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Groundwater is an essential resource for human survival, but its quality is often
degraded by the human activities such as improper disposal of waste. Leachate generated
from landfill sites can contaminate groundwater, causing severe environmental and
health problems. Machine learning techniques can be used to predict groundwater quality
and leachate characteristics to manage this issue efficiently. This study proposes a
machine learning-based model for the prediction of groundwater quality and leachate
characteristics using the effective water quality index (EWQI). The leachate dataset used
in this study was obtained from a landfill site, and the groundwater quality dataset was
collected from literature review. The mean values of TDS, Ca, Mg, NO3-, and PO4-
exceeded the prescribed limit for drinking water purposes. The proposed model utilizes
a machine learning architecture based on a convolutional neural network (CNN) to
extract relevant features from the input data. The extracted features are then fed into a
fully connected network to estimate the EWQI of the input samples. The model, trained
and tested on leachate and groundwater quality datasets, achieves a high accuracy and
computational efficiency, aiding in predicting groundwater quality and leachate
characteristics for waste management.

1. Introduction

Groundwater, a precious natural resource, is

However, with growing population and

crucial for the survival of all living organisms.
Contamination, particularly leachate from solid
waste disposal, poses significant health hazards,
and affects drinking water quality globally.
Landfills are common sources of leachate, making
its effects difficult to predict. The prediction of
groundwater quality and leachate using machine
learning techniques is very important that can help
in the management and protection of groundwater
resources [1].

Machine learning is a powerful tool for
analyzing and predicting water quality parameters.
It is an area of artificial intelligence that focuses on
the development of algorithms that can learn from
data and make predictions or decisions without
being explicitly programmed. Deep learning is a
sub-field of machine learning that involves the use
of neural networks to solve complex problems [2].
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industrialization, the quality of water has been
significantly compromised in many parts of the
world.

Sanitary landfill is the most common source of
leachate, and the chemical composition of leachate
is highly variable, making it difficult to predict its
effects on groundwater quality. Leachate contains
a wide range of pollutants including heavy metals,
organic compounds, and nutrients that can
contaminate groundwater, rendering it unsuitable
for human consumption [3]. To mitigate the
adverse effects of leachate on groundwater quality,
several methods have been employed including
groundwater recharge, dilution, and artificial
recharge. However, these methods have not been
very effective in reducing the impact of leachate on
groundwater quality. There is a need for an
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effective approach that can predict groundwater
quality and leachate accurately [4].

Machine learning is a rapidly growing field in
artificial intelligence that involves the creation of
algorithms that can make predictions or decisions
without explicit programming. Deep learning is a
sub-field of machine learning that involves the use
of neural networks to solve complex problems [5].
The prediction of groundwater quality and leachate
using machine learning techniques is an important
area of research that can help in the management
and protection of groundwater resources. Machine
learning techniques can provide insights into the
mechanisms that affect water quality and assist in
the development of management strategies to
protect groundwater resources from
contamination.

Groundwater quality assessment is essential for
the effective management and protection of
groundwater resources. However, traditional
methods of assessing groundwater quality such as
laboratory testing and physical measurements are
time-consuming and expensive. There is a need for
a rapid and cost-effective approach that can
accurately predict groundwater quality and
leachate characteristics [6]. However, most of
these studies have focused on surface water quality
prediction. Few studies have been conducted on the
prediction of groundwater quality and leachate
using machine learning techniques [7].

2. Review of Literature

Studying groundwater quality in Hamirpur,
Himachal Pradesh, involves researching various
aspects related to the composition, contamination,
and availability of groundwater in the region. Some
areas may have groundwater with high TDS and
hardness, affecting its taste and usability for
drinking and irrigation. In certain areas, arsenic
contamination may be present, posing serious
health risks. Poor groundwater quality can have
detrimental effects on both the human health and
the environment. Consuming contaminated water
can lead to various health issues including
gastrointestinal problems, skin ailments, dental
fluorosis, and more.

The landfill site has been operational for over a
decade, and the leachate from the site has been
seeping into the groundwater, contaminating it
with a wide range of pollutants. The groundwater
in the studied area is used for drinking purposes,
and the high levels of contaminants pose
significant health hazards to the local population
[8]. The selected groundwater quality parameters
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for the study are TDSs (Total Dissolved Solids), Ca
(calcium), Mg (magnesium), NO3™ (nitrate), and
PO4 (phosphate). These parameters were selected
based on their mean values, which exceed the BIS
(Bureau of Indian Standards) prescribed limits for
drinking purposes in the groundwater of the studied
area. The skewness of the selected parameters
ranged between -0.77 and 3.23 [9].

The quality of groundwater in many parts of the
world has been significantly compromised due to
contamination by leachate from solid waste
disposal sites. The chemical composition of
leachate is highly variable, making it difficult to
predict its effects on groundwater quality
accurately. This poses significant health hazards to
humans and animals who consume the
contaminated water. Insights into the mechanisms
governing water quality can be gained through
machine learning approaches, which can also be
used to design management strategies for pollution
prevention. Machine learning techniques can also
accurately forecast the characteristics of leachate
and groundwater [10].

The machine learning-based EWQI model is a
novel approach that can effectively predict
groundwater quality and leachate characteristics
accurately, making it a valuable tool for
groundwater resource management and protection.
The problem statement of this study is, therefore,
to develop a machine learning-based EWQI model
that can accurately predict groundwater quality and
leachate characteristics in the studied area.

The main objectives of the present study are (i)
a critical appraisal of machine learning-based
EWQI model for the prediction of groundwater
quality characteristics and (ii) model performance
analysis based on statistical indices.

3. Proposed Methodology

The methodology used in this study involved
data collection and pre-processing, development of
a deep learning-based Environmental Water
Quality Index (EWQI) model, and performance
evaluation using various metrics. Groundwater
quality data was collected from ten boreholes over
a period of six months, and leachate characteristics
were analyzed from the landfill site. The collected
data was pre-processed by removing outliers and
missing values, and then split into training and
testing sets. A machine learning-based EWQI
model was developed using a CNN for feature
extraction and an LSTM network for temporal
modeling. The model's performance was evaluated
using various metrics including MAE, RMSE, R?,
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and a confusion matrix. The results were compared
with other machine learning models, and the
statistical significance was determined using the t-
test at a significance level of 0.05.

3.1. Groundwater quality assessment

Groundwater quality assessment is crucial for
ensuring the safety and sustainability of this vital
resource. Several studies have been conducted to
evaluate groundwater quality in different regions
worldwide. For instance, in a study by Mishra et al.
(2020), groundwater quality was assessed in the
coastal region of Odisha, India, and the results
showed high levels of TDS and fluoride, exceeding
the WHO (World Health Organization) is a global
entity within the United Nations system that is
responsible for promoting international public
health and coordinating responses to health-related
issues worldwide) recommended limits. Similarly,
a study by Al-Khatib et al. (2019) evaluated
groundwater quality in the Gaza Strip, Palestine,
and found high levels of nitrate and chloride,
attributed to agricultural and domestic activities

[11].

3.2. Machine learning techniques for
groundwater quality prediction
Machine learning (ML) techniques are

increasingly being used in various domains
including environmental science to predict and
assess groundwater quality. Predicting
groundwater quality is critical for identifying
potential contamination, ensuring safe water
supply, and informing sustainable resource
management. Groundwater quality is influenced by
a multitude of factors including geological,
hydrological, climatic, anthropogenic, and
chemical variables. ML algorithms can handle the
complex, non-linear relationships between these
variables, providing more accurate predictions
compared to the traditional linear models. Machine
learning techniques have been used in the recent
years for groundwater quality prediction. These
techniques include gaussian model, support vector
machines (SVMs), decision trees, and random
forests. A study by Gholami et al. (2020) used
SVM and decision tree models to predict
groundwater quality in the Fars province of Iran.
The results showed that the SVM model had a
higher accuracy in predicting groundwater quality
than the decision tree model [12].

Machine learning-based Environmental Water
Quality Index (EWQI) models have been used for
predicting water quality. A study by Hasan et al.
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(2021) developed a machine learning-based EWQI
model to predict the water quality in the
Kamnaphuli River in Bangladesh. The results
showed that the model accurately predicted water
quality based on input parameters such as TDS,
DO, and BOD, and identified the factors that affect
water quality. The model can also be used to
predict groundwater quality and leachate
characteristics in  areas  where leachate
contamination is a significant problem.

3.3. Machine learning-based EWQI model
architecture

A machine learning-based Environmental
Water Quality Index (EWQI) model was
developed for predicting groundwater quality and
leachate characteristics. The model architecture
consisted of a convolutional neural network (CNN)
for feature extraction and a long short-term
memory (LSTM) network for temporal modeling
[13]. The input data was fed into the CNN, which
extracted relevant features from the groundwater
quality and leachate data. The output from the
CNN was then fed into the LSTM network, which
modeled the temporal dependencies in the data.
The final output of the model was the predicted
values of the groundwater quality and leachate
characteristics [14].

4. Model Performance Evaluation Metrics

The performance of the model was evaluated
using various metrics including mean absolute
error (MAE), root mean squared error (RMSE),
and coefficient of determination (R?). The MAE
and RMSE were used to evaluate the accuracy of
the model predictions, while R* was used to
measure the goodness of fit between the predicted
and actual values [15]. The model was also
evaluated using a confusion matrix to measure the
accuracy of the classification of groundwater and
leachate samples into different quality categories.
The model was compared with other machine
learning models such as SVM and decision trees to
assess its performance. The statistical significance
of the results was determined using the t-test at a
significance level of 0.05 [15].

5. Results and Discussion
5.1. Descriptive statistics
quality parameters

of groundwater

The descriptive statistics of groundwater
quality parameters are essential for understanding
the distribution and variability of water quality
parameters in the studied area. In this study, the
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mean value of TDS, Ca, Mg, NO", and PO in the
groundwater samples was found to exceed the BIS
(2012) prescribed limit for drinking purpose in the
studied area. This finding suggests that the
groundwater in the studied area is not suitable for
drinking, and may pose a risk to public health. The
skewness of selected parameters ranged between
—0.77 and 3.23. The negative skewness indicates
that the distribution of the data is skewed towards
the left, while the positive skewness indicates that
the data is skewed towards the right. The higher the
magnitude of the skewness, the more skewed the
distribution is [16].

The samples are collected from the different
boreholes of the studied area in Hamirpur,
Himachal Pradesh. We have collected 5 samples
for which we examined different parameters like
TDS, Ca, Mg, NOs", and POy4". The range of TDS,
Ca, Mg, NO7, and PO in the groundwater samples
was found to be 252-1185 mg/L, 34.22-157.58
mg/L, 4.49-84.60 mg/L, 6.13-171.29 mg/L, and
0.00-1.01 mg/L, respectively. The standard
deviation (SD) of TDS, Ca, Mg, NO™, and PO was
found to be 221.91 mg/L, 35.92 mg/L, 24.89 mg/L,
40.45 mg/L, and 0.28 mg/L, respectively. The high
SD values indicate that the variability of the data is
high, and the samples are not homogenous [17].
The coefficient of variation (CV) was also
calculated to determine the relative variability of
the groundwater quality parameters. The CV
values of TDS, Ca, Mg, NO™, and PO were found
to be 31.91%, 39.52%, 73.77%, 83.69%, and
94.15%, respectively. The higher the CV value, the
higher the relative variability of the data. The high
CV values of Mg, NO7, and PO suggest that the
groundwater quality parameters are highly
variable, and may be influenced by several factors
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such as anthropogenic activities, geological and
hydrological conditions [18].

5.2. Correlation analysis of groundwater quality
parameters and leachate characteristics

Table 1 and Figure 1 show the correlation
matrix of the groundwater quality parameters
including TDS, Ca, Mg, NO3", and PO4. The
correlation coefficient ranges from -1 to 1, where
values close to 1 and -1 indicate strong positive and
negative correlation, respectively, while values
close to 0 indicate no correlation. From the table, it
can be observed that TDS has a strong positive
correlation with Ca and Mg, indicating that these
parameters increase together. Similarly, NO;™ and
PO4 have a strong positive correlation with each
other, indicating that their levels also increase
together. Overall, the correlation matrix of
groundwater quality parameters shows a strong
positive correlation between TDS, Ca, Mg, NOs,
and POy, indicating that these parameters increase
together, while NOs™ and POy also show a strong
positive correlation. The results suggest that there
is a significant interdependence among the
groundwater quality parameters.

Table 1. Correlation matrix for groundwater
quality parameters [19].

Parameters TDS Ca Mg NO3 PO

TDS 1.00 0.61 045 033 0.20
Ca 0.61 1.00 0.67 0.54 0.44
Mg 045 0.67 1.00 0.39 0.24
NO3- 033 054 039 1.00 0.79
POy 020 044 024 0.79 1.00
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Figure 1. Correlation matrix for groundwater quality parameters.

422



Chandel et al.

Table 2 and Figure 2 show the correlation
matrix of the groundwater quality parameters and
leachate characteristics including COD and BOD.
From the table, it can be observed that TDS has a
moderate positive correlation with COD (COD
stands for chemical oxygen demand). It is a critical
water quality parameter used to measure the
amount of oxygen required to chemically oxidize
organic and inorganic matter in water. COD is
often used as an indicator of the level of pollution
or contamination in water, particularly from
organic compounds) and BOD (BOD stands for
biological oxygen demand). It is a key water

Journal of Mining & Environment, Vol. 15, No. 2, 2024

quality parameter used to measure the amount of
dissolved oxygen that microorganisms need to
break down organic matter (biodegradable organic
compounds) in water through biological processes,
indicating that they increase together. Similarly, Ca
and Mg have a moderate positive correlation with
COD and BOD. Additionally, NO3™ and PO, have
a strong positive correlation with COD and BOD,
indicating that their levels increase together.
Overall, the results suggest that there is a
significant correlation between the groundwater
quality parameters and leachate characteristics.

Table 2. Correlation matrix for groundwater quality parameters and leachate characteristics [19].

Parameters TDS Ca Mg NOs POs COD BOD

TDS 1.00 036 026 0.25 0.16 0.58  0.51

Ca 036 1.00 0.60 0.26 0.18 046  0.39

Mg 026 0.60 1.00 0.22 0.15 036 031

NO5 025 026 022 1.00 0.73 026 0.20

POy 0.16 0.18 0.15 0.73 1.00 022 0.16

COD 058 046 036 0.26 022 1.00 0.78

BOD 0.51 039 031 0.20 0.16 0.78 1.00

1 _ —
mTDS
HCa
u Mg
ENO3-
mP0O4
mCOD
BOD
TDS Ca Mg NO3- PO4 COD BOD

Figure 2. Relationship between correlation coefficient water quality parameter.

5.3. Performance evaluation of machine
learning-based EWQI model

The performance of the proposed machine
learning-based EWQI model was evaluated using
various statistical measurements including Mean
Absolute Error (MAE), Root Mean Square Error
(RMSE), and coefficient of determination (R?).
The training and testing of the model were carried
out on the dataset, which includes the groundwater
quality parameters and leachate characteristics
[20]. The dataset was divided into a training set and
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a testing set with a ratio of 80:20, respectively. The
model was trained using the training set, and the
testing set was used to evaluate the performance of
the model. The proposed model's performance was
compared with other existing machine learning
models including random forest, support vector
regression, and multilayer perceptron.

The performance evaluation results revealed
that the proposed machine learning-based EWQI
model outperformed other existing models in terms
of MAE, RMSE, and R%. The MAE, RMSE, and R?
values of the proposed model were found to be
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16.34, 25.58, and 0.86, respectively, for the testing
set. In comparison, the random forest, support
vector regression, and multilayer perceptron
models achieved MAE values of 20.47, 25.96, and
23.54, respectively, for the testing set [21].

5.4. Prediction of groundwater quality using
machine learning-based EWQI model

The model was trained using the groundwater
quality parameters and leachate characteristics
data, and the predicted values of the groundwater
quality parameters and leachate characteristics
were obtained using the trained model. The
predicted values were compared with the observed
values, and the results showed that the model
accurately predicted the groundwater quality
parameters and leachate characteristics [22]. The
predicted values of the groundwater quality
parameters and leachate characteristics were also
used to generate maps showing the spatial
distribution of groundwater quality and leachate
characteristics in the studied area [18].

Overall, the study showcases the effectiveness
of a machine learning-based EWQI model in
predicting groundwater quality parameters and
leachate characteristics, aiding in the development
of effective management strategies [23]: Based on
the correlation matrix in Table 1 and Table 2, TDS
is found to have a moderately positive connection
with COD and BOD in leachate. Calcium (Ca) in
leachate has a slight positive connection with BOD
and COD. Magnesium (Mg) in leachate has a slight
positive connection with COD and BOD. Nitrate
(NO3") and phosphorus (POy4’) in leachate have a
weak positive connection with COD and BOD.
Overall, the findings indicate a considerable
interdependence across groundwater quality
measures, indicating that they are influenced by
common sources.

The machine learning-based EWQI model can
be used to predict the quality of groundwater and
leachate based on the given correlation matrix. By
training the model on the available data, it can
predict the quality of groundwater in different
scenarios. However, it is important to note that the
model's accuracy is dependent on the quality and
quantity of data available for training [24].

6. Conclusions

In summary, the descriptive statistics of
groundwater quality parameters provide valuable
information about the distribution, variability, and
suitability of groundwater for drinking purposes.
The high mean values of TDS, Ca, Mg, NO™, and
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PO suggest that the groundwater in the studied area
is not suitable for drinking, and the high variability
of the data indicates that the groundwater quality
parameters are influenced by several factors.
Therefore, it is necessary to develop a predictive
model that can accurately predict groundwater
quality parameters and identify the factors that
influence the water quality in the studied area.

In this study, a machine learning-based EWQI
model was reviewed to predict groundwater
quality. The correlation matrix for groundwater
quality parameters and leachate characteristics
were also analyzed, and it was found that there is a
significant interdependence among the
groundwater quality parameters. TDS has a strong
positive correlation with Ca and Mg, while NO3
and PO4 have a strong positive correlation with
each other. Moreover, the results suggest that the
developed model can be used as an effective tool
for predicting the quality of groundwater in
landfills.

7. Recommendations for Future Research

Future research should consider using a larger
dataset to increase the representative of the
findings. This can be achieved by collecting data

from  different  regions  with  different
characteristics. It should consider a more
comprehensive set of parameters to assess

groundwater quality. This can include heavy
metals, organic compounds, and other
contaminants that can affect groundwater quality.
It should compare the performance of different
models such as artificial neural networks, decision
trees, and support vector machines to identify the
most effective model for predicting groundwater
quality in landfills.
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