Document Type : Original Research Paper

Authors

Faculty of Geoscience, Shiraz university, Shiraz, Iran

Abstract

Evaporites are sediments that chemically precipitate due to the evaporation of an aqueous solution. Most evaporite formations, in addition to evaporite minerals, include detrital rocks such as mudstone, marl, and siltstone. Principal Component Analysis (PCA), Directed Principal Component Analysis (DPCA), and Band Ratio methods were applied to Advanced Space-borne Thermal Emission and Reflection Radiometer (ASTER) data for mapping the Gachsaran evaporite formation and distinguishing its lithological units in the Masjed Soleiman oil field, located in southwestern Iran. This oil field was the first recognized oil field in the Middle East. Colour composites of PCs 4, 5, and 2, as RGB images, effectively discriminated this formation from other sedimentary formations. The gypsum spectrum, resampled to the 9 band centres of ASTER, exhibited reflectance in bands 4 and 8 and absorption in bands 6 and 9. As a result, these bands were selected for DPCA application. PC4 effectively highlighted gypsum outcrops as bright pixels, while the band ratio 2/1 accentuated ferric iron, appearing as bright pixels, which correlated with the red marls. The results of this study demonstrate that ASTER image processing is a cost- and time-effective method that can be utilized for mapping evaporite formations and distinguishing their lithological units.

Keywords

Main Subjects

[1]. Watts, D. R., & Harris, N. B. (2005). Mapping granite and gneiss in domes along the North Himalayan antiform with ASTER SWIR band ratios. Geological Society of America Bulletin117(7-8), 879-886.
[2]. Qiu, F., Abdelsalam, M., & Thakkar, P. (2006). Spectral analysis of ASTER data covering part of the Neoproterozoic Allaqi-Heiani suture, Southern Egypt. Journal of African Earth Sciences44(2), 169-180.
[3]. Gad, S., & Kusky, T. (2007). ASTER spectral ratioing for lithological mapping in the Arabian–Nubian shield, the Neoproterozoic Wadi Kid area, Sinai, Egypt. Gondwana research11(3), 326-335.
[4]. Afzal, P., Abdideh, M., & Daneshvar Saein, L. (2023). Separation of productivity index zones using fractal models to identify promising areas of fractured reservoir rocks. Journal of Petroleum Exploration and Production Technology, 1-10.
[5]. Melvin, J. L. (Ed.). (1991). Evaporites, petroleum and mineral resources.
[6]. Kendall, A. C. (1983). Unconformity-associated replacement limestones after anhydrite in Mississippian of Williston Basin. AAPG Bulletin67(3), 494-495.
[7]. Warren, J. K., & Warren, J. K. (2016). Hydrocarbons and evaporites. Evaporites: A Geological Compendium, 959-1079.
[8]. Bahroudi, A., & Koyi, H. A. (2004). Tectono-sedimentary framework of the Gachsaran Formation in the Zagros foreland basin. Marine and Petroleum Geology21(10), 1295-1310.
[9]. O’brien, C. A. E. (1950). Tectonic problems of the oilfield belt of southwest Iran. In Proceedings of the 18th International Geological Congress, Great Britain, pt (Vol. 6, pp. 45-58).
[10]. Falcon, N. L. (1958). Position of Oil Fields of Southwest Iran with Respect to Relevant Sedimentary Basins: Middle East.
[11]. James, G. A., & Wynd, J. G. (1965). Stratigraphic nomenclature of Iranian oil consortium agreement area. AAPG bulletin49(12), 2182-2245.
[12]. Gill, W. D., & Ala, M. A. (1972). Sedimentology of Gachsaran Formation (Lower Fars Series), Southwest Iran. AAPG Bulletin56(10), 1965-1974.
[13]. Safari, H. O., Pirasteh, S., Pradhan, B., & Gharibvand, L. K. (2010). Use of remote sensing data and GIS tools for seismic hazard assessment for shallow oilfields and its impact on the settlements at Masjed-i-Soleiman Area, Zagros Mountains, Iran. Remote Sensing2(5), 1364-1377.
[14]. Bahadori, A., Carranza, E. J. M., & Soleimani, B. (2011). Geochemical analysis of evaporite sedimentation in the Gachsaran Formation, Zeloi oil field, southwest Iran. Journal of Geochemical Exploration111(3), 97-112.
[15]. Tangestani, M. H., & Validabadi, K. (2014). Mineralogy and geochemistry of alteration induced by hydrocarbon seepage in an evaporite formation; a case study from the Zagros Fold Belt, SW Iran. Applied geochemistry41, 189-195.
[16]. Perry, J.T., Setudehnia, A., 1966, Geological compilation map 1:100,000 drawing No. 25474 w.
[17]. Nabilou, M., Afzal, P., Arian, M., Adib, A., Kheyrollahi, H., Foudazi, M., & Ansarirad, P. (2022). The relationship between Fe mineralization and magnetic basement faults using multifractal modeling in the Esfordi and Behabad Areas (BMD), Central Iran. Acta Geologica Sinica‐English Edition96(2), 591-606..
[18]. Saed, S., Azizi, H., Daneshvar, N., Afzal, P., Whattam, S. A., & Mohammad, Y. O. (2022). Hydrothermal alteration mapping using ASTER data, Takab-Baneh area, NW Iran: A key for further exploration of polymetal deposits. Geocarto International37(26), 11456-11482.
[19]. BEHBAHANI, B., HARATI, H., AFZAL, P., & LOTFI, M. (2023). Determination of alteration zones applying fractal modeling and Spectral Feature Fitting (SFF) method in Saryazd porphyry copper system, central Iran. Bulletin of the Mineral Research and Exploration, (early view), 1-1.
[20]. Stöcklin, J. (1968). Structural history and tectonics of Iran: a review. AAPG bulletin52(7), 1229-1258.
[21]. Berberian, M., & King, G. C. P. (1981). Towards a paleogeography and tectonic evolution of Iran. Canadian journal of earth sciences18(2), 210-265.
[22]. National Iranian Oil Company (NIOC), 1995. The condition of existence hydrocarbon seepage in Masjed Soleiman City, Internal Report, NIOC. Tehran, Iran.
[23]. Motiei H (1973). Geology of Iran, Stratigraphy of Zagros. Geology Organization of Iran, Tehran.
[24]. Nairn, A. E. M., & Alsharhan, A. S. (1997). Sedimentary basins and petroleum geology of the Middle East. Elsevier.
[25]. Yamaguchi, Y., Kahle, A. B., Tsu, H., Kawakami, T., & Pniel, M. (1998). Overview of advanced spaceborne thermal emission and reflection radiometer (ASTER). IEEE Transactions on geoscience and remote sensing36(4), 1062-1071.
[26]. Mars, J. C., & Rowan, L. C. (2006). Regional mapping of phyllic-and argillic-altered rocks in the Zagros magmatic arc, Iran, using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data and logical operator algorithms. Geosphere2(3), 161-186.
[27]. Kruse, F. A. (1988). Use of airborne imaging spectrometer data to map minerals associated with hydrothermally altered rocks in the northern grapevine mountains, Nevada, and California. Remote Sensing of Environment24(1), 31-51.
[28]. Cole, M. (1987). Remote Sensing: Principles and Interpretation.
[29]. Crosta, A. P. (1989). Enhancement of Landsat Thematic Mapper imagery for residual soil mapping in SW Minas Gerais State Brazil, a prospecting case history in greenstone belt terrain. In Proceedings of the 7^< th> ERIM Thematic Conference on Remote Sensing for Exploration Geology, 1989.
[30]. Loughlin, W. P. (1991). Principal component analysis for alteration mapping. Photogrammetric Engineering and Remote Sensing57(9), 1163-1169.
[31]. Crosta, A. P., De Souza Filho, C. R., Azevedo, F., & Brodie, C. (2003). Targeting key alteration minerals in epithermal deposits in Patagonia, Argentina, using ASTER imagery and principal component analysis. International journal of Remote sensing24(21), 4233-4240.
[32]. Adams, J. B., & Gillespie, A. R. (2018). Remote sensing of landscapes with spectral images: A physical modeling approach. Cambridge University Press.
[33]. Almeida-Filho, R., Miranda, F. P., & Yamakawa, T. (1999). Remote detection of a tonal anomaly in an area of hydrocarbon microseepage, Tucano basin, north-eastern Brazil. International Journal of Remote Sensing20(13), 2683-2688.
[34]. Wang, Y., & Ding, X. (2000). Hydrocarbon alteration characteristics of soils and mechanism for detection by remote sensing in east Sichuan area, China. Natural Resources Research9(4), 295-305.
[35]. Ma, Y., Liu, C., Zhao, J., Huang, L., Yu, L., & Wang, J. (2007). Characteristics of bleaching of sandstone in northeast of Ordos Basin and its relationship with natural gas leakage. Science in China Series D: Earth Sciences50(Suppl 2), 153-164.
[36]. Sadeghi, B., Khalajmasoumi, M., Afzal, P., Moarefvand, P., Yasrebi, A. B., Wetherelt, A., ... & Ziazarifi, A. (2013). Using ETM+ and ASTER sensors to identify iron occurrences in the Esfordi 1: 100,000 mapping sheet of Central Iran. Journal of African Earth Sciences85, 103-114..
[37]. Sabine, C. (1999). Remote sensing strategies for mineral exploration. Remote Sensing for the Earth Sciences–Manuel of Remote Sensing, 375-447.
[38]. Gomez, C., Delacourt, C., Allemand, P., Ledru, P., & Wackerle, R. (2005). Using ASTER remote sensing data set for geological mapping, in Namibia. Physics and Chemistry of the Earth, Parts A/B/C30(1-3), 97-108.
[39]. Amer, R., Kusky, T., & Ghulam, A. (2010). Lithological mapping in the Central Eastern Desert of Egypt using ASTER data. Journal of African Earth Sciences56(2-3), 75-82.
[40]. Ghrefat, H., Kahal, A. Y., Abdelrahman, K., Alfaifi, H. J., & Qaysi, S. (2021). Utilization of multispectral landsat-8 remote sensing data for lithological mapping of southwestern Saudi Arabia. Journal of King Saud University-Science33(4), 101414.
[41]. Aboelkhair, H., Abdelhalim, A., Hamimi, Z., & Al-Gabali, M. (2020). Reliability of using ASTER data in lithologic mapping and alteration mineral detection of the basement complex of West Berenice, Southeastern Desert, Egypt. Arabian Journal of Geosciences13, 1-20.