[1]. Aguilar, C. M., Rodríguez, J. L., Chairez, I., Tiznado, H., & Poznyak, T. (2017). Naphthalene degradation by catalytic ozonation based on nickel oxide: study of the ethanol as cosolvent. Environmental Science and Pollution Research, 24(33), 25550–25560. https://doi.org/10.1007/s11356-016-6134-2
[2]. Aguilar, C. M., Rodríguez, J. L., Chairez, I., Tiznado, H., & Poznyak, T. (2016). Naphthalene degradation by catalytic ozonation based on nickel oxide: study of the ethanol as cosolvent. Environmental Science and Pollution Research 2016 24:33, 24(33), 25550–25560. https://doi.org/10.1007/S11356-016-6134-2
[3]. Li, L., Zhang, P., Zhu, W., Han, W., & Zhang, Z. (2005). Comparison of O3-BAC, UV/O3-BAC and TiO2/UV/O3-BAC processes for removing organic pollutants in secondary effluents. Journal of Photochemistry and Photobiology A: Chemistry, 171(2), 145–151. https://doi.org/10.1016/J.JPHOTOCHEM.2004.09.016
[4]. Li, H., Gong, Y., Huang, Q., & Zhang, H. (2013). Degradation of orange II by UV-assisted advanced fenton process: Response surface approach, degradation pathway, and biodegradability. Industrial and Engineering Chemistry Research, 52(44), 15560–15567. https://doi.org/10.1021/IE401503U
[5]. Wang, Z., Zheng, X., Wang, Y., Lin, H., & Zhang, H. (2021). Evaluation of phenanthrene removal from soil washing effluent by activated carbon adsorption using response surface methodology. Chinese Journal of Chemical Engineering. https://doi.org/10.1016/J.CJCHE.2021.02.027
[6]. Yap, C. L., Gan, S., & Ng, H. K. (2012). Ethyl lactate-Fenton treatment of soil highly contaminated with polycyclic aromatic hydrocarbons (PAHs). Chemical Engineering Journal, 200–202, 247–256. https://doi.org/10.1016/j.cej.2012.06.036
[7]. Luster-Teasley, S., Ubaka-Blackmoore, N., & Masten, S. J. (2009). Evaluation of soil pH and moisture content on in-situ ozonation of pyrene in soils. Journal of Hazardous Materials, 167(1–3), 701–706. https://doi.org/10.1016/j.jhazmat.2009.01.046
[8]. Uv, O., Uv, T., Uv, O. T., Pengyi, Z., Fuyan, L., Gang, Y., Qing, C., & Wanpeng, Z. (2003). A comparative study on decomposition of gaseous toluene, 156, 189–194. https://doi.org/10.1016/S1010-6030(02)00432-X
[9]. Im, J. K., Cho, I. H., Kim, S. K., & Zoh, K. D. (2012). Optimization of carbamazepine removal in O3/UV/H2O2 system using a response surface methodology with central composite design. Desalination, 285, 306–314. https://doi.org/10.1016/J.DESAL.2011.10.018
[10]. Körbahti, B. K., & Rauf, M. A. (2008). Response surface methodology (RSM) analysis of photoinduced decoloration of toludine blue. Chemical Engineering Journal, 136(1), 25–30. https://doi.org/10.1016/J.CEJ.2007.03.007
[11]. Wu, J., Zhang, H., Oturan, N., Wang, Y., Chen, L., & Oturan, M. A. (2012). Application of response surface methodology to the removal of the antibiotic tetracycline by electrochemical process using carbon-felt cathode and DSA (Ti/RuO2–IrO2) anode. Chemosphere, 87(6), 614–620. https://doi.org/10.1016/J.CHEMOSPHERE.2012.01.036
[12]. Buthiyappan, A., Raja Ehsan Shah, R. S. S., Asghar, A., Abdul Raman, A. A., Daud, M. A. W., Ibrahim, S., & Tezel, F. H. (2019). Textile wastewater treatment efficiency by Fenton oxidation with integration of membrane separation system. Chemical Engineering Communications, 206(4), 541–557. https://doi.org/10.1080/00986445.2018.1508021
[13]. Khataee, A. R., Fathinia, M., Aber, S., & Zarei, M. (2010). Optimization of photocatalytic treatment of dye solution on supported TiO2 nanoparticles by central composite design: Intermediates identification. Journal of Hazardous Materials, 181(1–3), 886–897. https://doi.org/10.1016/J.JHAZMAT.2010.05.096
[14]. Arslan-Alaton, I., Ayten, N., & Olmez-Hanci, T. (2010). Photo-Fenton-like treatment of the commercially important H-acid: Process optimization by factorial design and effects of photocatalytic treatment on activated sludge inhibition. Applied Catalysis B: Environmental, 96(1–2), 208–217. https://doi.org/10.1016/J.APCATB.2010.02.023
[15]. Körbahti, B. K. (2007). Response surface optimization of electrochemical treatment of textile dye wastewater. Journal of Hazardous Materials, 145(1–2), 277–286. https://doi.org/10.1016/J.JHAZMAT.2006.11.031
[16]. Borror, C. M., Montgomery, D. C., & Myers, R. H. (2018). Evaluation of Statistical Designs for Experiments Involving Noise Variables. Https://Doi.Org/10.1080/00224065.2002.11980129, 34(1), 54–70. https://doi.org/10.1080/00224065.2002.11980129
[17]. Zainal-Abideen, M., Aris, A., Yusof, F., Abdul-Majid, Z., Selamat, A., & Omar, S. I. (2012). Optimizing the coagulation process in a drinking water treatment plant – comparison between traditional and statistical experimental design jar tests. Water Science and Technology, 65(3), 496–503. https://doi.org/10.2166/WST.2012.561
[18]. Buthiyappan, A., Shah, R. S. S. R. E., Asghar, A., Raman, A. A. A., Daud, M. A. W., Ibrahim, S., & Tezel, F. H. (2018). Textile wastewater treatment efficiency by Fenton oxidation with integration of membrane separation system. Https://Doi.Org/10.1080/00986445.2018.1508021, 206(4), 541–557. https://doi.org/10.1080/00986445.2018.1508021
[19]. Bezerra, M. A., Santelli, R. E., Oliveira, E. P., Villar, L. S., & Escaleira, L. A. (2008, September 15). Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta. Elsevier. https://doi.org/10.1016/j.talanta.2008.05.019
[20]. Khuri, A. I. (2006). Response surface methodology and related topics, 457.
[21]. Ahmad, A. L., Ismail, S., & Bhatia, S. (2005). Optimization of coagulation-flocculation process for palm oil mill effluent using response surface methodology. Environmental Science and Technology, 39(8), 2828–2834. https://doi.org/10.1021/ES0498080/SUPPL_FILE/ES0498080SI20050118_034454.PDF
[22]. Yetilmezsoy, K., Demirel, S., & Vanderbei, R. J. (2009). Response surface modeling of Pb(II) removal from aqueous solution by Pistacia vera L.: Box–Behnken experimental design. Journal of Hazardous Materials, 171(1–3), 551–562. https://doi.org/10.1016/J.JHAZMAT.2009.06.035
[23]. Mehrjouei, M., Müller, S., & Möller, D. (2015). A review on photocatalytic ozonation used for the treatment of water and wastewater. Chemical Engineering Journal, 263, 209–219. https://doi.org/10.1016/j.cej.2014.10.112
[24]. Beltrán, F. J., Aguinaco, A., Rey, A., & García-Araya, J. F. (2012). Kinetic studies on black light photocatalytic ozonation of diclofenac and sulfamethoxazole in water. Industrial and Engineering Chemistry Research, 51(12), 4533–4544. https://doi.org/10.1021/IE202525F/SUPPL_FILE/IE202525F_SI_001.PDF
[25]. Sein, M. M., Zedda, M., Tuerk, J., Schmidt, T. C., Golloch, A., & Von Sonntag, C. (2008). Oxidation of diclofenac with ozone in aqueous solution. Environmental Science and Technology, 42(17), 6656–6662. https://doi.org/10.1021/ES8008612/SUPPL_FILE/ES8008612_FILE001.PDF
[26]. Zhang, Y., Wong, J. W. C., Liu, P., & Yuan, M. (2011). Heterogeneous photocatalytic degradation of phenanthrene in surfactant solution containing TiO2 particles. Journal of Hazardous Materials, 191(1–3), 136–143. https://doi.org/10.1016/j.jhazmat.2011.04.059
[27]. Augugliaro, V., Litter, M., Palmisano, L., & Soria, J. (2006). The combination of heterogeneous photocatalysis with chemical and physical operations: A tool for improving the photoprocess performance. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 7(4), 127–144. https://doi.org/10.1016/J.JPHOTOCHEMREV.2006.12.001
[28]. Rivas, F. J., Beltrán, F. J., Gimeno, O., & Carbajo, M. (2005). Fluorene Oxidation by Coupling of Ozone, Radiation, and Semiconductors: A Mathematical Approach to the Kinetics. Industrial and Engineering Chemistry Research, 45(1), 166–174. https://doi.org/10.1021/IE050781I
[29]. Beltrán, F. J., Rivas, F. J., Gimeno, O., & Carbajo, M. (2005). Photocatalytic Enhanced Oxidation of Fluorene in Water with Ozone. Comparison with Other Chemical Oxidation Methods. Industrial and Engineering Chemistry Research, 44(10), 3419–3425. https://doi.org/10.1021/IE048800W
[30]. Yildirim, A. Ö., Gül, Ş., Eren, O., & Kuşvuran, E. (2011). A Comparative Study of Ozonation, Homogeneous Catalytic Ozonation, and Photocatalytic Ozonation for C.I. Reactive Red 194 Azo Dye Degradation. CLEAN – Soil, Air, Water, 39(8), 795–805. https://doi.org/10.1002/CLEN.201000192
[31]. García-Araya, J. F., Beltrán, F. J., & Aguinaco, A. (2010). Diclofenac removal from water by ozone and photolytic TiO2 catalysed processes. Journal of Chemical Technology & Biotechnology, 85(6), 798–804. https://doi.org/10.1002/JCTB.2363
[32]. Beltrán, F. J., Aguinaco, A., Rey, A., & García-Araya, J. F. (2012b). Kinetic studies on black light photocatalytic ozonation of diclofenac and sulfamethoxazole in water. Industrial and Engineering Chemistry Research, 51(12), 4533–4544. https://doi.org/10.1021/IE202525F/SUPPL_FILE/IE202525F_SI_001.PDF
[33]. Rey, A., Quiñones, D. H., Álvarez, P. M., Beltrán, F. J., & Plucinski, P. K. (2012). Simulated solar-light assisted photocatalytic ozonation of metoprolol over titania-coated magnetic activated carbon. Applied Catalysis B: Environmental, 111–112, 246–253. https://doi.org/10.1016/J.APCATB.2011.10.005
[34]. Černigoj, U., Štangar, U. L., & Trebše, P. (2007). Degradation of neonicotinoid insecticides by different advanced oxidation processes and studying the effect of ozone on TiO2 photocatalysis. Applied Catalysis B: Environmental, 75(3–4), 229–238. https://doi.org/10.1016/J.APCATB.2007.04.014
[35]. Lundstedt, S., Persson, Y., & Öberg, L. (2006). Transformation of PAHs during ethanol-Fenton treatment of an aged gasworks’ soil. Chemosphere, 65(8), 1288–1294. https://doi.org/10.1016/J.CHEMOSPHERE.2006.04.031
[36]. Tamadoni, A., & Qaderi, F. (2020). Environmental-economical assessment of the use of ultrasonication for pre-treatment of the soils contaminated by phenanthrene. Journal of Environmental Management, 259, 109991. https://doi.org/10.1016/j.jenvman.2019.109991
[37]. Ochiai, T., Nanba, H., Nakagawa, T., Masuko, K., Nakata, K., Murakami, T., Nakano, R., Hara, M., Koide, Y., Suzuki, T., Ikekita, M., Morito, Y., & Fujishima, A. (2011). Development of an O 3 -assisted photocatalytic water-purification unit by using a TiO 2 modified titanium mesh filter. Catalysis Science & Technology, 2(1), 76–78. https://doi.org/10.1039/C1CY00315A
[38]. Zou, L., & Zhu, B. (2008). The synergistic effect of ozonation and photocatalysis on color removal from reused water. Journal of Photochemistry and Photobiology A: Chemistry, 196(1), 24–32. https://doi.org/10.1016/J.JPHOTOCHEM.2007.11.008
[39]. Sun, J., Qiao, L., Sun, S., & Wang, G. (2008). Photocatalytic degradation of Orange G on nitrogen-doped TiO2 catalysts under visible light and sunlight irradiation. Journal of Hazardous Materials, 155(1–2), 312–319. https://doi.org/10.1016/J.JHAZMAT.2007.11.062
[40]. Sun, J., Wang, X., Sun, J., Sun, R., Sun, S., & Qiao, L. (2006). Photocatalytic degradation and kinetics of Orange G using nano-sized Sn(IV)/TiO2/AC photocatalyst. Journal of Molecular Catalysis A: Chemical, 260(1–2), 241–246. https://doi.org/10.1016/J.MOLCATA.2006.07.033
[41]. Chávez, A. M., Rey, A., Beltrán, F. J., & Álvarez, P. M. (2016). Solar photo-ozonation: A novel treatment method for the degradation of water pollutants. Journal of Hazardous Materials, 317, 36–43. https://doi.org/10.1016/j.jhazmat.2016.05.050
[42]. Ranc, B., Faure, P., Croze, V., & Simonnot, M. O. (2016). Selection of oxidant doses for in situ chemical oxidation of soils contaminated by polycyclic aromatic hydrocarbons (PAHs): A review. Journal of Hazardous Materials, 312, 280–297. https://doi.org/10.1016/j.jhazmat.2016.03.068
[43]. Bahnemann, D. (1999). Photocatalytic Detoxification of Polluted Waters. ACS Division of Environmental Chemistry, Preprints, 41(1), 285–351. https://doi.org/10.1007/978-3-540-69044-3_11