[1]. Zheng, C., Yuan, F., Luo, X., Li, X., Liu, P., Wen, M., & Albanese, S. (2023). Mineral prospectivity mapping based on support vector machine and random forest algorithm-A case study from Ashele copper-zinc deposit, Xinjiang, NW China. Ore Geology Reviews, 159, 105567.
[2]. Li, B., Yu, Z., & Ke, X. (2023). One-dimensional convolutional neural network for mapping mineral prospectivity: A case study in changba ore concentration area, Gansu province. Ore Geology Reviews, 160, 105573.
[3]. Saljoughi, B. S., & Hezarkhani, A. (2018). A comparative analysis of artificial neural network (ANN), wavelet neural network (WNN), and support vector machine (SVM) data-driven models to mineral potential mapping for copper mineralizations in the Shahr-e-Babak region, Kerman, Iran. Applied Geomatics, 10, 229-256.
[4]. Zuo, R. (2020). Geodata science-based mineral prospectivity mapping: A review. Natural Resources Research, 29, 3415-3424.
[5]. Xu, Y., Li, Z., Xie, Z., Cai, H., Niu, P., & Liu, H. (2021). Mineral prospectivity mapping by deep learning method in Yawan-Daqiao area, Gansu. Ore Geology Reviews, 138, 104316.
[6]. Chen, Y., & Wu, W. (2016). A prospecting cost-benefit strategy for mineral potential mapping based on ROC curve analysis. Ore Geology Reviews, 74, 26-38.
[7]. Ghezelbash, R., Maghsoudi, A., Bigdeli, A., & Carranza, E., J., M. (2021). Regional-scale mineral prospectivity mapping: Support vector machines and an improved data-driven multi-criteria decision-making technique. Natural Resources Research, 30, 1977-2005.
[8]. Ghezelbash, R., Maghsoudi, A., & Carranza, E., J., M. (2019). An improved data-driven multiple criteria decision-making procedure for spatial modeling of mineral prospectivity: adaption of prediction–area plot and logistic functions. Natural Resources Research, 28, 1299-1316.
[9]. Cheng, H., Zheng, Y., Wu, S., Lin, Y., Gao, F., Lin, D., & Chen, L. (2023). GIS-based mineral prospectivity mapping using machine learning methods: a case study from Zhuonuo ore district, Tibet. Ore Geology Reviews, 161, 105627.
[10]. Yousefi, M., & Carranza, E., J., M. (2015a). Geometric average of spatial evidence data layers: a GIS-based multi-criteria decision-making approach to mineral prospectivity mapping. Computers & Geosciences, 83, 72-79.
[11]. Daviran, M., Maghsoudi, A., Ghezelbash, R., & Pradhan, B. (2021). A new strategy for spatial predictive mapping of mineral prospectivity: Automated hyperparameter tuning of random forest approach. Computers & Geosciences, 148, 104688.
[12]. Lachaud, A., Adam, M., & Mišković, I. (2023). Comparative study of random forest and support vector machine algorithms in mineral prospectivity mapping with limited training data. Minerals, 13(8), 1073.
[13]. Acosta, I., C., C., Khodadadzadeh, M., Tusa, L., Ghamisi, P., & Gloaguen, R. (2019). A machine learning framework for drill-core mineral mapping using hyperspectral and high-resolution mineralogical data fusion. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12(12), 4829-4842.
[14] Luo, X. & Dimitrakopoulos, R. (2003). Data-driven fuzzy analysis in quantitative mineral resource assessment. Computers & Geosciences, 29, 3-13.
[15]. Wei, H., Xiao, K., Shao, Y., Kong, H., Zhang, S., Wang, K., & Wen, C. (2020). Modeling-based mineral system approach to prospectivity mapping of stratabound hydrothermal deposits: A case study of MVT Pb-Zn deposits in the Huayuan area, northwestern Hunan province, China. Ore Geology Reviews, 120, 103368.
[16]. Xiong, Y., & Zuo, R. (2018). GIS-based rare events logistic regression for mineral prospectivity mapping. Computers & Geosciences, 111, 18-25.
[17]. Fu, C., Chen, K., Yang, Q., Chen, J., Wang, J., Liu, J., & Rajesh, H., M. (2021). Mapping gold mineral prospectivity based on weights of evidence method in southeast Asmara, Eritrea. Journal of African Earth Sciences, 176, 104143.
[18]. Zeghouane, H., Allek, K., & Kesraoui, M. (2016). GIS-based weights of evidence modeling applied to mineral prospectivity mapping of Sn-W and rare metals in Laouni area, Central Hoggar, Algeria. Arabian Journal of Geosciences, 9, 1-13.
[19]. Behera, S., & Panigrahi, M., K. (2022). Gold prospectivity mapping and exploration targeting in Hutti-Maski schist belt, India: Synergistic application of Weights-of-Evidence (WOE), Fuzzy Logic (FL) and hybrid (WOE-FL) models. Journal of Geochemical Exploration, 235, 106963.
[20]. Zhang, Z., Zuo, R., & Xiong, Y. (2016). A comparative study of fuzzy weights of evidence and random forests for mapping mineral prospectivity for skarn-type Fe deposits in the southwestern Fujian metallogenic belt, China. Science China Earth Sciences, 59, 556-572.
[21]. Porwal, A., Carranza, E. J., M., & Hale, M. (2001). Extended weights-of-evidence modelling for predictive mapping of base metal deposit potential in Aravalli province, western India. Exploration and Mining Geology, 10, 273-87.
[22]. Mohammadpour, M., Bahroudi, A., & Abedi, M. (2021). Three dimensional mineral prospectivity modeling by evidential belief functions, a case study from Kahang porphyry Cu deposit. Journal of African Earth Sciences, 174, 104098.
[23]. Carranza, E., J., M. (2015). Data-driven evidential belief modeling of mineral potential using few prospects and evidence with missing values. Natural Resources Research, 24, 291-304.
[24]. Geranian, H., Tabatabaei, S., H., Asadi, H., H., & Carranza, E., J., M. (2016). Application of discriminant analysis and support vector machine in mapping gold potential areas for further drilling in the Sari-Gunay gold deposit, NW Iran. Natural Resources Research, 25, 145-159.
[25]. Xie, S., Huang, N., Deng, J., Wu, S., Zhan, M., Carranza, E. J. M., ... and Meng, F. (2022). Quantitative prediction of prospectivity for Pb–Zn deposits in Guangxi (China) by back-propagation neural network and fuzzy weights-of-evidence modelling. Geochem.: International Journal of Environmental Analytical Chemistry, 22(2), 2021-085.
[26]. Porwal, A., Carranza, E., J., M., & Hale, M. (2006b). A hybrid fuzzy weights-of-evidence model for mineral potential mapping. Natural Resources Research, 15, 1-14.
[27]. Brown, W., M., Gedeon, T., Groves, D., & Barnes, R. (2000). Artificial neural networks: a new method for mineral prospectivity mapping. Australian Journal of Earth Sciences, 47, 757-70.
[28]. Skabar, A. (2007). Mineral potential mapping using Bayesian learning for multilayer perceptrons. Mathematical Geosciences, 39, 439-51.
[29]. Juliani, C., & Ellefmo, S., L. (2019). Prospectivity mapping of mineral deposits in northern Norway using radial basis function neural networks. Minerals, 9 (2), 131.
[30]. Leite, E., P., & de Souza Filho, C., R. (2009b). Probabilistic neural networks applied to mineral potential mapping for platinum group elements in the Serra Leste region, Carajás Mineral Province, Brazil. Computers & Geosciences, 35, 675-87.
[31]. Wang, J., Zuo, R., & Xiong, Y. (2020). Mapping mineral prospectivity via semi-supervised random forest. Natural Resources Research, 29, 189-202.
[32]. Chen, Y. (2015). Mineral potential mapping with a restricted Boltzmann machine. Ore Geology Reviews, 71, 749-60.
[33]. Zhang, N., Zhou, K., & Du, X. (2017). Application of fuzzy logic and fuzzy AHP to mineral prospectivity mapping of porphyry and hydrothermal vein copper deposits in the Dananhu-Tousuquan island arc, Xinjiang, NW China. Journal of African Earth Sciences, 128, 84-96.
[34]. Boadi, B., Raju, P. S., & Wemegah, D., D. (2022). Analysing multi-index overlay and fuzzy logic models for lode-gold prospectivity mapping in the Ahafo gold district–Southwestern Ghana. Ore Geology Reviews, 148, 105059.
[35]. Yousefi, M., & Carranza, E., J., M. (2016). Data-driven index overlay and Boolean logic mineral prospectivity modeling in greenfields exploration. Natural Resources Research, 25, 3-18.
[36]. Carranza, E., J., M. (2010). Improved wildcat modelling of mineral prospectivity. Resource Geology, 60, 129-49.
[37]. Ghaeminejad, H., Abedi, M., Afzal, P., Zaynali, F., & Yousefi, M. (2020). A fractal-based outranking approach for integrating geo-chemical, geological, and geo-physical data. Bollettino Di Geofisica Teorica Ed Applicata, 61(4), 555-588.
[38]. Cheng, Q. & Agterberg, F. (1999). Fuzzy weights of evidence method and its application in mineral potential mapping. Natural Resources Research, 8, 27-35.
[39]. Chudasama, B., Torppa, J., Nykänen, V., Kinnunen, J., Lerssi, J., & Salmirinne, H. (2022). Target-scale prospectivity modeling for gold mineralization within the rajapalot Au-Co project area in northern Fennoscandian Shield, Finland. Part 1: application of knowledge-driven-and machine learning-based-hybrid-expert systems for exploration targeting and addressing model-based uncertainties. Ore Geology Reviews, 147, 104937.
[40]. Yousefi, M., Carranza, E., J., M. (2015b). Fuzzification of continuous-value spatial evidence for mineral prospectivity mapping. Computers & Geosciences, 74, 97-109.
[41]. Yousefi, M., & Carranza, E., J., M. (2016). Data-driven index overlay and Boolean logic mineral prospectivity modeling in greenfields exploration. Natural Resources Research, 25, 3-18.
[42]. Mahdiyanfar, H., and Seyedrahimi-Niaraq, M. (2023). Integration of Fractal and Multivariate Principal Component Models for Separating Pb-Zn Mineral Contaminated Areas. Journal of Mining and Environment, 14(3), 1019-1035.
[43]. Mahdiyanfar, H., & Seyedrahimi-Niaraq, M., (2022). Improvement of geochemical prospectivity mapping using power spectrum–area fractal modelling of the multi-element mineralization factor (SAF-MF). Geochemistry: Exploration, Environment, Analysis, 22(4), 2022-015.
[44]. Seyedrahimi-Niaraq, M., & Mahdiyanfar, H. (2021). Introducing a new approach of geochemical anomaly intensity index (GAII) for increasing the probability of exploration of shear zone gold mineralization. Geochemistry, 81(4), 125830.
[45]. Lei, Y., Gan, Q., Du, Y., Liang, Y., Wang, G., Zheng, Y., & Xu, G. (2010). Mineral potential mapping based on GIS technology and fractal method. The 2nd Conference on Environmental Science and Information Application Technology, 2, 335-338.
[46]. Yousefi, M., Kreuzer, O.P., Nyk¨anen, V., and Hronsky, J.M.A. (2019). Exploration information systems—a proposal for the future use of GIS in mineral exploration targeting. International Geology Review, 111, 103005.
[47]. Yousefi, M., Carranza, E. J. M., Kreuzer, O. P., Nykänen, V., Hronsky, J. M., and Mihalasky, M. J. (2021). Data analysis methods for prospectivity modelling as applied to mineral exploration targeting: State-of-the-art and outlook. Journal of Geochemical Exploration, 229, 106839.
[48]. Yousefi, M., & Hronsky, J. M. (2023). Translation of the function of hydrothermal mineralization-related focused fluid flux into a mappable exploration criterion for mineral exploration targeting. Applied Geochemistry, 149, 105561.
[49]. Geological Survey of Iran, (1973). Exploration for ore deposits in Kerman region, Report no. Yu/53.
[50]. Dimitrijevic, M.D. (1973). Geology of the Kerman region, Report no. Yu/52. Geological Survey of Iran, Iran.
[51]. Hezarkhani, A. (2008). Hydrothermal evolution of the Miduk porphyry copper system, Kerman, Iran: a fluid inclusion investigation. International Geology Review, 50(7), 665-684.
[52]. Haykin, S. (1994). Neural networks: a comprehensive foundation: Prentice Hall PTR.
[53]. Pattanayak, S., Loha, C., Hauchhum, L., & Sailo, L. (2021). Application of MLP-ANN models for estimating the higher heating value of bamboo biomass. Biomass Conversion and Biorefinery, 11, 2499-2508.
[54]. Gandomi, A. H., & Roke, D. A. (2015). Assessment of artificial neural network and genetic programming as predictive tools. Advanced Engineering, 88, 63-72.
[55]. Miljković, D. (2017). Brief review of self-organizing maps. In 2017 40th international convention on information and communication technology, electronics and microelectronics (MIPRO), 1061-1066.
[56]. Rojas, R. (2013). Neural networks: a systematic introduction: Springer Science & Business Media.
[57]. Dongare, A. D., Kharde, R. R., & Kachare, A. D. (2012). Introduction to artificial neural network. International Journal of Engineering and Innovative Technology (IJEIT), 2(1), 189-194.
[58]. Fausett, L. V. (2006). Fundamentals of neural networks: architectures, algorithms and applications. Pearson Education India.
[59]. Koza, J.R. (1992). Genetic Programming: on the Programming of Computers by Means of Natural Selection, MIT Press.
[60]. Afradi, A., & Ebrahimabadi, A. (2020). Comparison of artificial neural networks (ANN), support vector machine (SVM) and gene expression programming (GEP) approaches for predicting TBM penetration rate. SN Applied Sciences, 2, 1-16.
[61]. Bagatur, T., & Onen, F. (2014). A predictive model on air entrainment by plunging water jets using GEP and ANN. KSCE Journal of Civil Engineering, 18, 304-314.
[62]. Xiao, F., Chen, W., Wang, J., and Erten, O. (2021). A hybrid logistic regression: gene expression programming model and its application to mineral prospectivity mapping. Natural Resources Research, 31, 1-24.
[63]. Sivanandam, S.N., & Deepa, S.N. (2008). Introduction to Genetic Algorithms, Springer, 1-455.
[64]. Koza, J.R. (1992). Genetic Programming: on the Programming of Computers by Means of Natural Selection, MIT Press.
[65]. Karahan, İ. H., & Özdemir, R. (2010). A new modeling of electrical resistivity properties of Zn-Fe alloys using genetic programming. Journal of Optoelectronics and Advanced Materials, 4(6), 812-815.
[66]. Ozdemir, R., & Karahan, I. H. (2015). Grain size calculation of Cu-Zn alloys using genetic programming; an alternative for Scherer’s formula. Journal of Optoelectronics and Advanced Materials, 17, 14-26.
[67]. Hagemann, S.G., Lisitsin, V.A., & Huston, D.L. (2016a). Mineral system analysis: Quo vadis. Ore Geology Reviews, 76, 504–522.
[68]. Carranza, E.J.M. (2017). Natural resources research publications on geochemical anomaly and mineral potential mapping, and introduction to the special issue of papers in these fields. Natural Resources Research, 26 (4), 379–410.
[69]. McCuaig, T.C., Beresford, S., Hronsky, J. (2010). Translating the mineral systems approach into an effective exploration targeting system. Ore Geology Reviews, 38, 128–138.
[70]. Knox-Robinson, C.M., & Wyborn, L.A.I. (1997). Towards a holistic exploration strategy: using geographic information systems as a tool to enhance exploration. Australian Journal of Earth Sciences, 44, 453–463
[71]. Vigneresse, J.L., Truche, L., & Richard, A. (2019). How do metals escape from magmas to form porphyry-type ore deposits? Ore Geology Reviews, 105, 310–336.
[72]. Chiaradia, M. (2020). Gold endowments of porphyry deposits controlled by precipitation efficiency. Nature Communications, 11, 1–10.
[73]. Tosdal, R.M., and Richards, J.P. (2001). Magmatic and structural controls on the development of porphyry Cu±Mo±Au deposits. Reviews In Economic Geology, 14, 157–181.
[74]. Arndt, N., Kesler, S., & Ganino, C. (2015). Metals and Society: An Introduction to Economic Geology. Springer.
[75]. Dimitrijevic, M.D., Dimitrijevic, M.N., Djordjevic, M., & Vulovic, D. (1971). Geological Map of Pariz, Scale 1: 100,000. Geological Survey of Iran, Tehran.
[76]. Atapour, H., & Aftabi, A. (2007). The geochemistry of gossans associated with Sarcheshmeh porphyry copper deposit, Rafsanjan, Kerman, Iran: implications for exploration and the environment. Journal of Geochemical Exploration, 93, 47–65.
[77]. Boomeri, M., Nakashima, K., & Lentz, D.R. (2010). The Sarcheshmeh porphyry copper deposit, Kerman, Iran: a mineralogical analysis of the igneous rocks and alteration zones including halogen element systematics related to Cu mineralization processes. Ore Geology Reviews, 38, 367–381.
[78]. Aftabi, A., & Atapour, H. (2011). Alteration geochemistry of volcanic rocks around Sarcheshmeh porphyry copper deposit, Rafsanjan, Kerman, Iran: implications for regional exploration. Resource Geology, 61, 76–90.
[79]. Zhao, J., Chen, S., Zuo, R., & Carranza, E.J.M. (2011). Mapping complexity of spatial distribution of faults using fractal and multifractal models: vectoring towards exploration targets. Computers & geosciences, 37, 1958-1966.
[80]. Kim, Y. S., & Sanderson, D.J. (2005). The relationship between displacement and length of faults: a review. Earth Science Reviews, 68, 317-334.
[81]. Faulkner, D., Jackson, C., Lunn, R., Schlische, R., Shipton, Z., Wibberley, C., & Withjack, M. (2010). A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones. Journal of Structural Geology, 32, 1557-1575.
[82]. Micklethwaite, S., Sheldon, H.A., & Baker, T. (2010). Active fault and shear processes and their implications for mineral deposit formation and discovery. Journal of Structural Geology, 32, 151-165.
[83]. Torabi, A., & Berg, S.S. (2011). Scaling of fault attributes: A review. Marine and Petroleum Geology, 28, 1444-1460.
[84]. Tchalenko, J. (1970). Similarities between shear zones of different magnitudes. Geological Society of America Bulletin, 81, 1625-1640.
[85]. Agterberg, F., Cheng, Q., Brown, A., & Good, D. (1996). Multifractal modeling of fractures in the Lac du Bonnet batholith, Manitoba. Computers & geosciences, 22, 497-507.
[86]. Mandelbrot, B.B. (1983). The fractal geometry of nature. Macmillan.
[87]. Fry, N. (1979). Random point distributions and strain measurement in rocks. Tectonophysics, 60, 89-105.
[88]. Vearncombe, J., & Vearncombe, S. (1999). The spatial distribution of mineralization; applications of Fry analysis. Economic Geology, 94, 475-486.
[89]. Vearncombe, S., & Vearncombe, J.R. (2002). Tectonic controls on kimberlite location, southern Africa. Journal of Structural Geology, 24, 1619-1625.
[90]. Stubley, M. (2004). Spatial distribution of kimberlite in the Slave craton, Canada: a geometrical approach. Lithos, 77, 683-693.
[91]. Casas, A.M., Cortes, A.L., Maestro, A., Soriano, M.A., Riaguas, A., & Bernal, J. (2000). LINDENS: a program for lineament length and density analysis. Computers & geosciences, 26, 1011-1022.
[92]. Hardcastle, K.C. (1995). Photolineament factor: a new computer-aided method for remotely sensing the degree to which bedrock is fractured. Photogrammetric Engineering and Remote Sensing, 61, 739-747.
[93]. Ranjbar, H., & Roonwal, G.S. (2002). Digital image processing for lithological and alteration mapping using SPOT multispectral data: a case study of Pariz area, Kerman Province, Iran, International Symposium on Remote Sensing. International Society for Optics and Photonics, 207-215.
[94]. Carranza, E.J.M. (2009b). Objective selection of suitable unit cell size in data-driven modeling of mineral prospectivity. Computers & geosciences, 35, 2032-2046.
[95]. Pirajno, F. (2012). Hydrothermal Mineral Deposits: Principles and Fundamental Concepts for the Exploration Geologist. Springer Science & Business Media.
[96]. Pour, A.B., & Hashim, M. (2012). The application of ASTER remote sensing data to porphyry copper and epithermal gold deposits. Ore Geology Reviews, 44, 1–9.
[97]. Tangestani, M., & Moore, F. (2003). Mapping porphyry copper potential with a fuzzy model, northern Shahr-e-Babak, Iran. Australian Journal of Earth Sciences, 50, 311-7.
[98]. Briggs, I.C. (1974). Machine contouring using minimum curvature. Geophysics, 39, 39-48.
[99]. Parsa, M., Maghsoudi, A., Yousefi, M., & Sadeghi, M. (2016a). Prospectivity modeling of porphyry-Cu deposits by identification and integration of efficient mono-elemental geochemical signatures. Journal of African Earth Sciences, 114, 228–241.
[100]. Parsa, M., Maghsoudi, A., Carranza, E.J.M., & Yousefi, M. (2017c). Enhancement and mapping of weak multivariate stream sediment geochemical anomalies in Ahar Area, NW Iran. Natural Resources Research, 26, 443–455.
[101]. Harris, J.R., Grunsky, E., Behnia, P., & Corrigan, D. (2015). Data-and knowledge-driven mineral prospectivity maps for Canada’s North. Ore Geology Reviews, 71, 788–803.
[102]. Sadeghi, M., Morris, G.A., Carranza, E.J.M., Ladenberger, A., & Andersson, M. (2013). Rare earth element distribution and mineralization in Sweden: an application of principal component analysis to FOREGS soil geochemistry. Journal of Geochemical Exploration, 133, 160–175.
[103]. Aitchison, J. (1986). The statistical analysis of compositional data, John Wiley.
[104]. Mahmoudabadi H., Izadi M., & Menhaj M.B. (2009). A hybrid method for grade estimation using genetic algorithm and neural networks. Computers & Geosciences, 13, 91-101.
[105]. Li X-l., Li, L-h,, Zhang, B-l., & Guo, Q-j. (2013). Hybrid self-adaptive learning based particle swarm optimization and support vector regression model for grade estimation. Neurocomputing, 118,179-90.
[106]. Chaturvedi, D., Satsangi, P., & Kalra, P. (1996). Effect of different mappings and normalization of neural network models. Proceedings of the National Power Systems Conference: Indian Institute of Technology, 377-86.
[107]. Sola, J., & Sevilla, J. (1997). Importance of input data normalization for the application of neural networks to complex industrial problems. IEEE Transactions on Nuclear Science, 44, 1464-8.
[108]. Demuth, H.B., Beale, M.H., De Jess, O., & Hagan, M.T. (2014). Neural network design. Martin Hagan.
[109]. Kia, M. B., Pirasteh, S., Pradhan, B., Mahmud, A. R., Sulaiman, W. N. A., & Moradi, A. (2012). An artificial neural network model for flood simulation using GIS: Johor River Basin, Malaysia. Environmental Earth Sciences, 67, 251–264.
[110]. Wright, S. (1921). Correlation and causation. Journal of Agricultural Research, 20, 557-585.
[111]. Singla, P., Duhan, M., & Saroha, S. (2022). Different normalization techniques as data preprocessing for one step ahead forecasting of solar global horizontal irradiance. In Artificial Intelligence for Renewable Energy Systems. Woodhead Publishing, 209-230.
[112]. Smith, De., Goodchild, M.J., & Longley, P.A. (2007). Geospatial analysis - a comprehensive guide to principles, techniques and software tools, third edition, Troubador Publishing.
[113]. Parsa, M., Carranza, E. J. M., & Ahmadi, B. (2021). Deep GMDH neural networks for predictive mapping of mineral prospectivity in terrains hosting few but large mineral deposits. Natural Resources Research, 1-14.
[114]. Chen, G., Huang, N., Wu, G., Luo, L., Wang, D., & Cheng, Q. (2022). Mineral prospectivity mapping based on wavelet neural network and Monte Carlo simulations in the Nanling W-Sn metallogenic province. Ore Geology Reviews, 143, 104765.
[115]. Ferreira, C. (2006b). Gene expression programing: mathematical modeling by an artificial intelligence. Springer.
[116]. Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning. Kluwer.
[117]. Koza, J. R. (1992). Genetic programming: On the programming of computers by means of natural selection. MIT Press.
[118]. Dey, P., & Das, A. K. (2016). A utilization of GEP (gene expression programming) metamodel and PSO (particle swarm optimization) tool to predict and optimize the forced convection around a cylinder. Energy, 95, 447–458.
[119]. Goharzay, M., Noorzad, A., Ardakani, A. M., & Jalal, M. (2017). A worldwide SPT-based soil liquefaction triggering analysis utilizing gene expression programming and Bayesian probabilistic method. Journal of Rock Mechanics and Geotechnical Engineering, 9, 683–693.
[120]. Parsa, M., Maghsoudi. A., Yousefi, M., and Sadeghi, M. (2016). Prospectivity modeling of porphyry-Cu deposits by identification and integration of efficient mono-elemental geochemical signatures. Journal of African Earth Sciences,114, 228–241.
[121]. Yousefi, M., & Carranza, E.J.M. (2015c). Prediction-area (P-A) plot and C-A fractal analysis to classify and evaluate evidential maps for mineral prospectivity modeling. Computers & Geosciences, 79, 69–81.