[2]. Radfar, J. (1998). Geological map of Ardestan, scale 1:100,000. Geological Survey of Iran, Tehran, Iran.
[3]. Bahroudi, A. (2000). Geological map of Shahrab, scale 1:100,000. Geological Survey of Iran, Tehran, Iran.
[4]. ANJC (Alamut Naghsh-e-Jahan Company), (2011). Initial exploration report of Zafarghand copper index, Isfahan, Iran, 270 p. (in Persian).
[5]. Sadeghian, M. & Ghaffary, M. (2011). The petrogenesis of Zafarghand granitoid pluton (SE of Ardestan). Petrology, 6, 47-70. (In Persian with English Abstract).
[6] Amidi, S. M. (1975). Contribution a ĺ etude stratigraphique, pétrologique et pétrochimique des roches magmatiques de la région Natanz-Nain-Surk (Iran Central). These université scientifique et médicale de Grenoble, France.
[7]. Zahedi, M. & Amidi, S. M. (1975). 1:250000 geological map of Kashan. Geological Survey of Iran, Tehran, Iran.
[8]. Radfar, J., Alaee-Mahabadi, S., & Emami, M.H. (1993). Geological map of Kashan, scale 1:100000. Geological Survey of Iran, Tehran, Iran.
[9]. Aminroayaei Yamini, M., Tutti, F., & Ahmadian, J. (2016). Geochemical and mineralogical evolution of the porphyry copper deposit in southwestern Zafarqand with emphasis on hydrothermal alteration. Researches in Earth Sciences, 7(1), 75-90. (In Persian with English Abstract)
[10]. Aminroayaei Yamini, M., Tutti, F., Aminoroayaei Yamini, M. & Ahmadian, J. (2018). Plagioclase as evidence of magmatic evolution in the Zafarqand porphyry copper deposit, NE Isfahan. Journal of Economic Geology, 10(1), 61-76. (In Persian with English Abstract).
[11]. Mohammadi, S., Nadimi, A., & Alaminia, Z. (2018). Archive of SID Analysis of the relationship between mineralization and alteration zones with tectonic structures using remote sensing studies in south Ardestan area (northeastern Isfahan). Tectonics, 7, 29-47. (In Persian with English Abstract).
[12].
Aminoroayaei Yamini, M.,
Tutti, F.,
Haschke, M.,
Ahmadian, j., &
Murata, M. (2016). Synorogenic copper mineralization during the Alpine–Himalayan orogeny in the Zafarghand copper exploration district, Central Iran: petrogrography, geochemistry and alteration thermometry.
Geological Journal, 25(2), 263-281.
[13]. Aminroayaei Yamini, M., Tutti, F., & Aminoroayaei Yamini, M. (2017). Examination of chloritization of biotite as a tool for reconstructing the physicochemical parameters of mineralization and associated alteration in the Zafarghand porphyry copper system, Ardestan, Central Iran: mineral-chemistry and stable isotope analyses. Mineralogy and Petrology, 111, 747-759.
[14]. Sarjoughian, F., Lentz, D., Kananian, A., Ao, S., &
Xiao, W. (2018). Geochemical and isotopic constraints on the role of juvenile crust and magma mixing in the UDMA magmatism, Iran: evidence from mafic microgranular enclaves and cogenetic granitoids in the Zafarghand igneous complex.
International Journal of Earth Sciences, 107, 1127-1151.
[15]. Shahi, H., Ghavami, R., & Kamkar Rouhani, A. (2016). Detection of deep and blind mineral deposits using new proposed frequency coefficients method in frequency domain of geochemical data.
Journal of Geochemical Exploration, 169, 29-39.
[16]. Biranvandpour, A. & Hashim, M. (2014). ASTER, ALI and Hyperion sensors data for lithological mapping and ore minerals exploration. Springer Plus, 3,130.
[17]. Li, Q., Zhang, B., Lu, L., & Lin, Q. (2014). Hydrothermal alteration mapping using ASTER data in Baogutu porphyry deposit, China, in: IOP Conference Series: Earth and Environmental Science. IOP Publishing, p. 012174.
[18]. Geotz, A., Billingsley, F., Elston, D., Lucchitta, I., Shoemaker, E., Abrams, M., Gillespie, A., & Squries, R. (1975). Applications of ERTS Image and Image Processing to Regional Problems and Geologic Mapping in Northern Arizona. NASA/JPL Technical Reports 32-1597, NASA: Pasadena, CA, USA.
[19]. Plafcan, D. Technoscientific Diplomacy, (2011). The practice of international policies in the ASTER collaboration, In Land Remote Sensing and Global Environmental Change. Ramachandran, R., Justice, C., Abrams, M., Eds., Springer: New York, NY, USA; Chapter 4, pp. 483-508.
[20]. Ghannadpour, S. S. & Hezarkhani, A. (2016). Introducing 3D U-statistic method for separating anomaly from background in exploration geochemical data with associated software development. Journal of Earth System Science. 125(2), 387–401.
[21]. Ghannadpour, S. S., Hezarkhani, A., Maghsoudi, A., & Farahbakhsh, E. (2015). Assessment of prospective areas for providing the geochemical anomaly maps of lead and zinc in Parkam district, Kerman, Iran. Geosciences Journal, 19(3), 431–440.
[22]. Ghannadpour, S. S. & Hezarkhani, A. (2017). Comparing U-statistic and nonstructural methods for separating anomaly and generating geochemical anomaly maps of Cu and Mo in Parkam district, Kerman, Iran. Carbonates and Evaporites, 32(3), 155-166.
[23] Ghannadpour, S. S., Hezarkhani, A., & Sabetmobarhan A. (2017). The Parkam exploration district (Kerman, Iran): Geology, alterations, and delineation of Cu- and Mo-mineralized zones using U-spatial statistic with associated software development. Journal of Earth Sciences. 28(2), 283–294.
[24]. Ghannadpour, S. S., Hezarkhani, A., & Roodpeyma, T. (2017). Combination of Separation Methods and Data Mining Techniques for Prediction of Anomalous Areas in Susanvar, Central Iran. African Journal of Earth Sciences, 134, 516–525.
[25]. Ghannadpour, S. S. & Hezarkhani, A. (2018). Providing the bivariate anomaly map of Cu–Mo and Pb–Zn using combination of statistic methods in Parkam district, Iran. Carbonates and Evaporites, 33(3), 403-420.
[26] Ghannadpour, S. S., Hezarkhani, A., & Sharifzadeh, M. (2017). A method for extracting anomaly map of Au and As using combination of U-statistic and Euclidean distance methods in Susanvar district, Iran. Journal of Central South University, 24(11), 2693–2704.
[27]. Ghannadpour, S. S. & Hezarkhani, A. (2020). Mineral potential mapping for Au and As using Gap statistic method in multivariate mode. Carbonates and Evaporites, 35(1), 1-11.
[28]. Beiranvand Pour, A. & Hashim, M. (2011). Identification of hydrothermal alteration mineral for exploration of porphyry copper deposit using ASTER data, SE Iran. Journal of Asian Earth Sciences, 42, 1309-1323.
[29]. Oleson, R. & Doescher, Ch. (2022). Advance Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Level 1 Precision Terrain Corrected Registered At-sensor Radiance Product (AST_L1T). Department of the Interior U.S Geological Survey, 16 p.
[30]. Boloki, M.; Poormirzaee, R. (2009). Using ASTER Image Processing for Hydrothermal Alteration and Key Alteration Minerals Mapping in Siyahrud area, IRAN. International Journal of Geology, 3, 38–43.
[31]. Alimohammadi, M., Alirezaei, S., & Kontak, D. J. (2015). Application of ASTER data for exploration of porphyry copper deposits: A case study of Daraloo-Sarmeshk area, southern part of the Kerman copper belt, Iran. Ore Geology Reviews, 70, 290–304.
[32]. Testa, F.J., Villanueva, C., Cooke, D.R., & Zhang, L. (2018). Lithological and Hydrothermal Alteration Mapping of Epithermal, Porphyry and Tourmaline Breccia Districts in the Argentine Andes Using ASTER Imagery. Remote Sensing, 10, 203.
[33]. Fakhari S, Jafarirad A, Afzal P, & Lotfi M. (2019). Delineation of hydrothermal alteration zones for porphyry systems utilizing ASTER data in Jebal barez area, SE Iran. Iran Journal of Earth Sciences, 11, 80–92.
[34]. Sikakwe, G. U. (2023). Mineral exploration employing drones, contemporary geological satellite remote sensing and geographical information system (GIS) procedures: A review. Remote Sensing Applications: Society and Environment, 31.
[35]. Yousefi, M., Carranza, E. J. M., Kreuzer, O. P., Nykänen, V., Hronsky, J. M. A., & Mihalasky, M. J. (2021). Data analysis methods for prospectivity modelling as applied to mineral exploration targeting: State-of-the-art and outlook. Journal of Geochemical Exploration, 229, 106839.
[36]. Yousefi, M., Kreuzer, O. P., Nykänen, V., & Hronsky, J. M. A. (2019). Exploration information systems – A proposal for the future use of GIS in mineral exploration targeting. Ore Geology Reviews, 111, 103005.
[37]. Yousefi, M. (2017). Recognition of an enhanced multi-element geochemical signature of porphyry copper deposits for vectoring into mineralized zones and delimiting exploration targets in Jiroft area, SE Iran. Ore Geology Reviews, 83, 200–214.
[38]. Calvin, W. M., Littlefield, E. F., & Kratt, C. (2015). Remote sensing of geothermal-related minerals for resource exploration in Nevada. Geothermics, 53, 517–526.
[39]. Haldar, S. K. (2013). Chapter 6 - Photogeology, Remote Sensing and Geographic Information System in Mineral Exploration. Mineral Exploration, pp. 95–115. Elsevier.
[41]. Yousefi, M. & Hronsky, J. M. A. (2023). Translation of the function of hydrothermal mineralization-related focused fluid flux into a mappable exploration criterion for mineral exploration targeting. Applied Geochemistry, 149, 105561.
[42]. Ja’afar Abubakar, A., Hashim, M., Beiranvand Pour, A., & Shehu, K. (2017). A Review of Geothermal Mapping Techniques Using Remotely Sensed Data. Science World Journal, 12(4).
[43]. Achieng, J., Mutua, J., Mibei, G., Olaka, L., & Waswa, A. K. (2017). Mapping of Hydrothermal Minerals Related to Geothermal Activities Using Remote Sensing and GIS: Case Study of Paka Volcano in Kenyan Rift Valley. International Journal of Geosciences, 8(5), 711–725.