Document Type : Original Research Paper

Authors

Faculty of Civil Engineering, Babol Noshirvani University of Technology, Babol, Iran

10.22044/jme.2023.13081.2376

Abstract

Offshore produced water (OPW), a type of wastewater rich in hazardous compounds such as polycyclic aromatic hydrocarbons (PAHs), requires effective treatment. This study presents a novel methodology utilizing TiO2 nanoparticles, ultraviolet (UV) lamps, and ozonation for the degradation of phenanthrene (PHE) from OPW. Various factors including UV lamp power (10W-50W), ozone dose (0.1 mg/L-0.5 mg/L), TiO2 concentration (0.5 g/m²-2.1 g/m²), ethanol fraction (25%-85%), pH (4.5-10.5), PHE initial concentration (5 mg/L-25 mg/L), and treatment time (15 min-45 min) were systematically investigated to understand their impact on PAH degradation in the OPW. The study employs Response Surface Methodology (RSM) for modeling and optimizing PHE removal efficiency. The results contribute to the development of a mathematical model, and through optimization, optimal conditions are proposed to maximize PHE removal efficiency. Experimental implementation of the optimized conditions in a physical model resulted in an impressive 98% PHE removal efficiency. The identified optimal conditions include UV lamp power of 40 W, ozone dose of 0.5 mg/L, TiO2 concentration of 2 g/m², ethanol fraction of 25%, pH of 5.2, initial PHE concentration of 15 mg/L, and a treatment time of 40 min. This optimized approach provides valuable insights for efficient and environmentally friendly treatment of PAHs in OPW, emphasizing on the potential for practical application in soil washing effluent treatment.

Keywords

Main Subjects

[1]. Aguilar, C. M., Rodríguez, J. L., Chairez, I., Tiznado, H., & Poznyak, T. (2017). Naphthalene degradation by catalytic ozonation based on nickel oxide: study of the ethanol as cosolvent. Environmental Science and Pollution Research, 24(33), 25550–25560. https://doi.org/10.1007/s11356-016-6134-2
[2]. Aguilar, C. M., Rodríguez, J. L., Chairez, I., Tiznado, H., & Poznyak, T. (2016). Naphthalene degradation by catalytic ozonation based on nickel oxide: study of the ethanol as cosolvent. Environmental Science and Pollution Research 2016 24:33, 24(33), 25550–25560. https://doi.org/10.1007/S11356-016-6134-2
[3]. Li, L., Zhang, P., Zhu, W., Han, W., & Zhang, Z. (2005). Comparison of O3-BAC, UV/O3-BAC and TiO2/UV/O3-BAC processes for removing organic pollutants in secondary effluents. Journal of Photochemistry and Photobiology A: Chemistry, 171(2), 145–151. https://doi.org/10.1016/J.JPHOTOCHEM.2004.09.016
[4]. Li, H., Gong, Y., Huang, Q., & Zhang, H. (2013). Degradation of orange II by UV-assisted advanced fenton process: Response surface approach, degradation pathway, and biodegradability. Industrial and Engineering Chemistry Research, 52(44), 15560–15567. https://doi.org/10.1021/IE401503U
[5]. Wang, Z., Zheng, X., Wang, Y., Lin, H., & Zhang, H. (2021). Evaluation of phenanthrene removal from soil washing effluent by activated carbon adsorption using response surface methodology. Chinese Journal of Chemical Engineering. https://doi.org/10.1016/J.CJCHE.2021.02.027
[6]. Yap, C. L., Gan, S., & Ng, H. K. (2012). Ethyl lactate-Fenton treatment of soil highly contaminated with polycyclic aromatic hydrocarbons (PAHs). Chemical Engineering Journal, 200202, 247–256. https://doi.org/10.1016/j.cej.2012.06.036
[7]. Luster-Teasley, S., Ubaka-Blackmoore, N., & Masten, S. J. (2009). Evaluation of soil pH and moisture content on in-situ ozonation of pyrene in soils. Journal of Hazardous Materials, 167(1–3), 701–706. https://doi.org/10.1016/j.jhazmat.2009.01.046
[8]. Uv, O., Uv, T., Uv, O. T., Pengyi, Z., Fuyan, L., Gang, Y., Qing, C., & Wanpeng, Z. (2003). A comparative study on decomposition of gaseous toluene, 156, 189–194. https://doi.org/10.1016/S1010-6030(02)00432-X
[9]. Im, J. K., Cho, I. H., Kim, S. K., & Zoh, K. D. (2012). Optimization of carbamazepine removal in O3/UV/H2O2 system using a response surface methodology with central composite design. Desalination, 285, 306–314. https://doi.org/10.1016/J.DESAL.2011.10.018
[10]. Körbahti, B. K., & Rauf, M. A. (2008). Response surface methodology (RSM) analysis of photoinduced decoloration of toludine blue. Chemical Engineering Journal, 136(1), 25–30. https://doi.org/10.1016/J.CEJ.2007.03.007
[11]. Wu, J., Zhang, H., Oturan, N., Wang, Y., Chen, L., & Oturan, M. A. (2012). Application of response surface methodology to the removal of the antibiotic tetracycline by electrochemical process using carbon-felt cathode and DSA (Ti/RuO2–IrO2) anode. Chemosphere, 87(6), 614–620. https://doi.org/10.1016/J.CHEMOSPHERE.2012.01.036
[12]. Buthiyappan, A., Raja Ehsan Shah, R. S. S., Asghar, A., Abdul Raman, A. A., Daud, M. A. W., Ibrahim, S., & Tezel, F. H. (2019). Textile wastewater treatment efficiency by Fenton oxidation with integration of membrane separation system. Chemical Engineering Communications, 206(4), 541–557. https://doi.org/10.1080/00986445.2018.1508021
[13]. Khataee, A. R., Fathinia, M., Aber, S., & Zarei, M. (2010). Optimization of photocatalytic treatment of dye solution on supported TiO2 nanoparticles by central composite design: Intermediates identification. Journal of Hazardous Materials, 181(1–3), 886–897. https://doi.org/10.1016/J.JHAZMAT.2010.05.096
[14]. Arslan-Alaton, I., Ayten, N., & Olmez-Hanci, T. (2010). Photo-Fenton-like treatment of the commercially important H-acid: Process optimization by factorial design and effects of photocatalytic treatment on activated sludge inhibition. Applied Catalysis B: Environmental, 96(1–2), 208–217. https://doi.org/10.1016/J.APCATB.2010.02.023
[15]. Körbahti, B. K. (2007). Response surface optimization of electrochemical treatment of textile dye wastewater. Journal of Hazardous Materials, 145(1–2), 277–286. https://doi.org/10.1016/J.JHAZMAT.2006.11.031
[16]. Borror, C. M., Montgomery, D. C., & Myers, R. H. (2018). Evaluation of Statistical Designs for Experiments Involving Noise Variables. Https://Doi.Org/10.1080/00224065.2002.11980129, 34(1), 54–70. https://doi.org/10.1080/00224065.2002.11980129
[17]. Zainal-Abideen, M., Aris, A., Yusof, F., Abdul-Majid, Z., Selamat, A., & Omar, S. I. (2012). Optimizing the coagulation process in a drinking water treatment plant – comparison between traditional and statistical experimental design jar tests. Water Science and Technology, 65(3), 496–503. https://doi.org/10.2166/WST.2012.561
[18]. Buthiyappan, A., Shah, R. S. S. R. E., Asghar, A., Raman, A. A. A., Daud, M. A. W., Ibrahim, S., & Tezel, F. H. (2018). Textile wastewater treatment efficiency by Fenton oxidation with integration of membrane separation system. Https://Doi.Org/10.1080/00986445.2018.1508021, 206(4), 541–557. https://doi.org/10.1080/00986445.2018.1508021
[19]. Bezerra, M. A., Santelli, R. E., Oliveira, E. P., Villar, L. S., & Escaleira, L. A. (2008, September 15). Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta. Elsevier. https://doi.org/10.1016/j.talanta.2008.05.019
[20]. Khuri, A. I. (2006). Response surface methodology and related topics, 457.
[21]. Ahmad, A. L., Ismail, S., & Bhatia, S. (2005). Optimization of coagulation-flocculation process for palm oil mill effluent using response surface methodology. Environmental Science and Technology, 39(8), 2828–2834. https://doi.org/10.1021/ES0498080/SUPPL_FILE/ES0498080SI20050118_034454.PDF
[22]. Yetilmezsoy, K., Demirel, S., & Vanderbei, R. J. (2009). Response surface modeling of Pb(II) removal from aqueous solution by Pistacia vera L.: Box–Behnken experimental design. Journal of Hazardous Materials, 171(1–3), 551–562. https://doi.org/10.1016/J.JHAZMAT.2009.06.035
[23]. Mehrjouei, M., Müller, S., & Möller, D. (2015). A review on photocatalytic ozonation used for the treatment of water and wastewater. Chemical Engineering Journal, 263, 209–219. https://doi.org/10.1016/j.cej.2014.10.112
[24]. Beltrán, F. J., Aguinaco, A., Rey, A., & García-Araya, J. F. (2012). Kinetic studies on black light photocatalytic ozonation of diclofenac and sulfamethoxazole in water. Industrial and Engineering Chemistry Research, 51(12), 4533–4544. https://doi.org/10.1021/IE202525F/SUPPL_FILE/IE202525F_SI_001.PDF
[25]. Sein, M. M., Zedda, M., Tuerk, J., Schmidt, T. C., Golloch, A., & Von Sonntag, C. (2008). Oxidation of diclofenac with ozone in aqueous solution. Environmental Science and Technology, 42(17), 6656–6662. https://doi.org/10.1021/ES8008612/SUPPL_FILE/ES8008612_FILE001.PDF
[26]. Zhang, Y., Wong, J. W. C., Liu, P., & Yuan, M. (2011). Heterogeneous photocatalytic degradation of phenanthrene in surfactant solution containing TiO2 particles. Journal of Hazardous Materials, 191(1–3), 136–143. https://doi.org/10.1016/j.jhazmat.2011.04.059
[27]. Augugliaro, V., Litter, M., Palmisano, L., & Soria, J. (2006). The combination of heterogeneous photocatalysis with chemical and physical operations: A tool for improving the photoprocess performance. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 7(4), 127–144. https://doi.org/10.1016/J.JPHOTOCHEMREV.2006.12.001
[28]. Rivas, F. J., Beltrán, F. J., Gimeno, O., & Carbajo, M. (2005). Fluorene Oxidation by Coupling of Ozone, Radiation, and Semiconductors:  A Mathematical Approach to the Kinetics. Industrial and Engineering Chemistry Research, 45(1), 166–174. https://doi.org/10.1021/IE050781I
[29]. Beltrán, F. J., Rivas, F. J., Gimeno, O., & Carbajo, M. (2005). Photocatalytic Enhanced Oxidation of Fluorene in Water with Ozone. Comparison with Other Chemical Oxidation Methods. Industrial and Engineering Chemistry Research, 44(10), 3419–3425. https://doi.org/10.1021/IE048800W
[30]. Yildirim, A. Ö., Gül, Ş., Eren, O., & Kuşvuran, E. (2011). A Comparative Study of Ozonation, Homogeneous Catalytic Ozonation, and Photocatalytic Ozonation for C.I. Reactive Red 194 Azo Dye Degradation. CLEAN – Soil, Air, Water, 39(8), 795–805. https://doi.org/10.1002/CLEN.201000192
[31]. García-Araya, J. F., Beltrán, F. J., & Aguinaco, A. (2010). Diclofenac removal from water by ozone and photolytic TiO2 catalysed processes. Journal of Chemical Technology & Biotechnology, 85(6), 798–804. https://doi.org/10.1002/JCTB.2363
[32]. Beltrán, F. J., Aguinaco, A., Rey, A., & García-Araya, J. F. (2012b). Kinetic studies on black light photocatalytic ozonation of diclofenac and sulfamethoxazole in water. Industrial and Engineering Chemistry Research, 51(12), 4533–4544. https://doi.org/10.1021/IE202525F/SUPPL_FILE/IE202525F_SI_001.PDF
[33]. Rey, A., Quiñones, D. H., Álvarez, P. M., Beltrán, F. J., & Plucinski, P. K. (2012). Simulated solar-light assisted photocatalytic ozonation of metoprolol over titania-coated magnetic activated carbon. Applied Catalysis B: Environmental, 111112, 246–253. https://doi.org/10.1016/J.APCATB.2011.10.005
[34]. Černigoj, U., Štangar, U. L., & Trebše, P. (2007). Degradation of neonicotinoid insecticides by different advanced oxidation processes and studying the effect of ozone on TiO2 photocatalysis. Applied Catalysis B: Environmental, 75(3–4), 229–238. https://doi.org/10.1016/J.APCATB.2007.04.014
[35]. Lundstedt, S., Persson, Y., & Öberg, L. (2006). Transformation of PAHs during ethanol-Fenton treatment of an aged gasworks’ soil. Chemosphere, 65(8), 1288–1294. https://doi.org/10.1016/J.CHEMOSPHERE.2006.04.031
[36]. Tamadoni, A., & Qaderi, F. (2020). Environmental-economical assessment of the use of ultrasonication for pre-treatment of the soils contaminated by phenanthrene. Journal of Environmental Management, 259, 109991. https://doi.org/10.1016/j.jenvman.2019.109991
[37]. Ochiai, T., Nanba, H., Nakagawa, T., Masuko, K., Nakata, K., Murakami, T., Nakano, R., Hara, M., Koide, Y., Suzuki, T., Ikekita, M., Morito, Y., & Fujishima, A. (2011). Development of an O 3 -assisted photocatalytic water-purification unit by using a TiO 2 modified titanium mesh filter. Catalysis Science & Technology, 2(1), 76–78. https://doi.org/10.1039/C1CY00315A
[38]. Zou, L., & Zhu, B. (2008). The synergistic effect of ozonation and photocatalysis on color removal from reused water. Journal of Photochemistry and Photobiology A: Chemistry, 196(1), 24–32. https://doi.org/10.1016/J.JPHOTOCHEM.2007.11.008
[39]. Sun, J., Qiao, L., Sun, S., & Wang, G. (2008). Photocatalytic degradation of Orange G on nitrogen-doped TiO2 catalysts under visible light and sunlight irradiation. Journal of Hazardous Materials, 155(1–2), 312–319. https://doi.org/10.1016/J.JHAZMAT.2007.11.062
[40]. Sun, J., Wang, X., Sun, J., Sun, R., Sun, S., & Qiao, L. (2006). Photocatalytic degradation and kinetics of Orange G using nano-sized Sn(IV)/TiO2/AC photocatalyst. Journal of Molecular Catalysis A: Chemical, 260(1–2), 241–246. https://doi.org/10.1016/J.MOLCATA.2006.07.033
[41]. Chávez, A. M., Rey, A., Beltrán, F. J., & Álvarez, P. M. (2016). Solar photo-ozonation: A novel treatment method for the degradation of water pollutants. Journal of Hazardous Materials, 317, 36–43. https://doi.org/10.1016/j.jhazmat.2016.05.050
[42]. Ranc, B., Faure, P., Croze, V., & Simonnot, M. O. (2016). Selection of oxidant doses for in situ chemical oxidation of soils contaminated by polycyclic aromatic hydrocarbons (PAHs): A review. Journal of Hazardous Materials, 312, 280–297. https://doi.org/10.1016/j.jhazmat.2016.03.068
[43]. Bahnemann, D. (1999). Photocatalytic Detoxification of Polluted Waters. ACS Division of Environmental Chemistry, Preprints, 41(1), 285–351. https://doi.org/10.1007/978-3-540-69044-3_11