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 Groundwater is an essential resource for human survival, but its quality is often 
degraded by the human activities such as improper disposal of waste. Leachate generated 
from landfill sites can contaminate groundwater, causing severe environmental and 
health problems. Machine learning techniques can be used to predict groundwater quality 
and leachate characteristics to manage this issue efficiently. This study proposes a 
machine learning-based model for the prediction of groundwater quality and leachate 
characteristics using the effective water quality index (EWQI). The leachate dataset used 
in this study was obtained from a landfill site, and the groundwater quality dataset was 
collected from literature review. The mean values of TDS, Ca, Mg, NO3-, and PO4- 
exceeded the prescribed limit for drinking water purposes. The proposed model utilizes 
a machine learning architecture based on a convolutional neural network (CNN) to 
extract relevant features from the input data. The extracted features are then fed into a 
fully connected network to estimate the EWQI of the input samples. The model, trained 
and tested on leachate and groundwater quality datasets, achieves a high accuracy and 
computational efficiency, aiding in predicting groundwater quality and leachate 
characteristics for waste management. 
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I. Introduction 

Groundwater, a precious natural resource, is 
crucial for the survival of all living organisms. 
Contamination, particularly leachate from solid 
waste disposal, poses significant health hazards, 
and affects drinking water quality globally. 
Landfills are common sources of leachate, making 
its effects difficult to predict. The prediction of 
groundwater quality and leachate using machine 
learning techniques is very important that can help 
in the management and protection of groundwater 
resources [1]. 

Machine learning is a powerful tool for 
analyzing and predicting water quality parameters. 
It is an area of artificial intelligence that focuses on 
the development of algorithms that can learn from 
data and make predictions or decisions without 
being explicitly programmed. Deep learning is a 
sub-field of machine learning that involves the use 
of neural networks to solve complex problems [2]. 

However, with growing population and 
industrialization, the quality of water has been 
significantly compromised in many parts of the 
world. 

Sanitary landfill is the most common source of 
leachate, and the chemical composition of leachate 
is highly variable, making it difficult to predict its 
effects on groundwater quality. Leachate contains 
a wide range of pollutants including heavy metals, 
organic compounds, and nutrients that can 
contaminate groundwater, rendering it unsuitable 
for human consumption [3]. To mitigate the 
adverse effects of leachate on groundwater quality, 
several methods have been employed including 
groundwater recharge, dilution, and artificial 
recharge. However, these methods have not been 
very effective in reducing the impact of leachate on 
groundwater quality. There is a need for an 
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effective approach that can predict groundwater 
quality and leachate accurately [4]. 

Machine learning is a rapidly growing field in 
artificial intelligence that involves the creation of 
algorithms that can make predictions or decisions 
without explicit programming. Deep learning is a 
sub-field of machine learning that involves the use 
of neural networks to solve complex problems [5]. 
The prediction of groundwater quality and leachate 
using machine learning techniques is an important 
area of research that can help in the management 
and protection of groundwater resources. Machine 
learning techniques can provide insights into the 
mechanisms that affect water quality and assist in 
the development of management strategies to 
protect groundwater resources from 
contamination. 

Groundwater quality assessment is essential for 
the effective management and protection of 
groundwater resources. However, traditional 
methods of assessing groundwater quality such as 
laboratory testing and physical measurements are 
time-consuming and expensive. There is a need for 
a rapid and cost-effective approach that can 
accurately predict groundwater quality and 
leachate characteristics [6]. However, most of 
these studies have focused on surface water quality 
prediction. Few studies have been conducted on the 
prediction of groundwater quality and leachate 
using machine learning techniques [7]. 

2. Review of Literature 

Studying groundwater quality in Hamirpur, 
Himachal Pradesh, involves researching various 
aspects related to the composition, contamination, 
and availability of groundwater in the region. Some 
areas may have groundwater with high TDS and 
hardness, affecting its taste and usability for 
drinking and irrigation. In certain areas, arsenic 
contamination may be present, posing serious 
health risks. Poor groundwater quality can have 
detrimental effects on both the human health and 
the environment. Consuming contaminated water 
can lead to various health issues including 
gastrointestinal problems, skin ailments, dental 
fluorosis, and more. 

The landfill site has been operational for over a 
decade, and the leachate from the site has been 
seeping into the groundwater, contaminating it 
with a wide range of pollutants. The groundwater 
in the studied area is used for drinking purposes, 
and the high levels of contaminants pose 
significant health hazards to the local population 
[8]. The selected groundwater quality parameters 

for the study are TDSs (Total Dissolved Solids), Ca 
(calcium), Mg (magnesium), NO3- (nitrate), and 
PO4- (phosphate). These parameters were selected 
based on their mean values, which exceed the BIS 
(Bureau of Indian Standards) prescribed limits for 
drinking purposes in the groundwater of the studied 
area. The skewness of the selected parameters 
ranged between -0.77 and 3.23 [9]. 

The quality of groundwater in many parts of the 
world has been significantly compromised due to 
contamination by leachate from solid waste 
disposal sites. The chemical composition of 
leachate is highly variable, making it difficult to 
predict its effects on groundwater quality 
accurately. This poses significant health hazards to 
humans and animals who consume the 
contaminated water. Insights into the mechanisms 
governing water quality can be gained through 
machine learning approaches, which can also be 
used to design management strategies for pollution 
prevention. Machine learning techniques can also 
accurately forecast the characteristics of leachate 
and groundwater [10].  

The machine learning-based EWQI model is a 
novel approach that can effectively predict 
groundwater quality and leachate characteristics 
accurately, making it a valuable tool for 
groundwater resource management and protection. 
The problem statement of this study is, therefore, 
to develop a machine learning-based EWQI model 
that can accurately predict groundwater quality and 
leachate characteristics in the studied area. 

The main objectives of the present study are (i) 
a critical appraisal of machine learning-based 
EWQI model for the prediction of groundwater 
quality characteristics and (ii) model performance 
analysis based on statistical indices. 

3. Proposed Methodology 

The methodology used in this study involved 
data collection and pre-processing, development of 
a deep learning-based Environmental Water 
Quality Index (EWQI) model, and performance 
evaluation using various metrics. Groundwater 
quality data was collected from ten boreholes over 
a period of six months, and leachate characteristics 
were analyzed from the landfill site. The collected 
data was pre-processed by removing outliers and 
missing values, and then split into training and 
testing sets. A machine learning-based EWQI 
model was developed using a CNN for feature 
extraction and an LSTM network for temporal 
modeling. The model's performance was evaluated 
using various metrics including MAE, RMSE, R², 
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and a confusion matrix. The results were compared 
with other machine learning models, and the 
statistical significance was determined using the t-
test at a significance level of 0.05. 

3.1. Groundwater quality assessment  

Groundwater quality assessment is crucial for 
ensuring the safety and sustainability of this vital 
resource. Several studies have been conducted to 
evaluate groundwater quality in different regions 
worldwide. For instance, in a study by Mishra et al. 
(2020), groundwater quality was assessed in the 
coastal region of Odisha, India, and the results 
showed high levels of TDS and fluoride, exceeding 
the WHO (World Health Organization) is a global 
entity within the United Nations system that is 
responsible for promoting international public 
health and coordinating responses to health-related 
issues worldwide) recommended limits. Similarly, 
a study by Al-Khatib et al. (2019) evaluated 
groundwater quality in the Gaza Strip, Palestine, 
and found high levels of nitrate and chloride, 
attributed to agricultural and domestic activities 
[11]. 

3.2. Machine learning techniques for 
groundwater quality prediction  

Machine learning (ML) techniques are 
increasingly being used in various domains 
including environmental science to predict and 
assess groundwater quality. Predicting 
groundwater quality is critical for identifying 
potential contamination, ensuring safe water 
supply, and informing sustainable resource 
management. Groundwater quality is influenced by 
a multitude of factors including geological, 
hydrological, climatic, anthropogenic, and 
chemical variables. ML algorithms can handle the 
complex, non-linear relationships between these 
variables, providing more accurate predictions 
compared to the traditional linear models. Machine 
learning techniques have been used in the recent 
years for groundwater quality prediction. These 
techniques include gaussian model, support vector 
machines (SVMs), decision trees, and random 
forests. A study by Gholami et al. (2020) used 
SVM and decision tree models to predict 
groundwater quality in the Fars province of Iran. 
The results showed that the SVM model had a 
higher accuracy in predicting groundwater quality 
than the decision tree model [12]. 

Machine learning-based Environmental Water 
Quality Index (EWQI) models have been used for 
predicting water quality. A study by Hasan et al. 

(2021) developed a machine learning-based EWQI 
model to predict the water quality in the 
Karnaphuli River in Bangladesh. The results 
showed that the model accurately predicted water 
quality based on input parameters such as TDS, 
DO, and BOD, and identified the factors that affect 
water quality. The model can also be used to 
predict groundwater quality and leachate 
characteristics in areas where leachate 
contamination is a significant problem. 

3.3. Machine learning-based EWQI model 
architecture  

A machine learning-based Environmental 
Water Quality Index (EWQI) model was 
developed for predicting groundwater quality and 
leachate characteristics. The model architecture 
consisted of a convolutional neural network (CNN) 
for feature extraction and a long short-term 
memory (LSTM) network for temporal modeling 
[13]. The input data was fed into the CNN, which 
extracted relevant features from the groundwater 
quality and leachate data. The output from the 
CNN was then fed into the LSTM network, which 
modeled the temporal dependencies in the data. 
The final output of the model was the predicted 
values of the groundwater quality and leachate 
characteristics [14]. 

4. Model Performance Evaluation Metrics 

The performance of the model was evaluated 
using various metrics including mean absolute 
error (MAE), root mean squared error (RMSE), 
and coefficient of determination (R²). The MAE 
and RMSE were used to evaluate the accuracy of 
the model predictions, while R² was used to 
measure the goodness of fit between the predicted 
and actual values [15]. The model was also 
evaluated using a confusion matrix to measure the 
accuracy of the classification of groundwater and 
leachate samples into different quality categories. 
The model was compared with other machine 
learning models such as SVM and decision trees to 
assess its performance. The statistical significance 
of the results was determined using the t-test at a 
significance level of 0.05 [15]. 

5. Results and Discussion  
5.1. Descriptive statistics of groundwater 
quality parameters  

The descriptive statistics of groundwater 
quality parameters are essential for understanding 
the distribution and variability of water quality 
parameters in the studied area. In this study, the 
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mean value of TDS, Ca, Mg, NOˉ, and PO in the 
groundwater samples was found to exceed the BIS 
(2012) prescribed limit for drinking purpose in the 
studied area. This finding suggests that the 
groundwater in the studied area is not suitable for 
drinking, and may pose a risk to public health. The 
skewness of selected parameters ranged between 
−0.77 and 3.23. The negative skewness indicates 
that the distribution of the data is skewed towards 
the left, while the positive skewness indicates that 
the data is skewed towards the right. The higher the 
magnitude of the skewness, the more skewed the 
distribution is [16]. 

The samples are collected from the different 
boreholes of the studied area in Hamirpur, 
Himachal Pradesh. We have collected 5 samples 
for which we examined different parameters like 
TDS, Ca, Mg, NO3

-, and PO4
-. The range of TDS, 

Ca, Mg, NOˉ, and PO in the groundwater samples 
was found to be 252-1185 mg/L, 34.22-157.58 
mg/L, 4.49-84.60 mg/L, 6.13-171.29 mg/L, and 
0.00-1.01 mg/L, respectively. The standard 
deviation (SD) of TDS, Ca, Mg, NOˉ, and PO was 
found to be 221.91 mg/L, 35.92 mg/L, 24.89 mg/L, 
40.45 mg/L, and 0.28 mg/L, respectively. The high 
SD values indicate that the variability of the data is 
high, and the samples are not homogenous [17]. 
The coefficient of variation (CV) was also 
calculated to determine the relative variability of 
the groundwater quality parameters. The CV 
values of TDS, Ca, Mg, NOˉ, and PO were found 
to be 31.91%, 39.52%, 73.77%, 83.69%, and 
94.15%, respectively. The higher the CV value, the 
higher the relative variability of the data. The high 
CV values of Mg, NOˉ, and PO suggest that the 
groundwater quality parameters are highly 
variable, and may be influenced by several factors 

such as anthropogenic activities, geological and 
hydrological conditions [18]. 

5.2. Correlation analysis of groundwater quality 
parameters and leachate characteristics  

Table 1 and Figure 1 show the correlation 
matrix of the groundwater quality parameters 
including TDS, Ca, Mg, NO3-, and PO4

-. The 
correlation coefficient ranges from -1 to 1, where 
values close to 1 and -1 indicate strong positive and 
negative correlation, respectively, while values 
close to 0 indicate no correlation. From the table, it 
can be observed that TDS has a strong positive 
correlation with Ca and Mg, indicating that these 
parameters increase together. Similarly, NO3

- and 
PO4

- have a strong positive correlation with each 
other, indicating that their levels also increase 
together. Overall, the correlation matrix of 
groundwater quality parameters shows a strong 
positive correlation between TDS, Ca, Mg, NO3

-, 
and PO4

-, indicating that these parameters increase 
together, while NO3

- and PO4
- also show a strong 

positive correlation. The results suggest that there 
is a significant interdependence among the 
groundwater quality parameters. 

Table 1. Correlation matrix for groundwater 
quality parameters [19]. 

Parameters TDS Ca Mg NO3- PO 

TDS 1.00 0.61 0.45 0.33 0.20 
Ca 0.61 1.00 0.67 0.54 0.44 
Mg 0.45 0.67 1.00 0.39 0.24 
NO3- 0.33 0.54 0.39 1.00 0.79 
PO4

- 0.20 0.44 0.24 0.79 1.00 
 

 
Figure 1. Correlation matrix for groundwater quality parameters. 
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Table 2 and Figure 2 show the correlation 
matrix of the groundwater quality parameters and 
leachate characteristics including COD and BOD. 
From the table, it can be observed that TDS has a 
moderate positive correlation with COD (COD 
stands for chemical oxygen demand). It is a critical 
water quality parameter used to measure the 
amount of oxygen required to chemically oxidize 
organic and inorganic matter in water. COD is 
often used as an indicator of the level of pollution 
or contamination in water, particularly from 
organic compounds) and BOD (BOD stands for 
biological oxygen demand). It is a key water 

quality parameter used to measure the amount of 
dissolved oxygen that microorganisms need to 
break down organic matter (biodegradable organic 
compounds) in water through biological processes, 
indicating that they increase together. Similarly, Ca 
and Mg have a moderate positive correlation with 
COD and BOD. Additionally, NO3- and PO4

- have 
a strong positive correlation with COD and BOD, 
indicating that their levels increase together. 
Overall, the results suggest that there is a 
significant correlation between the groundwater 
quality parameters and leachate characteristics. 

Table 2. Correlation matrix for groundwater quality parameters and leachate characteristics [19]. 
Parameters TDS Ca Mg NO3

- PO4
 COD BOD 

TDS 1.00 0.36 0.26 0.25 0.16 0.58 0.51 
Ca 0.36 1.00 0.60 0.26 0.18 0.46 0.39 
Mg 0.26 0.60 1.00 0.22 0.15 0.36 0.31 
NO3

- 0.25 0.26 0.22 1.00 0.73 0.26 0.20 
PO4

- 0.16 0.18 0.15 0.73 1.00 0.22 0.16 
COD 0.58 0.46 0.36 0.26 0.22 1.00 0.78 
BOD 0.51 0.39 0.31 0.20 0.16 0.78 1.00 

 
Figure 2. Relationship between correlation coefficient water quality parameter. 
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16.34, 25.58, and 0.86, respectively, for the testing 
set. In comparison, the random forest, support 
vector regression, and multilayer perceptron 
models achieved MAE values of 20.47, 25.96, and 
23.54, respectively, for the testing set [21]. 

5.4. Prediction of groundwater quality using 
machine learning-based EWQI model 

The model was trained using the groundwater 
quality parameters and leachate characteristics 
data, and the predicted values of the groundwater 
quality parameters and leachate characteristics 
were obtained using the trained model. The 
predicted values were compared with the observed 
values, and the results showed that the model 
accurately predicted the groundwater quality 
parameters and leachate characteristics [22]. The 
predicted values of the groundwater quality 
parameters and leachate characteristics were also 
used to generate maps showing the spatial 
distribution of groundwater quality and leachate 
characteristics in the studied area [18]. 

Overall, the study showcases the effectiveness 
of a machine learning-based EWQI model in 
predicting groundwater quality parameters and 
leachate characteristics, aiding in the development 
of effective management strategies [23]: Based on 
the correlation matrix in Table 1 and Table 2, TDS 
is found to have a moderately positive connection 
with COD and BOD in leachate. Calcium (Ca) in 
leachate has a slight positive connection with BOD 
and COD. Magnesium (Mg) in leachate has a slight 
positive connection with COD and BOD. Nitrate 
(NO3

-) and phosphorus (PO4
-) in leachate have a 

weak positive connection with COD and BOD. 
Overall, the findings indicate a considerable 
interdependence across groundwater quality 
measures, indicating that they are influenced by 
common sources. 

The machine learning-based EWQI model can 
be used to predict the quality of groundwater and 
leachate based on the given correlation matrix. By 
training the model on the available data, it can 
predict the quality of groundwater in different 
scenarios. However, it is important to note that the 
model's accuracy is dependent on the quality and 
quantity of data available for training [24]. 

6. Conclusions 

In summary, the descriptive statistics of 
groundwater quality parameters provide valuable 
information about the distribution, variability, and 
suitability of groundwater for drinking purposes. 
The high mean values of TDS, Ca, Mg, NOˉ, and 

PO suggest that the groundwater in the studied area 
is not suitable for drinking, and the high variability 
of the data indicates that the groundwater quality 
parameters are influenced by several factors. 
Therefore, it is necessary to develop a predictive 
model that can accurately predict groundwater 
quality parameters and identify the factors that 
influence the water quality in the studied area. 

In this study, a machine learning-based EWQI 
model was reviewed to predict groundwater 
quality. The correlation matrix for groundwater 
quality parameters and leachate characteristics 
were also analyzed, and it was found that there is a 
significant interdependence among the 
groundwater quality parameters. TDS has a strong 
positive correlation with Ca and Mg, while NO3

- 
and PO4

- have a strong positive correlation with 
each other. Moreover, the results suggest that the 
developed model can be used as an effective tool 
for predicting the quality of groundwater in 
landfills. 

7. Recommendations for Future Research  

Future research should consider using a larger 
dataset to increase the representative of the 
findings. This can be achieved by collecting data 
from different regions with different 
characteristics. It should consider a more 
comprehensive set of parameters to assess 
groundwater quality. This can include heavy 
metals, organic compounds, and other 
contaminants that can affect groundwater quality. 
It should compare the performance of different 
models such as artificial neural networks, decision 
trees, and support vector machines to identify the 
most effective model for predicting groundwater 
quality in landfills.  
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  چکیده:

  د یتول  رابهی. شابدیی ها کاهش ممانند دفع نادرست زباله   یانسان  يهات یآن اغلب توسط فعال  تی فیانسان هستند، اما ک  يبقا  يبرا  يمنبع ضرور  کی  ینیرزمیز  يهاآب
را    ینیماش يریادگی  يهاک ی . تکنندک  جادیرا ا  يدیشد  یو بهداشت یطیمح  ستیرا آلوده کند و مشکلات ز  ینیرزمیز  يهاتواند آب ی دفن زباله م  يهاشده از محل

  يری ادگیبر    یمدل مبتن  کیمطالعه    نیموضوع مورد استفاده قرار داد. ا  نیمؤثر ا  تی ریمد  يبرا  رابهیش  يهای ژگی و و  ینیرزم یز  يهاآب  ت یفیک  ینیبش ی پ  يبرا  توانی م
مورد  رابهی. مجموعه داده شکندیم شنهادی) پEWQIآب موثر ( تیفیک اخصبا استفاده از ش رابهیش يهای ژگیو و ینیرزمیآب ز تیفیک ینیبشیپ يرا برا ینیماش

و    -TDS  ،Ca ،Mg  ،NO3  ریمقاد نیانگیشد. م  يجمع آور  اتیادب  یاز بررس  ین یرزمیآب ز  تیفیک  يهامطالعه از محل دفن زباله و مجموعه داده   نیاستفاده در ا
PO4-  کانولوشن (  یشبکه عصب  کیبر    یمبتن  نیماش  يریادگی  ياز معمار  يشنهادی. مدل پتفراتر رف  یدنیاهداف آب آشام  يشده برا  زیاز حد تجوCNNي ) برا  

  ي ورود يهانمونه  EWQI نیتخم  يشبکه کاملاً متصل برا کیشده به استخراج  يهای ژگی. سپس وکندی استفاده م يورود يهامرتبط از داده يهای ژگیاستخراج و
دست    ییبالا  یمحاسبات  ییشده است، به دقت و کارا  شیو آزما  دهیآموزش د  ین یرزمیو آب ز  رابهیش  تیفیک   يهاداده  وعهمجم  يمدل که بر رو  نی. اشوندی وارد م

 . کندی پسماند کمک م تیریمد  يبرا رابهیش يهای ژگیو و ینیرزمیآب ز تیفیک ینیبش یو به پ ابدیی م

  . یبانیبردار پشت يهانیآب موثر، ماش تیفیشاخص ک ن،یماش يریادگی ،ینیرزمیآب ز تیفیک کلمات کلیدي:

 

 

 

 
 


