 

The above procedure describes the original 
bagging algorithm for trees. Random forests differ 
in only one way from this general scheme: they use 
a modified tree learning algorithm that selects, at 
each candidate split in the learning process, a 
random subset of the features. This process is 
sometimes called "feature bagging". The reason for 
doing this is the correlation of the trees in an 
ordinary bootstrap sample: if one or a few features 
are very strong predictors for the response variable 
(target output), these features will be selected in 
many of the B trees, causing them to become 
correlated. An analysis of how bagging and 
random subspace projection contribute to accuracy 
gains under different conditions is given by Ho 
[35]. 

Typically, for a classification problem with p 
features, ඥ݌ (rounded down) features are used in 

each split. For regression problems the inventors 
recommend ௣

ଷ
 (rounded down) with a minimum 

node size of 5 as the default. In practice the best 
values for these parameters will depend on the 
problem, and they should be treated as tuning 
parameters [32]. 

3.6. Gradient boosting algorithm 

In many supervised learning problems there is 
an output variable y and a vector of input variables 
x, related to each other with some probabilistic 
distribution. The goal is to find some function ܨ෠(ݔ) 
that best approximates the output variable from the 
values of input variables. This is formalized by 
introducing some loss function ݕ)ܮ,  and ((ݔ)ܨ
minimizing it: 

෠ܨ = ݃ݎܽ min
ி

௫,௬ܧ ,ݕ)ܮ]  .[((ݔ)ܨ

The gradient boosting method assumes a real-
valued y, and seeks an approximation ܨ෠(ݔ) in the 
form of a weighted sum of functions hi(x) from 
some class Ħ, called base (or weak) learners: 

(ݔ)෠ܨ =  ෍ ௜ߛ

ெ

௜ୀଵ

ℎ௜(ݔ) +  .ݐݏ݊݋ܿ

We are usually given a training set {(x1, y1), (x2, 
y2), …, (xn, yn)} of known sample values of x and 
corresponding values of y. In accordance with the 
empirical risk minimization principle, the method 
tries to find an approximation ܨ෠(ݔ) that minimizes 
the average value of the loss function on the 
training set, i.e., minimizes the empirical risk. It 
does so by starting with a model, consisting of a 
constant function F0(x), and incrementally expands 
it in a greedy fashion: 

 

(ݔ)଴ܨ = ݃ݎܽ min
ఊ

෍ ௜ݕ)ܮ , (ߛ
௡

௜ୀଵ

 

(ݔ)௠ܨ = (ݔ)௠ିଵܨ  + ݃ݎܽ ݉݅݊
௛೘ఢĦ

൥෍ ௜ݕ)ܮ , (௜ݔ)௠ିଵܨ + ℎ௠(ݔ௜)
௡

௜ୀଵ

൩ 

 
where ℎ௠߳Ħ is a base learner function. 
Unfortunately, choosing the best function h at 

each step for an arbitrary loss function L is a 
computationally infeasible optimization problem 
in general. Therefore, we restrict our approach to a 
simplified version of the problem. The idea is to 

apply a steepest descent step to this minimization 
problem (functional gradient descent). If we 
considered the continuous case, i.e. where Ħ is the 
set of arbitrary differentiable functions on R, we 
would update the model in accordance with the 
following equations: 
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(ݔ)௠ܨ = (ݔ)௠ିଵܨ  − ௠ߛ  ෍ ௜ݕ)ܮி೘షభߘ , ((௜ݔ)௠ିଵܨ
௡

௜ୀଵ

 

௠ߛ = ݃ݎܽ min
ఊ

෍ ௜ݕ)ܮ , (௜ݔ)௠ିଵܨ − ௜ݕ൫ܮி೘షభߘߛ , (൯(௜ݔ)௠ିଵܨ
௡

௜ୀଵ

 

 
where the derivatives are taken with respect to 

the functions Fi for i ϵ {1, 2, …, m}, and ߛ௠ is the 
step length. In the discrete case however, i.e. when 
the set Ħ is finite, we choose the candidate function 
h closest to the gradient of L for which the 
coefficient γ may then be calculated with the aid of 
line search on the above equations. Note that this 
approach is a heuristic and therefore doesn't yield 
an exact solution to the given problem, but rather 
an approximation [36]. 

4. Ore grade estimation process 
4.1. Apply clustering with mean shift algorithm 

The mean shift algorithm has been used to 
cluster the information in different dimensions. 
One of the main features of this algorithm is that 
there is no need to determine the number of 
clusters. This algorithm is available in the sci-kit-
learn library in python. The parameters considered 
for clustering, which include different categories of 
data in different dimensions, are listed in Table 2. 
The main parameter in the average transmission 
algorithm is bandwidth. The selection of 
bandwidth for different classifications is based on 
the best result in terms of the minimum mean 
absolute error. The results of each type of 
clustering are shown in Table 3 and Figures 12 to 
18. 

Table 2. Clusters and parameters involved in them. 
Considered parameters Clustering type 

X & Grade 1st Clustering type 
Y & Grade 2nd Clustering type 
Z & Grade 3rd Clustering type 
X,Y & Grade 4th Clustering type 
X,Z & Grade 5th Clustering type 
Y,Z & Grade 6th Clustering type 
X,Y,Z & Grade 7th Clustering type 

Table 3. Bandwidth and number of clusters for each type of clustering. 
Number of clusters Bandwidth Clustering type 

5 0.14 1st clustering type 
10 0.12 2nd clustering type 
11 0.11 3rd clustering type 
9 0.17 4th clustering type 
7 0.19 5th clustering type 
9 0.19 6th clustering type 

11 0.2 7th clustering type 
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Figure 12. Percentage of data in each cluster of the first 

type clustering. 
Figure 13. Percentage of data in each cluster of the second 

type clustering. 

  
Figure 14. Percentage of data in each cluster of the third 

type clustering. 
Figure 15. Percentage of data in each cluster of the fourth 

type clustering. 

  
Figure 16. Percentage of data in each cluster of the fifth 

type clustering. 
Figure 17. Percentage of data in each cluster of the sixth 

type clustering. 
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Figure 18. Percentage of data in each cluster of the seventh type clustering. 

The following figure (Figure 19) shows the 
correlation coefficient of the available parameters 

for estimating the grade and type of different 
clusters: 

 
Figure 19. Correlation coefficient of existing parameters for estimating the grade and type of different clusters. 
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According to the figure above, it can be easily 
seen that the correlation coefficient of the 
categories in which the depth was affected has a 
higher correlation with the iron grade. As a result, 
it can be concluded that among the data used, depth 
is the most important parameter in determining the 
grade. 

4.2. Determining clustering with random forests 
algorithm 

After clustering the parameters in different 
directions, it is necessary to predict the numbers 

assigned to each category for validation data, 
which was done by a random forest algorithm. For 
this purpose, at first, to learn the network for each 
cluster, the data was divided into training and 
experimental data in a ratio of 80 to 20. As stated 
in Section 3.7, the selection of network parameters 
in the clustering section is based on the selection of 
the best result in terms of the lowest mean absolute 
error. You can see the results of comparing the 
important parameters in the network for each type 
of clustering in the following figure: 

 
Figure 20. Comparison of correlation coefficient values and three error parameters (MAE, RMSE, MAPE) in 

different types of clustering. 

With a little reflection on the accuracy diagrams 
of the forecast model, it can be seen that, as 
expected, clusters with fewer data have less 
accuracy in forecasting; this is due to the lack of 
training data and consequently poor forecasting in 
these clusters [38, 39]. 

4.3. Ore grade estimation with gradient 
boosting algorithm 

The ore grade is estimated using the gradient 
boosting algorithm. The most important parameter 

in this algorithm is determining the learning rate. 
The learning rate of 0.01 has been used to estimate 
the iron ore grade for this paper according to the 
use of auxiliary parameters resulting from 
clustering; for the initial evaluation, the data is 
divided into train and test data in a ratio of 80 to 
20, which are the network input parameters, 
coordinate specifications and the results of the 
classification estimation models. In the image 
below, you can see the results of the grade 
estimation for the train and test data: 
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Figure 21. Comparison of correlation coefficient values and three error parameters (MAE, RMSE, MAPE) in 

the network learning process. 

The accuracy of the model in predicting the 
train and test data can be seen in the above figure, 
which indicates the appropriateness of the model 
accuracy and its optimality in estimating the data 
quality point by point. In addition to the above, it 
should be noted that all the extraction blocks in 
terms of waste or ore in the network learning 
process are correctly predicted and the detection 
accuracy of the extraction block is equal to 100%. 

After comparing the results of training and 
testing the data and ensuring the low error of the 

model, it is time to examine the validation 
boreholes. As mentioned earlier, four borehole data 
were completely excluded from the learning 
process. The stage of reviewing test data can be 
considered as the stage of point-to-point review of 
results, and this stage, i.e. validation based on 
boreholes, can be considered as borehole-to-
borehole review. The results of the four validation 
boreholes are illustrated in Figure 22 and the 
accuracy of the network prediction in each 
borehole are shown in Figures 23 to 26. 

 
Figure 22. Comparison of accuracy values in extraction block detection (AEBD) and three error parameters 

(MAE, RMSE, MAPE) in the network validation process. 
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Figure 23. Accuracy of model prediction in the first validation borehole. 

 
Figure 24. Accuracy of model prediction in the second validation borehole. 
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Figure 25. Model prediction accuracy in the third validation borehole. 

 
Figure 26. Accuracy of model prediction in the fourth validation borehole. 
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4.4. Convert mineral ore estimation process to 
software 

In this section, the steps of the grade estimation 
process in this article were converted into a 

software with the help of python programming 
language, which you can see in the following 
images related to this software: 

 

 
Figure 27. Pictures of the program environment written for the mineral grade estimation process. 
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Figure 27. Pictures of the program environment written for the mineral grade estimation process. 
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5. Conclusions 

The main problem in the use of machine 
learning in various sciences is the existence of 
accurate and appropriate data in terms of quantity 
and quality. In this paper, the most limiting 
parameter is the data parameter and its accuracy 
and dispersion. As seen in the clustering section, 
the amount of data in some clusters was very small, 
which in turn disrupts the network learning process 
and reduces network accuracy. 

Combining data such as remote sensing, 
geochemistry and geophysics can help to increase 
the accuracy of the model. Accuracy and 
orderliness in sampling and drilling boreholes 
under the regular exploration network can also help 
to increase accuracy. 

According to the results, by expanding this 
method, the cost of mineral exploration can be 
greatly reduced and a big step can be taken to 
optimize the exploration drilling network as the 
costliest part of mine exploration.  
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  چکیده:

ته به شـرایط پایداري گالري ادي معدن وابسـ رایط اقتصـ رو، ایمنی شـبکه معدن، نرخ تولید و متعاقباً شـ ها اسـت. پایداري در روش معدنکاري جبهه کار طولانی پیشـ
ت که عبارتگالري یب)  1اند از: ها تابعی از دو عامل مهم اسـ یات ناحیه آسـ ) اثر بارگذاري ناشـی از ناحیه تخریب در بالاي 2دیده حفاري در بالاي گالري و خصـوصـ

دیده حفاري را گسـترش دهد. عموماً در اثر شـیب لایه زغال اسـتخراجی، امکان وقوع شـکسـت در گالري اصـلی تواند ناحیه آسـیبکارگاه جبهه کار طولانی که می
دیده آسـیبونقل) بیشـتر از گالري تهویه اسـت؛ بنابراین هدف از انجام این تحقیق، تعیین اثر کارگاه اسـتخراج جبهه کار طولانی بر روي گسـترش ناحیه (گالري حمل

یات لایه زغال (شـیب و ض ـ وصـ یات ناحیه تخریب، خصـ وصـ ه عامل خصـ یدن به این هدف، با در نظر گرفتن سـ ت. براي رسـ لی اسـ خامت) و  حفاري در بالاي گالري اصـ
ریب  ی، یک رابطه جدید براي تعیین ضـ بات هندسـ اس محاسـ پس بر اسـ د. سـ عه داده شـ ی جدید توسـ یات ژئومکانیکی کمربالا، یک مدل هندسـ وصـ تأثیر کارگاه  خصـ

نجی مدل ارائهبد نهاد شـد. اعتبار سـ لی پیشـ ت آمد. همچنین با در نظر گرفتن مدل هندسـی جدید، یک الگوریتم براي تحلیل پایداري گالري اصـ ده بهسـ یله  شـ وسـ
تخراج جبهه کار طولانی معدن پروده نتایج ابزار بندي و رفتار نگاري یکی از کارگاه بی بین نتایج مدل   2هاي اسـ ان دادند که توافق مناسـ د. نتایج نشـ طبس انجام شـ

عه داده ده و مقادیر اندازهتوسـ یب لایه زغال شـ تم نگهداري و شـ یسـ یت بر روي اثر عرض پایه، ظرفیت باربري سـ اسـ ده وجود دارد. درنهایت، یک تحلیل حسـ گیري شـ
 انجام شد.

  دیده حفاري، کارگاه استخراج جبهه کار طولانی، ناحیه تخریب، مدل هندسی جدید.گالري اصلی، ناحیه آسیب کلمات کلیدي:

 

 

 

 


