Document Type : Original Research Paper


Department of Mining and Metallurgy Engineering, Amirkabir University of technology (Tehran Polytechnic), Tehran, Iran


The porphyry Cu-mineralization potential area studied in this article is located in the southern section of the Central Iranian volcano–sedimentary complex, contains large number of mineral deposits, and occurrences that are currently facing a shortage of resources. Therefore, prospecting potential areas in the deeper and peripheral spaces has become a high priority in this region. Different direct and indirect methods try to predict promising areas for future explorations that most of them are very time-consuming and costly. The main goal of mineral prospecting is applying a transparent and robust approach for identifying high potential areas to be explored further in the future. This study presents the procedure taken to create two different Cu-mineralization prospectivity maps. This study aims to investigate the results of applying the ANN technique, and to compare them with the outputs of applying GEP method. The geo-datasets employed for creating evidential maps of porphyry Cu mineralization include solid geology map, alteration map, faults, dykes, airborne total magnetic intensity, airborne gamma-ray spectrometry data (U, Th, K and total count), and known Cu occurrences. Based on this study, the ANN technique (10 neurons in the hidden layer and LM learning algorithm) is a better predictor of Cu mineralization compared to the GEP method. The results obtained from the P-A plot showed that the ANN model indicates that 80% (vs. 70% for GEP) of the identified copper occurrences are projected to be present in only 20% (vs. 30% for GEP) of the surveyed area. The ANN technique due to capabilities such as classification, pattern matching, optimization, and prediction is useful in identifying anomalies associated with the Cu mineralization.


Main Subjects

[1]. Zheng, C., Yuan, F., Luo, X., Li, X., Liu, P., Wen, M., & Albanese, S. (2023). Mineral prospectivity mapping based on support vector machine and random forest algorithm-A case study from Ashele copper-zinc deposit, Xinjiang, NW China. Ore Geology Reviews, 159, 105567.‏
[2]. Li, B., Yu, Z., & Ke, X. (2023). One-dimensional convolutional neural network for mapping mineral prospectivity: A case study in changba ore concentration area, Gansu province. Ore Geology Reviews, 160, 105573.‏
[3]. Saljoughi, B. S., & Hezarkhani, A. (2018). A comparative analysis of artificial neural network (ANN), wavelet neural network (WNN), and support vector machine (SVM) data-driven models to mineral potential mapping for copper mineralizations in the Shahr-e-Babak region, Kerman, Iran. Applied Geomatics, 10, 229-256.‏
[4]. Zuo, R. (2020). Geodata science-based mineral prospectivity mapping: A review. Natural Resources Research, 29, 3415-3424.‏
[5]. Xu, Y., Li, Z., Xie, Z., Cai, H., Niu, P., & Liu, H. (2021). Mineral prospectivity mapping by deep learning method in Yawan-Daqiao area, Gansu. Ore Geology Reviews, 138, 104316.‏
[6]. Chen, Y., & Wu, W. (2016). A prospecting cost-benefit strategy for mineral potential mapping based on ROC curve analysis. Ore Geology Reviews, 74, 26-38.
[7]. Ghezelbash, R., Maghsoudi, A., Bigdeli, A., & Carranza, E., J., M. (2021). Regional-scale mineral prospectivity mapping: Support vector machines and an improved data-driven multi-criteria decision-making technique. Natural Resources Research, 30, 1977-2005.‏
[8]. Ghezelbash, R., Maghsoudi, A., & Carranza, E., J., M. (2019). An improved data-driven multiple criteria decision-making procedure for spatial modeling of mineral prospectivity: adaption of prediction–area plot and logistic functions. Natural Resources Research, 28, 1299-1316.‏
[9]. Cheng, H., Zheng, Y., Wu, S., Lin, Y., Gao, F., Lin, D., & Chen, L. (2023). GIS-based mineral prospectivity mapping using machine learning methods: a case study from Zhuonuo ore district, Tibet. Ore Geology Reviews, 161, 105627.‏
[10]. Yousefi, M., & Carranza, E., J., M. (2015a). Geometric average of spatial evidence data layers: a GIS-based multi-criteria decision-making approach to mineral prospectivity mapping. Computers & Geosciences, 83, 72-79.
[11]. Daviran, M., Maghsoudi, A., Ghezelbash, R., & Pradhan, B. (2021). A new strategy for spatial predictive mapping of mineral prospectivity: Automated hyperparameter tuning of random forest approach. Computers & Geosciences, 148, 104688.‏
[12]. Lachaud, A., Adam, M., & Mišković, I. (2023). Comparative study of random forest and support vector machine algorithms in mineral prospectivity mapping with limited training data. Minerals, 13(8), 1073.‏
[13]. Acosta, I., C., C., Khodadadzadeh, M., Tusa, L., Ghamisi, P., & Gloaguen, R. (2019). A machine learning framework for drill-core mineral mapping using hyperspectral and high-resolution mineralogical data fusion. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12(12), 4829-4842.‏
[14] Luo, X. & Dimitrakopoulos, R. (2003). Data-driven fuzzy analysis in quantitative mineral resource assessment. Computers & Geosciences, 29, 3-13.
[15]. Wei, H., Xiao, K., Shao, Y., Kong, H., Zhang, S., Wang, K., & Wen, C. (2020). Modeling-based mineral system approach to prospectivity mapping of stratabound hydrothermal deposits: A case study of MVT Pb-Zn deposits in the Huayuan area, northwestern Hunan province, China. Ore Geology Reviews, 120, 103368.‏
[16]. Xiong, Y., & Zuo, R. (2018). GIS-based rare events logistic regression for mineral prospectivity mapping. Computers & Geosciences, 111, 18-25.‏
[17]. Fu, C., Chen, K., Yang, Q., Chen, J., Wang, J., Liu, J., & Rajesh, H., M. (2021). Mapping gold mineral prospectivity based on weights of evidence method in southeast Asmara, Eritrea. Journal of African Earth Sciences, 176, 104143.‏
[18]. Zeghouane, H., Allek, K., & Kesraoui, M. (2016). GIS-based weights of evidence modeling applied to mineral prospectivity mapping of Sn-W and rare metals in Laouni area, Central Hoggar, Algeria. Arabian Journal of Geosciences, 9, 1-13.‏
[19]. Behera, S., & Panigrahi, M., K. (2022). Gold prospectivity mapping and exploration targeting in Hutti-Maski schist belt, India: Synergistic application of Weights-of-Evidence (WOE), Fuzzy Logic (FL) and hybrid (WOE-FL) models. Journal of Geochemical Exploration, 235, 106963.‏
[20]. Zhang, Z., Zuo, R., & Xiong, Y. (2016). A comparative study of fuzzy weights of evidence and random forests for mapping mineral prospectivity for skarn-type Fe deposits in the southwestern Fujian metallogenic belt, China. Science China Earth Sciences, 59, 556-572.‏
[21]. Porwal, A., Carranza, E. J., M., & Hale, M. (2001). Extended weights-of-evidence modelling for predictive mapping of base metal deposit potential in Aravalli province, western India. Exploration and Mining Geology, 10, 273-87.
[22]. Mohammadpour, M., Bahroudi, A., & Abedi, M. (2021). Three dimensional mineral prospectivity modeling by evidential belief functions, a case study from Kahang porphyry Cu deposit. Journal of African Earth Sciences, 174, 104098.‏
[23]. Carranza, E., J., M. (2015). Data-driven evidential belief modeling of mineral potential using few prospects and evidence with missing values. Natural Resources Research, 24, 291-304.
[24]. Geranian, H., Tabatabaei, S., H., Asadi, H., H., & Carranza, E., J., M. (2016). Application of discriminant analysis and support vector machine in mapping gold potential areas for further drilling in the Sari-Gunay gold deposit, NW Iran. Natural Resources Research, 25, 145-159.‏
‏[25]. Xie, S., Huang, N., Deng, J., Wu, S., Zhan, M., Carranza, E. J. M., ... and Meng, F. (2022). Quantitative prediction of prospectivity for Pb–Zn deposits in Guangxi (China) by back-propagation neural network and fuzzy weights-of-evidence modelling. Geochem.: International Journal of Environmental Analytical Chemistry, 22(2), 2021-085.‏
[26]. Porwal, A., Carranza, E., J., M., & Hale, M. (2006b). A hybrid fuzzy weights-of-evidence model for mineral potential mapping. Natural Resources Research, 15, 1-14.
[27]. Brown, W., M., Gedeon, T., Groves, D., & Barnes, R. (2000). Artificial neural networks: a new method for mineral prospectivity mapping. Australian Journal of Earth Sciences, 47, 757-70.
[28]. Skabar, A. (2007). Mineral potential mapping using Bayesian learning for multilayer perceptrons. Mathematical Geosciences, 39, 439-51.
[29]. Juliani, C., & Ellefmo, S., L. (2019). Prospectivity mapping of mineral deposits in northern Norway using radial basis function neural networks. Minerals, 9 (2), 131.‏
[30]. Leite, E., P., & de Souza Filho, C., R. (2009b). Probabilistic neural networks applied to mineral potential mapping for platinum group elements in the Serra Leste region, Carajás Mineral Province, Brazil. Computers & Geosciences, 35, 675-87.
[31]. Wang, J., Zuo, R., & Xiong, Y. (2020). Mapping mineral prospectivity via semi-supervised random forest. Natural Resources Research, 29, 189-202.‏
[32]. Chen, Y. (2015). Mineral potential mapping with a restricted Boltzmann machine. Ore Geology Reviews, 71, 749-60.
[33]. Zhang, N., Zhou, K., & Du, X. (2017). Application of fuzzy logic and fuzzy AHP to mineral prospectivity mapping of porphyry and hydrothermal vein copper deposits in the Dananhu-Tousuquan island arc, Xinjiang, NW China. Journal of African Earth Sciences, 128, 84-96.‏
[34]. Boadi, B., Raju, P. S., & Wemegah, D., D. (2022). Analysing multi-index overlay and fuzzy logic models for lode-gold prospectivity mapping in the Ahafo gold district–Southwestern Ghana. Ore Geology Reviews, 148, 105059.‏
[35]. Yousefi, M., & Carranza, E., J., M. (2016). Data-driven index overlay and Boolean logic mineral prospectivity modeling in greenfields exploration. Natural Resources Research, 25, 3-18.‏
[36]. Carranza, E., J., M. (2010). Improved wildcat modelling of mineral prospectivity. Resource Geology,  60, 129-49.
[37]. Ghaeminejad, H., Abedi, M., Afzal, P., Zaynali, F., & Yousefi, M. (2020). A fractal-based outranking approach for integrating geo-chemical, geological, and geo-physical data. Bollettino Di Geofisica Teorica Ed Applicata, 61(4), 555-588.
[38]. Cheng, Q. & Agterberg, F. (1999). Fuzzy weights of evidence method and its application in mineral potential mapping. Natural Resources Research, 8, 27-35.
[39]. Chudasama, B., Torppa, J., Nykänen, V., Kinnunen, J., Lerssi, J., & Salmirinne, H. (2022). Target-scale prospectivity modeling for gold mineralization within the rajapalot Au-Co project area in northern Fennoscandian Shield, Finland. Part 1: application of knowledge-driven-and machine learning-based-hybrid-expert systems for exploration targeting and addressing model-based uncertainties. Ore Geology Reviews, 147, 104937.‏
[40]. Yousefi, M., Carranza, E., J., M. (2015b). Fuzzification of continuous-value spatial evidence for mineral prospectivity mapping. Computers & Geosciences, 74, 97-109.
[41]. Yousefi, M., & Carranza, E., J., M. (2016). Data-driven index overlay and Boolean logic mineral prospectivity modeling in greenfields exploration. Natural Resources Research, 25, 3-18.
[42]. Mahdiyanfar, H., and Seyedrahimi-Niaraq, M. (2023). Integration of Fractal and Multivariate Principal Component Models for Separating Pb-Zn Mineral Contaminated Areas. Journal of Mining and Environment, 14(3), 1019-1035.
[43]. Mahdiyanfar, H., & Seyedrahimi-Niaraq, M., (2022). Improvement of geochemical prospectivity mapping using power spectrum–area fractal modelling of the multi-element mineralization factor (SAF-MF). Geochemistry: Exploration, Environment, Analysis, 22(4), 2022-015.
[44]. Seyedrahimi-Niaraq, M., & Mahdiyanfar, H. (2021). Introducing a new approach of geochemical anomaly intensity index (GAII) for increasing the probability of exploration of shear zone gold mineralization. Geochemistry, 81(4), 125830.
[45]. Lei, Y., Gan, Q., Du, Y., Liang, Y., Wang, G., Zheng, Y.,  & Xu, G. (2010). Mineral potential mapping based on GIS technology and fractal method. The 2nd Conference on Environmental Science and Information Application Technology, 2, 335-338.
[46]. Yousefi, M., Kreuzer, O.P., Nyk¨anen, V., and Hronsky, J.M.A. (2019). Exploration information systems—a proposal for the future use of GIS in mineral exploration targeting. International Geology Review, 111, 103005.
[47]. Yousefi, M., Carranza, E. J. M., Kreuzer, O. P., Nykänen, V., Hronsky, J. M., and Mihalasky, M. J. (2021). Data analysis methods for prospectivity modelling as applied to mineral exploration targeting: State-of-the-art and outlook. Journal of Geochemical Exploration, 229, 106839.
[48]. Yousefi, M., & Hronsky, J. M. (2023). Translation of the function of hydrothermal mineralization-related focused fluid flux into a mappable exploration criterion for mineral exploration targeting. Applied Geochemistry, 149, 105561.
[49]. Geological Survey of Iran, (1973). Exploration for ore deposits in Kerman region, Report no. Yu/53.
[50]. Dimitrijevic, M.D. (1973). Geology of the Kerman region, Report no. Yu/52. Geological Survey of  Iran, Iran.
[51]. Hezarkhani, A. (2008). Hydrothermal evolution of the Miduk porphyry copper system, Kerman, Iran: a fluid inclusion investigation. International Geology Review, 50(7), 665-684.
[52]. Haykin, S. (1994). Neural networks: a comprehensive foundation: Prentice Hall PTR.
[53]. Pattanayak, S., Loha, C., Hauchhum, L., & Sailo, L. (2021). Application of MLP-ANN models for estimating the higher heating value of bamboo biomass. Biomass Conversion and Biorefinery, 11, 2499-2508.
[54]. Gandomi, A. H., & Roke, D. A. (2015). Assessment of artificial neural network and genetic programming as predictive tools. Advanced Engineering, 88, 63-72.
[55]. Miljković, D. (2017). Brief review of self-organizing maps. In 2017 40th international convention on information and communication technology, electronics and microelectronics (MIPRO), 1061-1066.
[56]. Rojas, R. (2013). Neural networks: a systematic introduction: Springer Science & Business Media.
[57]. Dongare, A. D., Kharde, R. R., & Kachare, A. D. (2012). Introduction to artificial neural network. International Journal of Engineering and Innovative Technology (IJEIT), 2(1), 189-194.
[58]. Fausett, L. V. (2006). Fundamentals of neural networks: architectures, algorithms and applications. Pearson Education India.
[59]. Koza, J.R. (1992). Genetic Programming: on the Programming of Computers by Means of Natural Selection, MIT Press.
[60]. Afradi, A., & Ebrahimabadi, A. (2020). Comparison of artificial neural networks (ANN), support vector machine (SVM) and gene expression programming (GEP) approaches for predicting TBM penetration rate. SN Applied Sciences, 2, 1-16.‏
[61]. Bagatur, T., & Onen, F. (2014). A predictive model on air entrainment by plunging water jets using GEP and ANN. KSCE Journal of Civil Engineering, 18, 304-314.‏
[62]. Xiao, F., Chen, W., Wang, J., and Erten, O. (2021). A hybrid logistic regression: gene expression programming model and its application to mineral prospectivity mapping. Natural Resources Research, 31, 1-24.‏
[63]. Sivanandam, S.N., & Deepa, S.N. (2008). Introduction to Genetic Algorithms, Springer, 1-455.
[64]. Koza, J.R.  (1992). Genetic Programming: on the Programming of Computers by Means of Natural Selection, MIT Press.
[65]. Karahan, İ. H., & Özdemir, R. (2010). A new modeling of electrical resistivity properties of Zn-Fe alloys using genetic programming. Journal of Optoelectronics and Advanced Materials, 4(6), 812-815.
[66]. Ozdemir, R., & Karahan, I. H. (2015). Grain size calculation of Cu-Zn alloys using genetic programming; an alternative for Scherer’s formula. Journal of Optoelectronics and Advanced Materials, 17, 14-26.‏
[67]. Hagemann, S.G., Lisitsin, V.A., & Huston, D.L. (2016a). Mineral system analysis: Quo vadis. Ore Geology Reviews, 76, 504–522.
[68]. Carranza, E.J.M. (2017). Natural resources research publications on geochemical anomaly and mineral potential mapping, and introduction to the special issue of papers in these fields. Natural Resources Research, 26 (4), 379–410.
[69]. McCuaig, T.C., Beresford, S., Hronsky, J. (2010). Translating the mineral systems approach into an effective exploration targeting system. Ore Geology Reviews, 38, 128–138.
[70]. Knox-Robinson, C.M., & Wyborn, L.A.I. (1997). Towards a holistic exploration strategy: using geographic information systems as a tool to enhance exploration. Australian Journal of Earth Sciences, 44, 453–463
[71]. Vigneresse, J.L., Truche, L., & Richard, A. (2019). How do metals escape from magmas to form porphyry-type ore deposits? Ore Geology Reviews, 105, 310–336.
[72]. Chiaradia, M. (2020). Gold endowments of porphyry deposits controlled by precipitation efficiency. Nature Communications, 11, 1–10.
[73]. Tosdal, R.M., and Richards, J.P. (2001). Magmatic and structural controls on the development of porphyry Cu±Mo±Au deposits. Reviews In Economic Geology, 14, 157–181.
[74]. Arndt, N., Kesler, S., & Ganino, C. (2015). Metals and Society: An Introduction to Economic Geology. Springer.
[75]. Dimitrijevic, M.D., Dimitrijevic, M.N., Djordjevic, M., & Vulovic, D. (1971). Geological Map of Pariz, Scale 1: 100,000. Geological Survey of Iran, Tehran.
[76]. Atapour, H., & Aftabi, A. (2007). The geochemistry of gossans associated with Sarcheshmeh porphyry copper deposit, Rafsanjan, Kerman, Iran: implications for exploration and the environment. Journal of Geochemical Exploration, 93, 47–65.
[77]. Boomeri, M., Nakashima, K., & Lentz, D.R. (2010). The Sarcheshmeh porphyry copper deposit, Kerman, Iran: a mineralogical analysis of the igneous rocks and alteration zones including halogen element systematics related to Cu mineralization processes. Ore Geology Reviews, 38, 367–381.
[78]. Aftabi, A., & Atapour, H. (2011). Alteration geochemistry of volcanic rocks around Sarcheshmeh porphyry copper deposit, Rafsanjan, Kerman, Iran: implications for regional exploration. Resource Geology,  61, 76–90.
[79]. Zhao, J., Chen, S., Zuo, R., & Carranza, E.J.M. (2011). Mapping complexity of spatial distribution of faults using fractal and multifractal models: vectoring towards exploration targets. Computers & geosciences, 37, 1958-1966.
[80]. Kim, Y. S., & Sanderson, D.J. (2005). The relationship between displacement and length of faults: a review. Earth Science Reviews, 68, 317-334.
[81]. Faulkner, D., Jackson, C., Lunn, R., Schlische, R., Shipton, Z., Wibberley, C., & Withjack, M. (2010). A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones. Journal of Structural Geology, 32, 1557-1575.
[82]. Micklethwaite, S., Sheldon, H.A., & Baker, T. (2010). Active fault and shear processes and their implications for mineral deposit formation and discovery. Journal of Structural Geology, 32, 151-165.
[83]. Torabi, A., & Berg, S.S. (2011). Scaling of fault attributes: A review. Marine and Petroleum Geology, 28, 1444-1460.
[84]. Tchalenko, J. (1970). Similarities between shear zones of different magnitudes. Geological Society of America Bulletin, 81, 1625-1640.
[85]. Agterberg, F., Cheng, Q., Brown, A., & Good, D. (1996). Multifractal modeling of fractures in the Lac du Bonnet batholith, Manitoba. Computers & geosciences, 22, 497-507.
[86]. Mandelbrot, B.B. (1983). The fractal geometry of nature. Macmillan.
[87]. Fry, N. (1979). Random point distributions and strain measurement in rocks. Tectonophysics, 60, 89-105.
[88]. Vearncombe, J., & Vearncombe, S. (1999). The spatial distribution of mineralization; applications of Fry analysis. Economic Geology, 94, 475-486.
[89]. Vearncombe, S., & Vearncombe, J.R. (2002). Tectonic controls on kimberlite location, southern Africa. Journal of Structural Geology, 24, 1619-1625.
[90]. Stubley, M. (2004). Spatial distribution of kimberlite in the Slave craton, Canada: a geometrical approach. Lithos, 77, 683-693.
[91]. Casas, A.M., Cortes, A.L., Maestro, A., Soriano, M.A., Riaguas, A., & Bernal, J. (2000). LINDENS: a program for lineament length and density analysis. Computers & geosciences, 26, 1011-1022.
[92]. Hardcastle, K.C. (1995). Photolineament factor: a new computer-aided method for remotely sensing the degree to which bedrock is fractured. Photogrammetric Engineering and Remote Sensing, 61, 739-747.
[93]. Ranjbar, H., & Roonwal, G.S. (2002). Digital image processing for lithological and alteration mapping using SPOT multispectral data: a case study of Pariz area, Kerman Province, Iran, International Symposium on Remote Sensing. International Society for Optics and Photonics, 207-215.
[94]. Carranza, E.J.M. (2009b). Objective selection of suitable unit cell size in data-driven modeling of mineral prospectivity. Computers & geosciences, 35, 2032-2046.
[95]. Pirajno, F. (2012). Hydrothermal Mineral Deposits: Principles and Fundamental Concepts for the Exploration Geologist. Springer Science & Business Media.
[96]. Pour, A.B., & Hashim, M. (2012). The application of ASTER remote sensing data to porphyry copper and epithermal gold deposits. Ore Geology Reviews, 44, 1–9.
[97]. Tangestani, M., & Moore, F. (2003). Mapping porphyry copper potential with a fuzzy model, northern Shahr-e-Babak, Iran. Australian Journal of Earth Sciences, 50, 311-7.
[98]. Briggs, I.C. (1974). Machine contouring using minimum curvature. Geophysics, 39, 39-48.
[99]. Parsa, M., Maghsoudi, A., Yousefi, M., & Sadeghi, M. (2016a). Prospectivity modeling of porphyry-Cu deposits by identification and integration of efficient mono-elemental geochemical signatures. Journal of African Earth Sciences, 114, 228–241.
[100]. Parsa, M., Maghsoudi, A., Carranza, E.J.M., & Yousefi, M. (2017c). Enhancement and mapping of weak multivariate stream sediment geochemical anomalies in Ahar Area, NW Iran. Natural Resources Research, 26, 443–455.
[101]. Harris, J.R., Grunsky, E., Behnia, P., & Corrigan, D. (2015). Data-and knowledge-driven mineral prospectivity maps for Canada’s North. Ore Geology Reviews, 71, 788–803.
[102]. Sadeghi, M., Morris, G.A., Carranza, E.J.M., Ladenberger, A., & Andersson, M. (2013). Rare earth element distribution and mineralization in Sweden: an application of principal component analysis to FOREGS soil geochemistry. Journal of Geochemical Exploration, 133, 160–175.
[103]. Aitchison, J. (1986). The statistical analysis of compositional data, John Wiley.
[104]. Mahmoudabadi H., Izadi M., & Menhaj M.B. (2009). A hybrid method for grade estimation using genetic algorithm and neural networks. Computers & Geosciences, 13, 91-101.
[105]. Li X-l., Li, L-h,, Zhang, B-l., & Guo, Q-j. (2013). Hybrid self-adaptive learning based particle swarm optimization and support vector regression model for grade estimation. Neurocomputing, 118,179-90.
[106]. Chaturvedi, D., Satsangi, P., & Kalra, P. (1996). Effect of different mappings and normalization of neural network models.  Proceedings of the National Power Systems Conference: Indian Institute of Technology, 377-86.
[107]. Sola, J., & Sevilla, J. (1997). Importance of input data normalization for the application of neural networks to complex industrial problems. IEEE Transactions on Nuclear Science, 44, 1464-8.
[108]. Demuth, H.B., Beale, M.H., De Jess, O., & Hagan, M.T. (2014). Neural network design. Martin Hagan.
[109]. Kia, M. B., Pirasteh, S., Pradhan, B., Mahmud, A. R., Sulaiman, W. N. A., & Moradi, A. (2012). An artificial neural network model for flood simulation using GIS: Johor River Basin, Malaysia. Environmental Earth Sciences, 67, 251–264.
[110]. Wright, S. (1921). Correlation and causation. Journal of Agricultural Research, 20, 557-585.
[111]. Singla, P., Duhan, M., & Saroha, S. (2022). Different normalization techniques as data preprocessing for one step ahead forecasting of solar global horizontal irradiance. In Artificial Intelligence for Renewable Energy Systems. Woodhead Publishing, 209-230.
[112]. Smith, De., Goodchild, M.J., & Longley, P.A. (2007). Geospatial analysis - a comprehensive guide to principles, techniques and software tools, third edition, Troubador Publishing.
[113]. Parsa, M., Carranza, E. J. M., & Ahmadi, B. (2021). Deep GMDH neural networks for predictive mapping of mineral prospectivity in terrains hosting few but large mineral deposits. Natural Resources Research, 1-14.‏
[114]. Chen, G., Huang, N., Wu, G., Luo, L., Wang, D., & Cheng, Q. (2022). Mineral prospectivity mapping based on wavelet neural network and Monte Carlo simulations in the Nanling W-Sn metallogenic province. Ore Geology Reviews, 143, 104765.‏
[115]. Ferreira, C. (2006b). Gene expression programing: mathematical modeling by an artificial intelligence. Springer.
[116]. Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning. Kluwer.
[117]. Koza, J. R. (1992). Genetic programming: On the programming of computers by means of natural selection. MIT Press.
[118]. Dey, P., & Das, A. K. (2016). A utilization of GEP (gene expression programming) metamodel and PSO (particle swarm optimization) tool to predict and optimize the forced convection around a cylinder. Energy, 95, 447–458.
[119]. Goharzay, M., Noorzad, A., Ardakani, A. M., & Jalal, M. (2017). A worldwide SPT-based soil liquefaction triggering analysis utilizing gene expression programming and Bayesian probabilistic method. Journal of Rock Mechanics and Geotechnical Engineering, 9, 683–693.
[120]. Parsa, M., Maghsoudi. A., Yousefi, M., and Sadeghi, M. (2016). Prospectivity modeling of porphyry-Cu deposits by identification and integration of efficient mono-elemental geochemical signatures. Journal of African Earth Sciences,114, 228–241.
[121]. Yousefi, M., & Carranza, E.J.M. (2015c). Prediction-area (P-A) plot and C-A fractal analysis to classify and evaluate evidential maps for mineral prospectivity modeling. Computers & Geosciences, 79, 69–81.