[1]. Watts, D. R., & Harris, N. B. (2005). Mapping granite and gneiss in domes along the North Himalayan antiform with ASTER SWIR band ratios. Geological Society of America Bulletin, 117(7-8), 879-886.
[2]. Qiu, F., Abdelsalam, M., & Thakkar, P. (2006). Spectral analysis of ASTER data covering part of the Neoproterozoic Allaqi-Heiani suture, Southern Egypt. Journal of African Earth Sciences, 44(2), 169-180.
[3]. Gad, S., & Kusky, T. (2007). ASTER spectral ratioing for lithological mapping in the Arabian–Nubian shield, the Neoproterozoic Wadi Kid area, Sinai, Egypt. Gondwana research, 11(3), 326-335.
[4]. Afzal, P., Abdideh, M., & Daneshvar Saein, L. (2023). Separation of productivity index zones using fractal models to identify promising areas of fractured reservoir rocks. Journal of Petroleum Exploration and Production Technology, 1-10.
[5]. Melvin, J. L. (Ed.). (1991). Evaporites, petroleum and mineral resources.
[6]. Kendall, A. C. (1983). Unconformity-associated replacement limestones after anhydrite in Mississippian of Williston Basin. AAPG Bulletin, 67(3), 494-495.
[7]. Warren, J. K., & Warren, J. K. (2016). Hydrocarbons and evaporites. Evaporites: A Geological Compendium, 959-1079.
[8]. Bahroudi, A., & Koyi, H. A. (2004). Tectono-sedimentary framework of the Gachsaran Formation in the Zagros foreland basin. Marine and Petroleum Geology, 21(10), 1295-1310.
[9]. O’brien, C. A. E. (1950). Tectonic problems of the oilfield belt of southwest Iran. In Proceedings of the 18th International Geological Congress, Great Britain, pt (Vol. 6, pp. 45-58).
[10]. Falcon, N. L. (1958). Position of Oil Fields of Southwest Iran with Respect to Relevant Sedimentary Basins: Middle East.
[11]. James, G. A., & Wynd, J. G. (1965). Stratigraphic nomenclature of Iranian oil consortium agreement area. AAPG bulletin, 49(12), 2182-2245.
[12]. Gill, W. D., & Ala, M. A. (1972). Sedimentology of Gachsaran Formation (Lower Fars Series), Southwest Iran. AAPG Bulletin, 56(10), 1965-1974.
[13]. Safari, H. O., Pirasteh, S., Pradhan, B., & Gharibvand, L. K. (2010). Use of remote sensing data and GIS tools for seismic hazard assessment for shallow oilfields and its impact on the settlements at Masjed-i-Soleiman Area, Zagros Mountains, Iran. Remote Sensing, 2(5), 1364-1377.
[14]. Bahadori, A., Carranza, E. J. M., & Soleimani, B. (2011). Geochemical analysis of evaporite sedimentation in the Gachsaran Formation, Zeloi oil field, southwest Iran. Journal of Geochemical Exploration, 111(3), 97-112.
[15]. Tangestani, M. H., & Validabadi, K. (2014). Mineralogy and geochemistry of alteration induced by hydrocarbon seepage in an evaporite formation; a case study from the Zagros Fold Belt, SW Iran. Applied geochemistry, 41, 189-195.
[16]. Perry, J.T., Setudehnia, A., 1966, Geological compilation map 1:100,000 drawing No. 25474 w.
[17]. Nabilou, M., Afzal, P., Arian, M., Adib, A., Kheyrollahi, H., Foudazi, M., & Ansarirad, P. (2022). The relationship between Fe mineralization and magnetic basement faults using multifractal modeling in the Esfordi and Behabad Areas (BMD), Central Iran. Acta Geologica Sinica‐English Edition, 96(2), 591-606..
[18]. Saed, S., Azizi, H., Daneshvar, N., Afzal, P., Whattam, S. A., & Mohammad, Y. O. (2022). Hydrothermal alteration mapping using ASTER data, Takab-Baneh area, NW Iran: A key for further exploration of polymetal deposits. Geocarto International, 37(26), 11456-11482.
[19]. BEHBAHANI, B., HARATI, H., AFZAL, P., & LOTFI, M. (2023). Determination of alteration zones applying fractal modeling and Spectral Feature Fitting (SFF) method in Saryazd porphyry copper system, central Iran. Bulletin of the Mineral Research and Exploration, (early view), 1-1.
[20]. Stöcklin, J. (1968). Structural history and tectonics of Iran: a review. AAPG bulletin, 52(7), 1229-1258.
[21]. Berberian, M., & King, G. C. P. (1981). Towards a paleogeography and tectonic evolution of Iran. Canadian journal of earth sciences, 18(2), 210-265.
[22]. National Iranian Oil Company (NIOC), 1995. The condition of existence hydrocarbon seepage in Masjed Soleiman City, Internal Report, NIOC. Tehran, Iran.
[23]. Motiei H (1973). Geology of Iran, Stratigraphy of Zagros. Geology Organization of Iran, Tehran.
[24]. Nairn, A. E. M., & Alsharhan, A. S. (1997). Sedimentary basins and petroleum geology of the Middle East. Elsevier.
[25]. Yamaguchi, Y., Kahle, A. B., Tsu, H., Kawakami, T., & Pniel, M. (1998). Overview of advanced spaceborne thermal emission and reflection radiometer (ASTER). IEEE Transactions on geoscience and remote sensing, 36(4), 1062-1071.
[26]. Mars, J. C., & Rowan, L. C. (2006). Regional mapping of phyllic-and argillic-altered rocks in the Zagros magmatic arc, Iran, using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data and logical operator algorithms. Geosphere, 2(3), 161-186.
[27]. Kruse, F. A. (1988). Use of airborne imaging spectrometer data to map minerals associated with hydrothermally altered rocks in the northern grapevine mountains, Nevada, and California. Remote Sensing of Environment, 24(1), 31-51.
[28]. Cole, M. (1987). Remote Sensing: Principles and Interpretation.
[29]. Crosta, A. P. (1989). Enhancement of Landsat Thematic Mapper imagery for residual soil mapping in SW Minas Gerais State Brazil, a prospecting case history in greenstone belt terrain. In Proceedings of the 7^< th> ERIM Thematic Conference on Remote Sensing for Exploration Geology, 1989.
[30]. Loughlin, W. P. (1991). Principal component analysis for alteration mapping. Photogrammetric Engineering and Remote Sensing, 57(9), 1163-1169.
[31]. Crosta, A. P., De Souza Filho, C. R., Azevedo, F., & Brodie, C. (2003). Targeting key alteration minerals in epithermal deposits in Patagonia, Argentina, using ASTER imagery and principal component analysis. International journal of Remote sensing, 24(21), 4233-4240.
[32]. Adams, J. B., & Gillespie, A. R. (2018). Remote sensing of landscapes with spectral images: A physical modeling approach. Cambridge University Press.
[33]. Almeida-Filho, R., Miranda, F. P., & Yamakawa, T. (1999). Remote detection of a tonal anomaly in an area of hydrocarbon microseepage, Tucano basin, north-eastern Brazil. International Journal of Remote Sensing, 20(13), 2683-2688.
[34]. Wang, Y., & Ding, X. (2000). Hydrocarbon alteration characteristics of soils and mechanism for detection by remote sensing in east Sichuan area, China. Natural Resources Research, 9(4), 295-305.
[35]. Ma, Y., Liu, C., Zhao, J., Huang, L., Yu, L., & Wang, J. (2007). Characteristics of bleaching of sandstone in northeast of Ordos Basin and its relationship with natural gas leakage. Science in China Series D: Earth Sciences, 50(Suppl 2), 153-164.
[36]. Sadeghi, B., Khalajmasoumi, M., Afzal, P., Moarefvand, P., Yasrebi, A. B., Wetherelt, A., ... & Ziazarifi, A. (2013). Using ETM+ and ASTER sensors to identify iron occurrences in the Esfordi 1: 100,000 mapping sheet of Central Iran. Journal of African Earth Sciences, 85, 103-114..
[37]. Sabine, C. (1999). Remote sensing strategies for mineral exploration. Remote Sensing for the Earth Sciences–Manuel of Remote Sensing, 375-447.
[38]. Gomez, C., Delacourt, C., Allemand, P., Ledru, P., & Wackerle, R. (2005). Using ASTER remote sensing data set for geological mapping, in Namibia. Physics and Chemistry of the Earth, Parts A/B/C, 30(1-3), 97-108.
[39]. Amer, R., Kusky, T., & Ghulam, A. (2010). Lithological mapping in the Central Eastern Desert of Egypt using ASTER data. Journal of African Earth Sciences, 56(2-3), 75-82.
[40]. Ghrefat, H., Kahal, A. Y., Abdelrahman, K., Alfaifi, H. J., & Qaysi, S. (2021). Utilization of multispectral landsat-8 remote sensing data for lithological mapping of southwestern Saudi Arabia. Journal of King Saud University-Science, 33(4), 101414.
[41]. Aboelkhair, H., Abdelhalim, A., Hamimi, Z., & Al-Gabali, M. (2020). Reliability of using ASTER data in lithologic mapping and alteration mineral detection of the basement complex of West Berenice, Southeastern Desert, Egypt. Arabian Journal of Geosciences, 13, 1-20.