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 The studied area located in eastern Iran shows a high potential for various 
mineralizations, especially copper due to its tectonic activity. Remote sensing data 
can effectively distinguish these areas because of the sparse vegetation. Therefore, in 
this study, the ASTER (Advanced Spaceborne Thermal Emission and Reflection 
Radiometer) multi-spectral data was used to recognize argillic, sericite, propylitic, 
and iron oxide alterations associated with copper mineralization. For this purpose, 
two categories (porphyry copper-iron and advanced argillic-iron) related alterations 
were considered to perform the classification of a 2617 square kilometer area using a 
neural network classification algorithm. To evaluate the accuracy of the classifier, the 
confusion matrix was computed, which provides overall accuracy and the kappa 
coefficient factors for assessing classification accuracy. As a result, 64.17% and 
83.5% of overall accuracy, and 0.602 and 0.807 of the kappa coefficient were 
achieved for the advanced argillic alterations and porphyry copper categories, 
respectively. Ultimately, the validation of the classifications was carried out using the 
normalized score (NS) equation, employing quantitative criteria. Notably, the 
advanced argillic class emerged with the top normalized score of 2.25 out of 4, 
signifying a 56% alignment with the geological characteristics of the region. 
Consequently, this outcome has led to the identification of favorable areas in the 
central and northeastern parts of the studied area. 
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1. Introduction 

Mineral exploration tasks are generally time-
consuming and costly. Remote sensing is a modern 
exploration method that helps faster and cost-
effective minerals. Satellite data is therefore 
predominantly used in the initial exploration stages 
to identify prospective targets .]1[  

The remote sensing process utilizes the 
interactions between radiation waves and the target 
surface. When electromagnetic waves from a 
source are scattered to the earth's surface, they 
interact and collide with the atmosphere along their 
path of travel. This interaction can also occur when 
energy is transmitted from the earth's surface 
toward the sensor. The mutual effect of these 
interactions depends on the surface and the 
radiation characteristics. After the energy is 

scattered and reflected by the earth, we need a 
sensor to collect and record the electromagnetic 
waves ]2–4[ . 

  One of the applications of remote sensing in the 
field of mining is the identification of various 
geological alterations, especially hydrothermal 
alterations associated with porphyry copper. These 
alterations occur through hydrothermal processes 
that alter the mineralogy and chemical composition 
of the surrounding rocks [5–7]. 

Mineral alteration leads to the formation of 
unique mineral assemblages with distinctive 
spectral absorption features in the visible and near-
infrared (VNIR) to short-wave infrared (SWIR) 
regions (0.4-2.5 micrometers) and the thermal 
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infrared (TIR) region (8.0-14.0 micrometers) [8–
10]. 

porphyry copper deposits are commonly 
associated with hydrothermal alteration zones such 
as propylitic, argillic, phyllic, and potassic zones 
[11]. These hydrothermal alteration zones exhibit 
distinct spectral absorption features in the visible 
and near-infrared (VNIR) and short-wave infrared 
(SWIR) regions. By using spectral analysis of these 
regions, it is possible to identify and characterize 
the specific minerals associated with these 
alteration zones. The mineral alteration processes 
around porphyry copper deposits generate oxidized 
zones with iron oxide/hydroxide minerals 
(typically yellow to red-colored altered rocks), 
commonly referred to as gossans [12,13]. 

Iron oxide/hydroxide minerals such as limonite, 
goethite, and hematite exhibit lower reflectance in 
the visible region and higher reflectance in the 
near-infrared region. In the crystal structure of 
these minerals, electron processes create 
absorption features in the visible and near-infrared 
wavelengths (0.4 to 1.1 micrometers) due to the 
presence of transition elements such as Fe2+, Fe3+, 
and, in some cases, substitution by Mn, Cr, and 
Ni[7,14]. 

Hydroxide-bearing minerals including clays 
and sulfate groups, as well as carbonate minerals, 
exhibit distinctive spectral absorption 
characteristics in the shortwave infrared region of 
the electromagnetic spectrum due to fundamental 
vibrational absorption processes. These absorption 
features arise from vibrational processes of 
aluminum-oxygen-hydrogen (Al-O-H), 
magnesium-oxygen-hydrogen (Mg-O-H), silicon-
oxygen-hydrogen (Si-O-H) linkages, and CO3 
groups in the shortwave infrared region [7,14–16]. 

Therefore, shortwave infrared (SWIR) data can 
be used to identify thermally altered mineral 
assemblages including (a) mineralized zones 
formed by the passage of low-pH fluids (such as 
alunite and pyrophyllite). (b) mineral materials 
containing Al-Si-(OH) and Mg-Si-(OH) groups 
including kaolinite, mica, and chlorite. (c) mineral 
materials containing Ca-Al-Si-(OH) such as the 
epidote group, as well as carbonate groups (calcite 
and dolomite) .]17[  

Minerals associated with hydrothermal 
alterations, characterized by diagnostic spectral 
absorption features in the visible to near-infrared 
and shortwave infrared regions, can be identified 
and classified using multi-spectral and 
hyperspectral data. This information can be used in 
the initial exploration process for porphyry copper 
and epithermal gold mineralization [18–28]. 

Distinguishing between three hydrothermal 
alterations, particularly identifying phyllic 
alteration, is crucial in the exploration of porphyry 
copper deposits as the phyllic zone indicates high 
economic potential for copper mineralization in the 
mineralized crust [29]. 

One of the most commonly used sensors in 
remote sensing exploration is the ASTER sensor. 
The ASTER sensor has 14 spectral bands, with 4  
bands in the near-infrared range (with a spatial 
resolution of 15 meters), 6 bands in the shortwave 
infrared range (with a spatial resolution of 30 
meters), and 5 bands in the thermal infrared range 
(with a spatial resolution of 90 meters). The 
ASTER sensor consists of six infrared bands, 
which are highly valuable for geological 
applications, particularly mineralogical studies. 
Additionally, the five thermal bands are utilized to 
accurately estimate surface temperature and 
measure various phenomena ]30[ . 

2. ASTER Data  

Karimpour et al. described the classification of 
erosion levels in three porphyry copper deposits, 
namely Maherabad, Shadan, and Chah Shaljami, 
which are situated within the volcanic-plutonic belt 
of the Lut block. The distributions of end-members 
were mapped using Spectral Angle Mapper (SAM) 
and Mixture Tuned Matched Filtering (MTMF) 
techniques on the Visible and Near Infrared 
(VNIR) and Shortwave Infrared (SWIR) bands of 
ASTER data. The findings were then compared to 
field studies. The ASTER sensor data proved 
successful in distinguishing and providing 
explanations for the different erosion levels 
observed in porphyry copper deposits [31]. 

Mohebi et al. provided an account of the 
identifying structural factors influencing the 
modification and mineralization processes in the 
vicinity of Hanza Mountain [32]. Sojdehee et al. 
outlined the process of distinguishing 
hydrothermal alteration zones by utilizing SWIR 
data at the Daralu copper deposit [33]. 
Farahbanksh merged ASTER and QuickBird data 
to effectively portray the nature and attributes of 
the Naysian porphyry copper deposit [34]. Yousefi 
et al. employed SWIR and TIR data to distinguish 
alteration zones, enabling the cartographic 
representation of sericite, phyllic, and quartz-rich 
alteration zones within the Kerman magmatic arc 
[35,36].  

Another category of reports related to the 
copper deposits in Iran focused on utilizing 
ASTER data as an exploratory instrument to 
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recognize potential prospects. Typically, this 
involved extracting valuable information through 
the analysis of proved deposits and expanding it to 
areas that have received limited or no exploration. 
The utilization of ASTER SWIR data was 
highlighted by Pour and Hashim within the 
Urumieh-Dokhtar volcanic belt. In this case, by 
employing a model based on porphyry copper 
formations, which proposed concentric alteration 
zones with distinct mineral compositions, potential 
prospects were successfully identified [37]. 
Honarpazhouh integrated stream sediment 
geochemistry with ASTER data in the Khatun 
Abad region. This combined approach proved to be 
a superior exploration strategy compared to solely 
relying on remote sensing data [38]. Pazand et al. 
employed ASTER data as part of their preliminary 
exploration efforts to identify porphyry copper 
mineralization in the Ahar region [39]. Within the 
Daraloo-Sarmeshk region, Alimohammadi et al. 
utilized ASTER data to conduct exploration 
activities aimed at identifying undiscovered copper 
deposits. Specifically, ASTER SWIR data was 
employed to emphasize alteration zones, 
facilitating the detection of potential mineralization 
[40]. Yazdi et al. documented similar endeavors in 
their reported projects [41]. 

Mars and Rowan made a notable contribution in 
2006  by presenting one of the most effective 
utilization of ASTER data for regional mineral 
exploration within a copper belt. They constructed 
a mosaic of 62 ASTER scenes containing a vast 
900 km-wide belt located in the Zagros magmatic 
arc of Iran. Their approach involved devising a 
series of logical operators, incorporating band 
ratios and thresholds of ASTER data, to accentuate 
the image of spectral absorption characteristics 
linked to phyllic and argillic alteration [42]. 

Research conducted in various parts of the 
globe contains investigations such as Carrino et 
al.'s studies  in the Chapi Chiara region situated in 
southern Peru. In their study, ASTER data was 
utilized to cartographically depict the geological 
characteristics and alteration mineralogy of the 
area,  to identify potential copper targets [43]. 

Rajendran and Nasir investigated determining 
alteration zones associated with volcanogenic 
massive sulfide deposits by examining the spectral 
response of ASTER bands. This approach 
according to analyzing multiple established 
deposits was effective in mapping and 
characterizing alteration zones [44]. Zhang and 
Zhou conducted further research in China, 
specifically focusing on the Baogutu porphyry 
copper deposit. They employed ASTER data to 

detect and delineate the corresponding alteration 
zones. This valuable information can subsequently 
be utilized to explore other adjacent regions 
exhibiting similar geological characteristics [45]. 

Within the Bangonghu-Nujiang metallogenic 
belt in Tibet, Dai et al. employed ASTER data to 
identify alterations, and show distinct spectral 
attributes associated with desired mineralogical 
compositions [46]. 

In this research work, based on comprehensive 
studies on the application of the ASTER sensor in 
identifying mineralization-prone areas for copper, 
the use of band ratios related to hydrothermal 
alterations has been emphasized. To identify areas 
prone to porphyry copper and advanced argillic 
alterations in the sar-e-châh-e-shur region, a neural 
network algorithm was employed for 
classification. The accuracy of the classification 
algorithm results was calculated using the 
confusion matrix. In the category related to 
advanced argillic, an overall accuracy of 64.17% 
and a kappa coefficient of 0.602 were achieved. 
Additionally, in the category related to porphyry 
copper, an overall accuracy of 83.5% and a kappa 
coefficient of 0.807 were obtained. Finally, the 
normalized score (NS) equation was utilized to 
quantify the qualitative components of conformity 
and estimation level for a better understanding of 
the validation level. In this study, the classification 
results of the training data related to advanced 
argillic obtained a normalized score of 2.25 out of 
4, which corresponds to 56%. These results 
outperformed the classification results of the 
training data related to porphyry copper and 
exhibited better conformity with the existing 
reality. This approach led to the identification of 
prospective areas in the central and northeastern 
parts of the studied area. 

3. Studied Area 

The area  is situated in Birjand, Iran, within the 
geographical coordinates of 32° to 32°30' N and 
58°30' to 59°E.  

The area in question is commonly known as the 
Sistan structural zone. In the past, the eastern part 
of Iran, specifically the Lut Block, has witnessed 
substantial tectonic activity, accompanied by 
extensive volcanic activity. Consequently, this 
region holds significant promise for a variety of 
mineral deposits, with a particular emphasis on 
copper mineralization ]47[ . 

The simplified geological map in Figure 1 
depicts the region. The key geological units in the 
area are composed of Eocene-Oligocene volcanic 
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rocks, with some intrusive bodies of semi-deep 
acidic to intermediate alkali calc-alkaline 
porphyritic textures. The volcanic rocks mainly 
consist of dacite, diorite, granite, dolerite dikes, 
diabase, gabbro, and olivine basalt. The 
sedimentary rocks include shale and sandstone, 
oolitic limestone, limestone, conglomerate, and 
metamorphic facies such as gneiss, metagabbro, 
metadiabase, amphibolite schist, chlorite schist, 
and phyllite. The emplacement of intrusive bodies 
has also caused varying degrees of metamorphism 

in the adjacent rocks, ranging from low to high 
]48[ . 
Most of the lithologies of the region have 

Syncline and anticlinal folds. The highest 
concentration of faults and fractures occur in the 
northern and northeastern parts of the region[48]. 
Most of the rocks present in the northeastern part 
of the map have been significantly affected by 
moderate to intense alteration. Among the mineral 
indicators in the study area, copper mineralizations 
such as Chah-e-Tuni, Homich, and Fasson can be 
mentioned ]49[ .  

 
Figure 1. The 1:100,000 simplified geological map of the sar-châh-e-Shur well area . 
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4. Materials and Methods 

To utilize remote sensing images, it is necessary 
to perform geometric and radiometric pre-
processing on the raw images to prepare the data 
and obtain more comprehensive information. 
Remote sensing images generally suffer from 
errors in geometry and radiometric values. The first 
case of these errors is referred to as a geometric 
error, while the second error is radiometric. 
Radiometric errors can be caused by data 
acquisition devices, solar radiation wavelength, 
and atmospheric effects ]30[ . 

This study utilizes Level-1T (L1T) processed 
ASTER  images, which have undergone geometric 
and radiometric corrections. Additionally, for 
atmospheric correction, the logarithmic residual 
(log-residual) correction technique is employed, 
which generates a pseudo-reflectance image. The 
log-residual correction tool is designed to remove 
the effects of solar radiation, atmospheric 
transmissivity, instrument efficiency, topographic 
effects, and albedo effects from the data. This 
transformation creates a more realistic image of 
reflectance. 

The log-residual correction is applied to the 
dataset by dividing the input spectrum by the 

spectral geometric mean, and then dividing it by 
the spatial geometric mean. The use of the 
geometric mean is chosen because it accounts for 
the transmittance and other multiplicative effects. 
The calculation of the geometric mean is 
performed using the logarithm of the data values. 
The spectral geometric mean represents the 
average for all bands in each pixel and removes 
topographic effects. The spatial geometric mean 
represents the average of all pixels for each band 
and takes into account solar radiation, atmospheric 
transmissivity, and instrument efficiency. The log-
residual calibration utilizes intrinsic image 
statistics to generate a calibrated outcome, and 
does not consider external calibrated data [50]. 

In summary, the logarithmic residual 
calibration tool is a useful pre-processing 
technique for radiance data, enabling the extraction 
and analysis of relevant spectral absorption 
features related to mineral materials. By removing 
various effects from the data, it creates a more 
realistic reflectance image, facilitating further 
analysis ]50[ . Figure 2 illustrates the spectral 
profile of a pixel in the ASTER images pre and 
post-log-residual atmospheric correction. It shows 
the alterations in the pixel's spectral characteristics 
resulting from the correction.  

 
Figure 2. The spectral profile of a pixel in the ASTER images pre (i) and post (ii) log-residual atmospheric 

correction . 

5. Data Processing 

In the field of remote sensing, a variety of 
methods are employed for the analysis of images 
acquired from the Earth's surface. The division and 
ratio of pixel values across different bands is a 
valid technique for reducing the impact of certain 
phenomena in the image and identifying specific 
anomalies in different land cover types [51,52]. 

This method involves dividing, adding or 
multiplying two or more bands together. The band 

with a higher reflectance of the target under 
investigation is placed in the numerator, while the 
band with a higher absorption effect for the same 
target is placed in the denominator. By employing 
this technique, it is possible to decrease the effects 
of topography and shadows in the image, reveal the 
contrast between brightness values, and use it for 
delineating geological boundaries and identifying 
rocks ]53[ . 

Given that mineralogy and lithology are 
important aspects of geology and related studies, 
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the utilization of ASTER band data such as SWIR, 
VNIR, and TIR is highly beneficial. In particular, 
the use of VNIR bands is valuable for determining 
chlorophyll absorption in plants and certain metals, 
especially iron and rare earth elements. 
Additionally, the utilization of SWIR bands can 
provide crucial information regarding the 
molecular absorption characteristics of mineral 
materials, which are essential for studying the 
structure and properties of rocks and minerals. 
Generally, the significant use of ASTER band data 
in satellite imagery can contribute to the 
identification of mineralogical and lithological 
features ]53[ . 

Iron compounds exist in nature with various 
structures. To identify iron compounds using 
satellite imagery, different band ratios in the SWIR 
and VNIR bands are utilized. Iron compounds are 
commonly found in the form of Fe2+ and Fe3+ in 
oxides such as magnetite (Fe3O4) and hematite 
(Fe2O3) or as hydroxides like goethite (FeO.OH). 
Additionally, there are numerous iron oxidation 
states represented by compounds such as iron 
sulfate (FeSO4), iron chloride (FeCl3), magnetite, 
and potassium ferrate (K2FeO4), indicating the 
presence of iron oxide and hydroxide-rich areas in 
the region. These areas result from weathering and 
oxidation of iron sulfide minerals such as pyrite 
and chalcopyrite. Therefore, based on the 
mentioned explanations, band ratios related to iron 
alterations were created. The band ratio of 4/3 is 
used to enhance the detection of iron oxide 
alterations ]54[ . The band ratio of 4/2 is used to 
enhance the detection of gossan. Gossan is a part 
of oxidized and hydroxylated iron and manganese 
deposits that are often observed in yellowish to 
brownish colors.  Gossans have been widely used 
as key indicators for the exploration and mining of 
gold and silver deposits [55]. 

The ratio of 4/5 is particularly useful in 
enhancing the detection of silicate minerals such as 
biotite, chlorite, and amphibole within a given area. 
This ratio can provide indications of the presence 
of these minerals. Moreover, it has been employed 
as an index for identifying gold and copper 
alterations ]54[ . Also the band ratio 4/5 is utilized 

to enhance the detection of muscovite, illite, and 
laterite minerals ]56[  in the area. By applying this 
ratio, these specific mineral types can be identified 
and analyzed. 

Furthermore, the band ratio 4/8 is commonly 
utilized for identifying mineral assemblages 
consisting of epidote, chlorite, and amphibole ]54[ . 
This ratio proves to be an effective indicator of the 
presence of these minerals in a given region. 
Additionally, it can serve as a valuable tool for 
identifying propylitic and skarn alterations within 
the area ]57[ . The use of the 4/8 band ratio enables 
the researchers to identify and study these specific 
mineral assemblages and alteration types 
accurately. 

In addition, the band ratio of 4/6 has been used 
to identify kaolinite minerals in the region, 
indicating the presence of an argillic zone[57]. 
Other band ratios used in this study include the 
following cases. 

The band ratio 5/6 was used to identify the 
mineral phengite, while the ratio 7/6 was utilized to 
enhance the visibility of muscovite. Also the ratio 
7/5 was employed to highlight the mineral kaolinite 
in the region, resulting in the creation of bright 
white and gray colors in the generated images, 
indicating mineralization associated with the band 
ratio ]54[ .  

 Finally, to enhance area differentiation and 
minimize errors, the Normalized Difference 
Vegetation Index (NDVI) is commonly employed 
in remote sensing. This simple graphical index is 
extensively utilized to evaluate vegetation cover 
presence or absence. It is calculated by taking the 
band ratio of (3-2)/(3+2) from ASTER imagery, 
generating the NDVI index [58]. 

Using these proportions allows us to detect and 
examine particular types of minerals, leading to the 
manifestation of a stark white hue within the black-
and-white shades in the produced images. 
Furthermore, in Figure 3, the purest pixels 
(approximately 0.3% of all pixels) belonging to 
these classes are emphasized by red-colored 
regions of interest (ROIs). These pixels serve as the 
basis for subsequent processes, and we will furnish 
a comprehensive description of each classification. 
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Figure 3. (a) Band ratios: (7/5) for identifying Argillic (Kaolinite) alteration ]59 [ , (b) band ratio (7/6) for 

identifying Sericite (Muscovite) alteration ]57[ , (c) band ratio (5/6) for identifying host rock & Propylitic (Host 
rock, phengitic) alteration ]56 [ , (d) band ratio (4/6) for identifying Argillic (Kaolinite) alteration ]57[ , (e) band 

ratio (4/5) for identifying Sericite & Alteration (Muscovite, laterite) alteration  ]56[ , (f) band ratio (4/8) for 
identifying Propylitic (Colerit) alteration ]57[ , (g) band ratio (4/3) for identifying ferric oxides alteration ]59 [ , (h) 

band ratio (5/4) for identifying ferrous silicates alteration ]59 [ , (i) band ratio (4/2) for identifying Gossan 
alteration ]56[ , (j) band ratio (3-2)/(3+2) for identifying NDVI [58]. 
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6. Category of Classes 

To ensure a meticulous and accurate analysis of 
the region, it is crucial to establish precise and 
comprehensive training categories. With this 
objective in mind, we have defined two distinct sets 
of training data: one focusing on porphyry-copper 
and iron alterations, and the other centered on 
advanced argillic and  iron alterations. This 
decision stems from the observation that 
incorporating multiple classes with similar 
applications in classification concurrently can lead 
to reduced accuracy in abundance maps and 
potentially create confusion during their 
interpretation. 

For instance, using 4/5, 4/6, and 4/8 band ratios 
to identify sericite, propylitic, and argillic 

alterations is useful for detecting areas favorable 
for porphyry copper ]57[ . On the other hand, 
classes were also created using 5/6, 7/6, and 7/5 
band ratios to identify phengitic, sericite, and 
argillic alterations, which are used for detecting 
advanced argillic zones ]59[ . 

Therefore, based on the provided information 
and introduced band ratios, two categories of 
classes have been designed as follows: 
1. Catagory A-1: This category is used to highlight 

porphyry copper alterations, gossan areas, Iron 
Silicate, iron oxides, and normalized difference 
vegetation index (Table 1) . 

2. Category A-2: This category is used to highlight 
advanced argillic alterations, gossan areas, iron 
silicate, iron oxides, and normalized difference 
vegetation index (Table 1) . 

Table 1. The created categories and the corresponding band ratios 
Aster category A-2 Aster category A-1 

Band ratio Alteration Band ratio Alteration 
5/4  Alteration  ]56 [  5/4  Alteration  ]56 [  & Sericite  ]57 [  

7/6 Sericite  ]57 [  4/6 Argillic  ]57 [  
4/3 Ferric oxides ]59 [  4/8 Propylitic ]57 [  
5/4 ferrous silicates  ]59 [  4/3 Ferric oxides ]59 [  

3-2/3+2 NDVI [58] 5/4 Ferrous silicates ]59 [  
4/2 Gossan  ]56 [  3-2/3+2 NDVI [58] 
5/6 Host rock ]56 [  &  ]59 [  Propylitic 4/2 Gossan  ]56 [  
7/5 Argillic  ]59 [  5/6 Host rock ]56 [  

 
7. Separability of Classes 

Separability refers to spectral discrimination, 
and is employed in the domain of remote sensing 
image processing. This concept denotes the extent 
to which two distinct regions in a digital image are 
distinguishable from each other based on their 
spectral characteristics. 

Spectral separability is computed using two 
metrics, namely the Jeffries-Matusita separability 
and the Transformed Divergence, between selected 
class pairs within an input file. These values range 
from 0 to 2.0 and signify the statistical 
distinctiveness between the chosen class pairs. 
Values exceeding 1.5 indicate a significant 
separability among the class pairs, indicating their 
clear separation. For class pairs with lower 
separability values, enhancing their separability 
can be achieved through class refinement or the 
selection of new classes. In cases where the 
separability values are extremely low (below 1), 
combining them into a single class can be 
considered .]60[    

With examining the initial separability of the 
input classes, a high overlap between the sericite 

and argillic classes was observed within category 
A-1. Consequently, these two classes were merged 
into a single class called "Alteration, Sericite & 
Argillic". The results of the final separability of the 
training classes can be seen in Tables 2 and 3. In 
Table 2, the separability value of the classes A-1  
has been measured. All input classes exhibit 
spectral separability from each other, and the 
minimum separability value among class pairs, 
specifically between gossan and iron oxides, 
exceeds 1.56, which is considered acceptable. 
Additionally, in Table 3, the separability value of 
the classes A-2 has been measured all the input 
classes show spectral separability of each other, 
and the minimum value of separability between 
pairs of classes belongs to argillic and sericite, 
which is more than 1.53, which is considered 
acceptable. 

Therefore, considering the acceptable 
separability between the class pairs within the two 
presented categories in Tables 2 and 3, it is possible 
to utilize these two categories in the final 
classification. 
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Table 2. Value of the separability measure of class A-1. 
A-1 separability Host rock Gossan NDVI Ferrous silicates Ferric oxides Propylitic 

Alteration   & Sericite    & Argillic 2 1.89 1.90 2 1.99 1.96 
Propylitic 2 1.91 1.95 2 1.98  
Ferric oxides 1.91 1.56 2 1.86   
Ferrous silicates 1.96 1.97 2    
NDVI 2 1.83     
Gossan 1.96      

Table 3. Value of the separability measure of class A-2. 
A-2 separability Gossan NDVI Ferrous silicates Ferric oxides Argillic Sericite Propylitic    &  host rock 

Alteration 1.90 1.91 2 2 1.68 1.76 1.99 
Host rock    & Propylitic 1.96 2 1.96 1.91 2 1.92  
Sericite 1.96 1.97 2 1.98 1.53   
Argillic 1.98 1.97 2 2    

Ferric oxides 1.56 2 1.86     
Ferrous silicates 1.97 2      

NDVI 1.83       

 
8. Results 

To better understand the studied area in the field 
of remote sensing, a method called "classification" 
is utilized. In this method, classes are defined, each 
representing pure pixels from the image and 
corresponding to a specific mineral or geological 
feature. In this case, regions that do not contain 
pure pixels are classified as part of each respective 
class. 

Neural networks are a powerful and widely used 
method in the field of machine learning and data 
analysis, inspired by the structure and functioning 
of the human neural system. This method enables 
us to automatically perform classification, 
detection, and prediction of data patterns and 
complex relationships in the data without the need 
for strong algorithms[61]. 

In recent decades, with the advancement of 
technology and the development of artificial 
intelligence methods, neural networks have gained 
high popularity as a powerful tool for data analysis 
and classification. Neural networks, with their 
ability to recognize patterns and complex 
relationships in data, can assist us in gaining a 
deeper understanding of the data and the existing 
relationships within it[62]. 

A neural network consists of a set of processing 
units called neurons, which are interconnected and 
arranged in different layers. Each neuron receives 
information and processes it using specific 
activation functions such as the sigmoid (logistic) 
function or hyperbolic tangent function to produce 
output. The different layers of a neural network can 
include an input layer, hidden layers, and an output 

layer. Connections between neurons are 
established with specific weights, and by 
determining and adjusting these weights, the neural 
network is capable of learning and adapting to 
input data [61,63–66]. 

To train a neural network, it is necessary to first 
provide the network with training data, and then 
iteratively adjust the weights using optimization 
algorithms. In this process, the distance between 
the output generated by the network and the 
expected output is minimized to increase the 
accuracy and correctness of classification. This 
process is repeated until the network achieves the 
desired results and the weights are optimally 
adjusted ]64[ . 

Neural networks have applications in various 
scientific and industrial fields. In the domain of 
spectral classification, neural networks can be used 
for analyzing different spectra and detecting 
specific features in the data [61,63,65]. 

Neural networks have garnered significant 
attention due to numerous advantages. Some of 
these advantages include their ability to recognize 
patterns in data, their capability to handle complex 
datasets, their flexibility in adapting to different 
problem domains, and their potential for network 
expansion and improvement through techniques 
like deep learning[63]. 

To configure the algorithm for classification, 
certain parameters need to be set. Among these 
parameters are the number of hidden layers and the 
number of training iterations. These choices are 
influenced by the available specific problem and 
the complexity of the data. It is important to note 
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that there is no optimal solution, and determining 
the best values often requires experimentation and 
fine-tuning [67]. 

For linear classification, where the input 
regions can be separated by a single hyperplane, it 
is sufficient to assign a value of 0 to the number of 
hidden layers. In the case of non-linear 
classifications, where the input regions are not 
linearly separable and need multiple hyperplanes to 
distinguish between classes, it is typically 
recommended to assign a value of 1 or more to the 
number of hidden layers. The precise number of 
hidden layers needed depends on the complexity of 
the problem [67]. 

The number of training iterations signifies the 
frequency at which the training data is processed 

through the neural network during the training 
process. There is no fixed value for this parameter, 
as it relies on factors such as the size of the training 
data, the complexity of the problem, and the 
convergence rate of the training algorithm. 
Increasing the number of training iterations entails 
a trade-off, balancing the potential enhancement of 
accuracy with the increased training time, and 
computational resources [61]. According to the 
discussed concepts in this research work, to 
enhance accuracy and precision in classification, 
1000 iterations, and one hidden layer were utilized 
for non-linear classification. In Figure 3, the neural 
network classification using classes A-1 (i) and A-
2 (ii) is illustrated. 

 

 
Figure 4. The neural network classification using classes A-1 (i) and A-2 (ii) 

9. Discussion 

In remote sensing, classification algorithms are 
not perfect and can have errors and limitations. By 
evaluating their accuracy and correctness, we can 

assess their performance and ensure the accuracy 
of the results. 

The results obtained from image analysis in 
remote sensing can have significant implications 
for decision-making processes such as identifying 
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geochemical alterations and monitoring the 
environment. Therefore, the accuracy and 
precision of the results are crucial because 
incorrect decisions based on inaccurate 
information can have serious consequences. 

In summary, classification evaluation is 
essential in remote sensing tasks to ensure the 
reliability of the results, evaluate the performance 
of algorithms, and compare different methods. The 
use of a confusion matrix in this investigation is a 
common approach to assess the accuracy of 
classifications. The confusion matrix compares the 
classification results with ground truth information 
and provides a better understanding of the 
algorithm's performance .]68[  

This matrix can be computed using either 
ground truth images or ROI (Region of Interest) of 
input classes. In both cases, metrics such as overall 
accuracy, producer's accuracy, user's accuracy, and 
kappa coefficient are reported .]69[  

Overall accuracy is a metric that determines the 
ratio of correctly classified pixels to the total 
number of pixels. To calculate it, we sum up the 
number of correctly classified pixels and divide it 
by the total number of pixels. The ground truth 
image or actual ROI specifies the true class of the 
pixels. The correctly classified pixels are located 
on the diagonal of the confusion matrix, indicating 

the number of pixels classified correctly. The total 
number of pixels is equivalent to the sum of all 
pixels across all true classes .]69[    

The Kappa coefficient is a metric used in 
evaluating the accuracy of classifications and 
agreement in classification problems. This measure 
quantifies the level of agreement between 
predicted results and ground truth outcomes, 
indicating the accuracy and generalizability of the 
classifications. The kappa coefficient is calculated 
from the confusion matrix, and in cases where the 
classification is completely random from one 
category to another, its value will be zero. In this 
case, a value of 1 indicates perfect agreement 
between the predicted and actual classifications 

.]69[  
Table 4 presents the results of the confusion 

matrix, illustrating classifications related to two 
categories. These results demonstrate that both 
classifications have high accuracy. 

Considering the high accuracy of these two 
classifications, it can be concluded that the class of 
categories has been effective in creating valid and 
efficient classifications. Furthermore, the 
classification model has successfully assigned the 
unselected areas as training data to appropriate 
classes. 

Table 4. The results of the confusion matrix for the classifications performed using ASTER images . 
Classification Overall Acc Kappa coefficient 

A-1 83.50% 0.8075 
A-2 64.17% 0.6019 

 

10. Validation 

Validation remote sensing refers to evaluating 
and analyzing the accuracy of data and 
information. The main objective of validation is to 
examine the accuracy and reliability of data and 
results obtained from remote sensing processes. 
This evaluation includes comparing and aligning 
the data with reference data, examining the 
technical and scientific accuracy of the remote 
sensing process, and verifying the accuracy and 
efficiency of the methods and algorithms used [69]. 

In general, validation in remote sensing is 
essential to ensure the accuracy and correctness of 
the data, improve the performance and accuracy of 
the results, evaluate methods and algorithms, and 
optimize the utilization of classification results. In 
this case, using the 1:100,000 geological map of 

the Sar-e-châh-e-shur region and image analysis 
methods, the available geological information is 
identified, land surfaces are classified, and more 
detailed and specific geological information is 
detected. This approach allows us to examine and 
analyze the level of agreement between numerous 
maps and the geological map of the region. 

Finally, using this method, we can comprehend 
and evaluate the validity and accuracy of the 
performed classifications depicted on the maps. 
Based on the provided explanations, in Figure 4, 
the combination of maps associated with each of 
the introduced classifications is demonstrated 
alongside the geological map of the Sar-e-châh-e-
shur region. This allows us to indicate the level of 
conformity achieved between the output results of 
image classification for the study area compared to 
the geological map of the region . 
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Figure 5. The integration of the abundance map (a) A-1-NN1-s-a-p (Sericite, Argillic, and Propylitic) (b) A-1-

NN1-Iron (ferric oxides, ferrous silicates, and Gossan) (c) A-2-NN1-s-a-p. (Sericite, Argillic, and Propylitic) (d) 
A-2-NN1-Iron (ferric oxides, ferrous silicates, and Gossan) with the relevant geological map. 
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In this scenario, considering Table 4 and 
examining the validation maps, we performed the 
conclusion using the Normal Score (NS) equation 
on the outputs of the neural network algorithm. We 
have established this equation to transform 
qualitative measures into quantitative ones to gain 
a better understanding of the validation level and 
ultimately facilitate the final decision-making 
process. In this equation, C represents the coverage 
level of the desired geological units, and E 
indicates the accuracy level of estimation, which is 
calculated using the recommended values in Table 
5. Furthermore, to better understand the Normal 
Score, we have created the formula NSP (Normal 
Score percentage), and its results are presented in 
Table 6. 
 

ܰܵ =෍
௡ܥ × ௡ܧ

ܰ

௡

ଵ

 

ܰܵܲ = 25 × ܰܵ 

0 ≤ ܰܵ ≤ 4 
0 ≤ ܰܵܲ ≤ 100 
NS = Normal Score  
NSP = Normal Score Percentage 
C = Compliance 
E = Estimate 
n = The class number  

N = The number of maps used for category 
classification validation 

Table 5. Conversion of qualitative to quantitative 
criteria 

Compliance Estimate 
Non-compliance: 0 Overestimate: 0 
Partial compliance: 1 Partial estimate: 0.25 
Semi-compliance: 2 Semi-estimate: 0.5 
Almost compliance: 3 Almost estimate: 0.75 
Perfect compliance: 4 Perfect estimate: 1 

 

Table 6. The validation results of class scores are based on the normalized scores . 

Alteration Normal score 
percentage 

Normal 
score 

Estimated 
rate 

Compliance with 
geological units Classes name 

Porphyry 
copper, iron 41٪  1.625 0.75 3 A-1-NN1-Iron 

0.5 2 A-1-NN1-s-a-p 
Advanced argillic, 
iron 56٪  2.25 0.75 4 A-2-NN1s-a-p 

0.5 3 A-2-NN1-Iron 
 

According to the obtained results in Table 6, the 
A-1 category, which represents the maps of 
porphyry copper alteration, has achieved a score of 
1.625 out of 4, indicating a 41% level of 
conformity with the geological map of the region. 
Additionally, the A-2 category, representing the 
maps of advanced argillic alteration, has obtained 
the highest score (2.25 out of 4), indicating a 56% 
level of conformity with the geological map of the 
region. This is considered an acceptable outcome . 

11. Conclusions 

ASTER data is a useful tool for examining and 
identifying hydrothermal alteration zones related to 
porphyry copper and iron-rich zones. 
Hydrothermal alteration zones related to porphyry 
copper such as phyllic, argillic, potassic, and 
propylitic zones, can be distinguished from each 
other. The distinction between phyllic, argillic, and 
propylitic zones can indicate the highest desired 
mineralization potential, which is usually 
associated with altered phyllic zones. ASTER data 
can be processed and analyzed in the best possible 
way to obtain information about the spatial 

distribution of hydrothermal alteration zones 
related to porphyry copper worldwide, including 
undiscovered areas. 

The reason for studying the sar-e-châh-e-shur 
region is the special geological conditions 
including its proximity to the Lut Block and the 
occurrence of the collapse phenomenon. The 
mineralizations associated with porphyry copper 
are highly dependent on these areas, and the results 
of the conducted classifications provide a clear 
reason for this claim. In this research work, after 
performing the necessary preprocessing, two 
categories, A-1 and A-2, were created using the 
introduced band ratios. Then using a neural 
network algorithm, the entire region was classified. 
In this case, despite the lower accuracy compared 
to the A-1 category, the good conformity of the 
classification results of the A-2 category with 
advanced argillic alteration (Figure 3-i) to the 
existing reality and the geological map (Figure 1) 
is observed. Furthermore, susceptible zones for 
copper mineralization in the central and 
northeastern sectors of the specified area were 
delineated. Moreover, there are promising zones 
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within the central region of the locality that merit 
additional scrutiny for iron exploration. 
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  چکیده:

  ز، یناچ یاهی مس، دارد. با وجود پوشش گ ژهیبه و ،ییزای انواع کان يبرا ییبالا اریبس  لیپتانس ،رژیم تکتونیکی فعال لیبه دل ران،یمنطقه مورد مطالعه واقع در شرق ا
مرتبط    يهای دگرسان ییشناسا ياستر برا یفیچندط يهادهمطالعه، از دا نیدهند. در ا صیتشخ  یسان شده را به خوبرمناطق دگ  توانندی سنجش از دور م يهاداده

کان   هايد یو اکس  کیت یلیپروپ  ت،یسیسر  ک،یلیآرژ  آلتراسیونهايبا   با   یمنظور، دو دسته خوشه کلاس  نیا  يبرا.  مس استفاده شد  يساز  یآهن مرتبط با  مرتبط 
 یعصب شبکه تمیمربع با استفاده از الگور لومتری ک 2617در منطقه به مساحت  يبندانجام طبقه  يآهن) را برا-شرفتهیپ کیلیآهن و آرژ-يری (مس پورف های دگرسان

گردید. در  استفاده    شوند،ی ابهام محاسبه م  سی کاپا، که با استفاده از ماتر  بیو ضر یاز دو مؤلفه صحت کلنیز    يبندصحت طبقه  یابیارز  ي. براه  شددر نظر گرفت
  ت، ینها در. را کسب کردند 0.807و  0.602کاپا  بیو ضر %83.5و  %64.17 یکل صحت بیبه ترت يریو مس پورف شرفتهیپ کیلیآرژ یکلاس يهاخوشهاین حالت، 

نرمال   ازی امت نیبه بالاتر شرفتهیپ کیلیآرژ  یحالت، خوشه کلاس نی. در اشدنرمال شده استفاده  ازی معادله امت در یکم يارهایاز مع هاي بندطبقه یاعتبارسنج يبرا
  ي هامناطق مطلوب در بخش   ییامر منجر به شناسا  نی. اداشت  منطقه    یشناسن یزم  يهات یبا واقع  يدرصد  56دهنده انطباق  که نشان   افتیدست  )  4از    2.25(

  منطقه مورد مطالعه شد.    یو شمال شرق يمرکز

  .نرمال شده ازیامت ،يطبقه بند  شرفته،ی پ کیلیآرژ ،يری مس پورف ،ی، شبکه عصباستر سنجش از دور،  کلمات کلیدي:

 

 


