Document Type : Original Research Paper

Authors

Faculty of Science, Cairo University, Cairo, Egypt

Abstract

In the recent years, the use of ASTER and Landsat data have become prevalent for mapping different types of rock formations. Specifically, this study utilizes ASTER (L1B) and Landsat 8 (AOL) images to map outcrops of various gypsum facies in Ras Malaab area of west-central Sinai. These gypsum facies are part of a lithostratigraphic group called Ras Malaab, estimated to have been formed during the Miocene period. A range of image processing techniques was employed to create the final facies map including quartz and sulphate indices, composite image band combinations, band ratios, principal component analyses, decorrelation stretching, and SAM mapping followed by supervised classification. By using band combinations, mineral indices, and principal component analyses, sulphate minerals were distinguished from their surroundings. Additionally, decorrelation stretches and band ratios were used to differentiate between primary, secondary, faulted gypsum, anhydrite, and carbonates. The SAM rapid mapping algorithm was also an effective tool to distinguish between the main facies in the studied area and to differentiate between primary massive and bedded gypsum. The results of this study were summarized by creating a facies map of the area using supervised classification, which, in addition to petrographic studies, greatly aided in understanding the distribution of the different gypsum facies.

Keywords

Main Subjects

  • Warren, J. (2016). Evaporites: A Geological Compendium. 2nd edition, Springer Internal Publication Switzerland, 1813.
  • El-Kammar, A., Surour, A., El-Sharkawi, M., & Khozyem, H. (2020). Mineral Resources in Egypt (II): Non- metallic Ore Deposits In Hamimi, et al. The Geology of Egypt. Springer, USA, 589-634.
  • Said, R. (1990). The geology of Egypt. 1st edition, Taylor and Francis international publication, London, 734.
  • Pandey, S. (1985). Principles and applications of photogeology. John Wiley and Sons, 366.
  • Nguyen, N. (2010). Estimation of Above Ground Biomass In Tropical Forest Using Sar Data- A Case Study In Afram Headwaters Forest, Ghana, International Institute for Geo-information Science and Earth Observation. Dissertation (MD in Geology, International Institute for Geo-information Science and Earth Observation), 92.
  • Öztan, S. & Süzen, L. (2011). Mapping evaporite minerals by Aster. International Journal of Remote Sensing, 32, 1651-1673.
  • Orti-Cabo, F. (1976). An approach to the petrographical study of secondary gypsum microstructures and their origin. Dissertation (Diploma in sedimentary petrology, DJC, Imperial College, London), 140.
  • Attia, O. (1993). Sedimentological and petrological studies of the middle Miocene evaporites on the eastern side of the Gulf of Suez, Sinai, Egypt. Dissertation (PhD in geology, Cairo University, Cairo), 159.
  • Hosny, W., Gaafar, I. & Sabour, A. (1988). Miocene stratigraphic nomenclature in the Gulf of Suez region. Proceedings of the eighth Exploration Seminar, Cairo (1986), Egyptian General Petroleum Corporation, 1, 131-148.
  • Thiriet, J., Burollet, P., Montenat, C., & Ott D’estevou, P. (1986). Evolution tectonique et sedimentaire neogene a la transition du Golfe de Suez et de la Mer Rouge: La Secteur De Port-Safaga (Egypte). Documents Et Travaux, Institution Geology Albert De Lapparent, 10, 93–116.
  • Hume, W. (1921). Relations of the northern Red Sea and associated gulf areas to the “rift” theory. Proceedings of the Geology Society London, 77, 96-101.
  • Montenat, C., Ott D'estevou, P., Jarrige, J., & Richert, J. (1998). Rift development in the Gulf of Suez and the north-western Red Sea: Structural Aspects And Related Sedimentary Processes, Sedimentation And Tectonics In Rift Basins Red Sea: Gulf Of Aden. Springer Science and Business Media, ch. (B5), 97-116.
  • Jarrige, J., Ott D’estevou, P., & Sehans, P. (1986). Etude structural sur la marge occidentale de la Mer Rouge: le secteur du Gebel Duwi pres de Quseir (Egypte). Documents Et Travaux, Institution of Geology, Albert De L’apparent, 10, 117–127.
  • Van Dijk, J., Ajayi, A., De Vincenzi, L., Ellen, H., Guney, H., & Santoni, S. (2018). A new model for the development of the Gulf of Suez Rifting; Implications for hydrocarbon exploration and production potential, project: geology and geophysics of the exploration and production assets (Algeria, Tunesia, Egypt, Afghanistan, Iraq, Turkmenistan) of Dragon Oil (Enoc Group). Society of Petroleum Engineers, SPE- 192978-MS, 10.
  • Patton, T., Moustafa, A., Nelson, R., & Abdine, S. (1994). Tectonic evolution and structural setting of the Suez Rift (In Landon, S. Interior Rift Basins). AAPG Memoir, 59, 7–55.
  • Colletta, B., Le Quellec, P., Letouzey, J., & Moretti, I. (1988). Longitudinal evolution of the Suez Rift structure (Egypt). Tectonophysics, 153, 221–233.
  • Perry, S., & Schamel, S. (1990). The role of low-angle normal faulting and isostatic response in the evolution of the Suez Rift, Egypt. Tectonophysics, 174, 159–173.
  • Bosworth, W., & Mcclay, K. (2001). Structural and stratigraphic evolution of the Gulf of Suez Rift, Egypt: A synthesis (In Ziegler, P., Cavazza, W., Robertson, A. and Crasquin-Soleau, S. Peri-Tethys Memoir 6: Peri-Tethyan Rift/Wrench Basins and Passive Margins). Museum National D’histoire Naturelle De Paris, Memoir, 186, 567-606.
  • Moustafa, A. (1976). Block faulting in the Gulf of Suez. Proceedings of the fifth Egyptian General Petroleum Corporation Exploration Seminar, Cairo, 35.
  • Meshref, W., Refai, E., & Abdel Baki, S. (1976). Structural interpretation of the Gulf of Suez and its oil potentialities. Proceedings of the fifth Egyptian General Petroleum Corporation Exploration Seminar, Cairo, 21.
  • Moustafa, A. (1996). Internal structure and deformation of an accommodation zone in the northern part of the Suez Rift. Structural Geology, 18, 93-107.
  • Moustafa, A. (1998). Gebel Surf el Dara accommodation zone, southwestern part of the Suez Rift. Middle Eastern Research Center, Ain Shams University, Earth Science, 2, 227-239.
  • Amgad, I., & Mcclay, K. (2002). Development of accommodation zones in the Gulf of Suez-Red Sea Rift, Egypt. AAPG Bulletin, 86(6), 1003-1026.
  • Bosworth, W. (1985). Geometry of Propagating Continental Rifts. Nature, 316, 625-627.
  • Moustafa A. (2004). Explanatory notes for the geologic maps of the eastern side of the Suez Rift (Western Sinai Peninsula), Egypt. Ain Shams University, 34.
  • Peijs, J., Bevan, T., & Piombino, J. (2012). The Suez rift basin. In: Roberts, D., & Bally, A. (eds) Regional geology and tectonics: phanerozoic rift systems and sedimentary basins. 1st edition, Elsevier Publication, ch.(B), 165–194.
  • Evans, A. (1990). Miocene sandstone provenance relations in the Gulf of Suez: insights into synrift unroofing and uplift history. AAPG Bulletin, 74, 1386–1400.
  • Hantar, G. (1965). Remarks on the distribution of the Miocene sediments in the Gulf of Suez region. Proceedings of the fifth Arab Petroleum Congress, Cairo, Egypt, 13.
  • Saoudi, A., & Khalil, B. (1986). Distribution and hydrocarbon potential of Nukhul sediments in the Gulf of Suez. Proceedings of the seventh EGPC Exploration Seminar, 1984, 75–96.
  • Moustafa, A., & Khalil, S. (2017). Control of extensional transfer zones on syntectonic and posttectonic sedimentation: implications for hydrocarbon exploration. Journal of Geologic Society, London, 174, 318–335.
  • Garfunkel, Z., & Bartov, Y. (1977). The tectonics of the Suez rift. Geologic Survey Bulletin, 71, 44.
  • National Stratigraphic Sub-Committee of Egypt (1974). Rock-stratigraphy of the Miocene in the Gulf of Suez Region. Egyptian Journal of Geology, 1(1), 21-43.
  • Always, R., Tudoran, A., Knabe, K., Liu, C. & Strohmenger, C. (2002). New biostratigraphic and sequence stratigraphic constraints on Miocene synrift sequences from the northern Red Sea. Proceedings of the fifth Middle East Geoscience Conference, GEO 2002, GeoArab Abstract, 7(2), 208.
  • Bosworth, W., & McClay, K. (2001). Structural and stratigraphic evolution of the Suez rift, Egypt: a synthesis. In: Zeigler, P., Cavazza, W., Robertson, A., & Crasquin-Soleau, S. (eds) Peri-Tethyan rift-wrench basins and passive margins. Museum of National Histoire Naturelle, 567–606.
  • Evans, A. (1988). Neogene tectonic and stratigraphic events in the Suez rift area, Egypt. Tectonophysics, 153, 235–247.
  • Moon, F., & Sadek, H. (1923). Preliminary geological report on Wadi Gharandal area north of Gebel Hammam Faraun Western Sinai. Petroleum Research Bulletin, Cairo, 12, 42.
  • Awney, F., Hussein, R., & Nakhla, A. (1990). Blayim Marine and Land oil fields structural styles. Proceedings of the tenth EGPC Petroleim Exploration and Production Conference, 1, 400 –430.
  • Slater, P., Thome, K., Aria, K., Fujisada, H., Kieffer, H., Ono, A., Sakuma, F., Palluconi, F., & Yamaguchi, Y. (1995). Radiometric calibration of ASTER data. Journal of Japan Society for Remote Sensing, 15(2), 16-23.
  • Herman, B., & Browning, S. (1965). A numerical solution to the equation of radiative transfer. Journal Atmospheric Science, 22, 559-566.
  • Fujisada, H., Sakuma, F., Ono, A., & Kudoh, M. (1998). Design and pre-flight performance of aster instrument protoflight model. Transactions On Geoscience And Remote Sensing, 36(4), 1152 –1160.
  • Chrysoulakis, N., Abrams, M., Feidas, H., & Arai, K. (2010). Comparison of atmospheric correction methods using Aster data for the area of Crete, Greece. International Journal of Remote Sensing, 31(24), 6347–6385.
  • Du, Q., Gungor, O., & Shan, J. (2005). Evaluation for pan-sharpening techniques. Performance, 7803-9050, 3.
  • Ninomiya, Y. (2002). Mapping quartz, carbonate minerals, and mafic ultramafic rocks using remotely sensed multispectral thermal infrared ASTER data. Proceedings of SPIE, 191–203.
  • Shuai, S., Zhang, Z., Xinbiao, L., & Hao L. (2022). Assessment of new spectral indices and multi- seasonal ASTER data for gypsum mapping. Carbonates and Evaporites, 37(34), 19.
  • Pour, A., & Hashim, M. (2011). Application of advanced spaceborne thermal emission and reflection radiometer (ASTER) data in geological mapping. International Journal of Physics Science, 6, 7657 –7668.
  • Parashar, C. (2015). Mapping of alteration mineral zones by combining techniques of remote sensing and spectroscopy in the parts of se-rajasthan, Environmental Science, Geology. Indian institue of remote sensing, ISRO, department of space, Government of India Dehradun. Dissertation (MD of technology in remote sensing and GIS, University of Andhra, India), 62.
  • Buhe, A., Tsuchiya, B., Kaneko, C., Ohtaishi, C., & Mahmut, H. (2007). Land cover of oases and forest in XinJiang, China retrieved from ASTER data Aosier. Advances in Space Research, 39, 39 – 45.
  • Salati, S., Van Ruitenbeek, F., Van der Meer, F., & Naimi, B. (2014). Detection of Alteration Induced by Onshore Gas Seeps from ASTER and WorldView-2 Data. Remote sensing, 6(4), 3188-3209.
  • Fakhari, S., Alireza, J., Peyman, A., & Mohammad, L. (2019). Delineation of hydrothermal alteration zones for porphyry systems utilizing ASTER data in Jebal-Barez area, SE Iran. Iran. Journal of Earth Sciences, 11, 80-92.
  • Bakardjiev, D., & Popov, K. (2015). ASTER spectral band ratios for detection of hydrothermal alterations and ore deposits in the Panagyurishte Ore Region, Central Srednogorie, Bulgaria. Advances in Space Research, pt.1, 76, 79–88.
  • Youssef, A., Hassan, A., & El-Haddad, A. (2009). Mapping of Prerift – Synrift Sedimentary units using Enhanced Thematic Mapper Plus (ETM+): Sidri – Feiran Area, Southwestern Sinai Peninsula, Egypt. Journal of Indian Society of Remote sensing, 37, 377–393.
  • Sabins, F. (1999). Remote Sensing for Mineral Exploration. Ore Geology Review, 14, 77-82.
  • Wahi, M., Taj-Eddine, K., & Laftouhi, N. (2013). ASTER VNIR and SWIR Band Enhancement for Lithological Mapping - A case study of the Azegour Area (Western High Atlas, Morocco). Journal of Environment and Earth Science, 3(12), 11.
  • Moradi, M., Basiri, S., Ali, K., & Kabiri, K. (2013). Fuzzy logic modeling for hydrothermal gold mineralization mapping using geochemical, geological, ASTER imageries and other geo-data, a case study in Central Alborz, Iran. Earth Science Information, 9.
  • Doğru, M., & Yücel, M. (2017). Araştırma Makalesi / Research Article LANDSAT 8 OLI Multispektral Verileri Kullanılarak Litolojik Harita Yapımı, Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi. AKU Journal of Science and Engineering, 17, 172-184.
  • Soha, J., & Schwartz, A. (1979). Multispectral Histogram Normalization Contrast Enhancement. Proceedings of Fifth Canadian Symposium of Remote Sensing, 86-93.
  • Gillespie, A., Kahle, A., & Walker, R. (1986). Color enhancement of highly correlated images- Decorrelation and HSI contrast stretches. Remote sensing and Environment, 20, 209–235.
  • Özyavaş, A. (2016). Assessment of image processing techniques and ASTER SWIR data for the delineation of evaporates and carbonate outcrops along the Salt Lake Fault, Turkey. International Journal of Remote sensing, 1366-5901.
  • Khan, A., Faisal, S., Shafique, M., Khan, S., & Sherbacha, A. (2020). Aster-based remote sensing investigation of gypsum in the Kohat Plateau, North Pakistan. Carbonates and Evaporites, 35(3), 13.
  • Kruse, F., Lefkoff, A., Boardman, J. (1993). The spectral image processing system (SIPS) interactive visualization and analysis of imaging spectrometer data. Remote sensing Environment, 44, 145 –163.
  • De Carvalho, O., & Meneses, P. (2000). Spectral correlation mapper (SCM): an improvement on the spectral angle mapper (SAM). Ninth JPL airborne earth science workshop, National Aeronautics and Space Administration of US, 9.
  • Ranganathan, P. & Siddan, A. (2020). Geospatial assessment of ultramafic rocks and ore minerals of Salem, India. Arabian Journal of Geosciences, 13, 1095.