Document Type : Original Research Paper

Authors

1 Department of Mining Engineering, Amirkabir University of Technology, Tehran, Iran

2 Ph.D, Iranian Space Research Center, Tehran, Iran

Abstract

The Zafarghand area (as a porphyry Cu deposit) is located in the northeast of Isfahan and southeast of Ardestan, which is a part of the Iran-Central structural zone, and more precisely, it is located in the Urmia-Dokhtar volcanic belt. In the porphyry Cu deposits exploration, identifying and determining the alteration zones is of special importance. The aim of the present study is to identify and highlight the alteration zones of Zafarghand area, with the help of the U-statistic method in the processing of ASTER sensor satellite images. Accordingly, considering the raster nature and digital form of satellite images, the digital number values of each pixel from the image matrices were considered as samples in a systematic network. Finally, the U spatial statistic algorithm was implemented as a moving window algorithm for determining anomaly samples in the set of digital number (DN) values of ASTER satellite image pixels. The results of this technique show that the application of the U-statistic method, considering its structural nature and neighboring samples in decision-making, has been successful and has proven to be very effective in determining the alteration zones in the Zafarghand area.

Keywords

Main Subjects

[1]. Alaminia, A., Bagheri, H., & Salehi, M. (2017). Geochemical and geophysical investigations, and fluid inclusion studies in the exploration area of Zafarghand (Northeast Isfahan, Iran). Journal of Economic Geology, 9(2), 295-312. (In Persian with English Abstract).
[2]. Radfar, J. (1998). Geological map of Ardestan, scale 1:100,000. Geological Survey of Iran, Tehran, Iran.
[3]. Bahroudi, A. (2000). Geological map of Shahrab, scale 1:100,000. Geological Survey of Iran, Tehran, Iran.
[4]. ANJC (Alamut Naghsh-e-Jahan Company), (2011). Initial exploration report of Zafarghand copper index, Isfahan, Iran, 270 p. (in Persian).
[5]. Sadeghian, M. & Ghaffary, M. (2011). The petrogenesis of Zafarghand granitoid pluton (SE of Ardestan). Petrology, 6, 47-70. (In Persian with English Abstract).
[6] Amidi, S. M. (1975). Contribution a ĺ etude stratigraphique, pétrologique et pétrochimique des roches magmatiques de la région Natanz-Nain-Surk (Iran Central). These université scientifique et médicale de Grenoble, France.
[7]. Zahedi, M. & Amidi, S. M. (1975). 1:250000 geological map of Kashan. Geological Survey of Iran, Tehran, Iran.
[8]. Radfar, J., Alaee-Mahabadi, S., & Emami, M.H. (1993). Geological map of Kashan, scale 1:100000. Geological Survey of Iran, Tehran, Iran.
[9]. Aminroayaei Yamini, M., Tutti, F., & Ahmadian, J. (2016). Geochemical and mineralogical evolution of the porphyry copper deposit in southwestern Zafarqand with emphasis on hydrothermal alteration. Researches in Earth Sciences, 7(1), 75-90. (In Persian with English Abstract)
[10]. Aminroayaei Yamini, M., Tutti, F., Aminoroayaei Yamini, M. & Ahmadian, J. (2018). Plagioclase as evidence of magmatic evolution in the Zafarqand porphyry copper deposit, NE Isfahan. Journal of Economic Geology, 10(1), 61-76. (In Persian with English Abstract).
[11]. Mohammadi, S., Nadimi, A., & Alaminia, Z. (2018). Archive of SID Analysis of the relationship between mineralization and alteration zones with tectonic structures using remote sensing studies in south Ardestan area (northeastern Isfahan). Tectonics, 7, 29-47. (In Persian with English Abstract).
[12]. Aminoroayaei Yamini, M., Tutti, F., Haschke, M., Ahmadian, j., & Murata, M. (2016). Synorogenic copper mineralization during the Alpine–Himalayan orogeny in the Zafarghand copper exploration district, Central Iran: petrogrography, geochemistry and alteration thermometry. Geological Journal, 25(2), 263-281.
[13]. Aminroayaei Yamini, M., Tutti, F., & Aminoroayaei Yamini, M. (2017). Examination of chloritization of biotite as a tool for reconstructing the physicochemical parameters of mineralization and associated alteration in the Zafarghand porphyry copper system, Ardestan, Central Iran: mineral-chemistry and stable isotope analyses. Mineralogy and Petrology, 111, 747-759.
[14]. Sarjoughian, F., Lentz, D., Kananian, A., Ao, S., & Xiao, W. (2018). Geochemical and isotopic constraints on the role of juvenile crust and magma mixing in the UDMA magmatism, Iran: evidence from mafic microgranular enclaves and cogenetic granitoids in the Zafarghand igneous complex. International Journal of Earth Sciences, 107, 1127-1151.
[15]. Shahi, H., Ghavami, R., & Kamkar Rouhani, A. (2016). Detection of deep and blind mineral deposits using new proposed frequency coefficients method in frequency domain of geochemical data. Journal of Geochemical Exploration, 169, 29-39.
[16]. Biranvandpour, A. & Hashim, M. (2014). ASTER, ALI and Hyperion sensors data for lithological mapping and ore minerals exploration. Springer Plus, 3,130.
[17]. Li, Q., Zhang, B., Lu, L., & Lin, Q. (2014). Hydrothermal alteration mapping using ASTER data in Baogutu porphyry deposit, China, in: IOP Conference Series: Earth and Environmental Science. IOP Publishing, p. 012174.
[18]. Geotz, A., Billingsley, F., Elston, D., Lucchitta, I., Shoemaker, E., Abrams, M., Gillespie, A., & Squries, R. (1975). Applications of ERTS Image and Image Processing to Regional Problems and Geologic Mapping in Northern Arizona. NASA/JPL Technical Reports 32-1597, NASA: Pasadena, CA, USA.
[19]. Plafcan, D. Technoscientific Diplomacy, (2011). The practice of international policies in the ASTER collaboration, In Land Remote Sensing and Global Environmental Change. Ramachandran, R., Justice, C., Abrams, M., Eds., Springer: New York, NY, USA; Chapter 4, pp. 483-508.
[20]. Ghannadpour, S. S. & Hezarkhani, A. (2016). Introducing 3D U-statistic method for separating anomaly from background in exploration geochemical data with associated software development. Journal of Earth System Science. 125(2), 387–401.
[21]. Ghannadpour, S. S., Hezarkhani, A., Maghsoudi, A., & Farahbakhsh, E. (2015). Assessment of prospective areas for providing the geochemical anomaly maps of lead and zinc in Parkam district, Kerman, Iran. Geosciences Journal, 19(3), 431–440.
[22]. Ghannadpour, S. S. & Hezarkhani, A. (2017). Comparing U-statistic and nonstructural methods for separating anomaly and generating geochemical anomaly maps of Cu and Mo in Parkam district, Kerman, Iran. Carbonates and Evaporites, 32(3), 155-166.
[23] Ghannadpour, S. S., Hezarkhani, A., & Sabetmobarhan A. (2017). The Parkam exploration district (Kerman, Iran): Geology, alterations, and delineation of Cu- and Mo-mineralized zones using U-spatial statistic with associated software development. Journal of Earth Sciences. 28(2), 283–294.
[24]. Ghannadpour, S. S., Hezarkhani, A., & Roodpeyma, T. (2017). Combination of Separation Methods and Data Mining Techniques for Prediction of Anomalous Areas in Susanvar, Central Iran. African Journal of Earth Sciences, 134, 516–525.
[25]. Ghannadpour, S. S. & Hezarkhani, A. (2018). Providing the bivariate anomaly map of Cu–Mo and Pb–Zn using combination of statistic methods in Parkam district, Iran. Carbonates and Evaporites, 33(3), 403-420.
[26] Ghannadpour, S. S., Hezarkhani, A., & Sharifzadeh, M. (2017). A method for extracting anomaly map of Au and As using combination of U-statistic and Euclidean distance methods in Susanvar district, Iran. Journal of Central South University, 24(11), 2693–2704.
[27]. Ghannadpour, S. S. & Hezarkhani, A. (2020). Mineral potential mapping for Au and As using Gap statistic method in multivariate mode. Carbonates and Evaporites, 35(1), 1-11.
[28]. Beiranvand Pour, A. & Hashim, M. (2011). Identification of hydrothermal alteration mineral for exploration of porphyry copper deposit using ASTER data, SE Iran. Journal of Asian Earth Sciences, 42, 1309-1323.
[29]. Oleson, R. & Doescher, Ch. (2022). Advance Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Level 1 Precision Terrain Corrected Registered At-sensor Radiance Product (AST_L1T). Department of the Interior U.S Geological Survey, 16 p.
[30]. Boloki, M.; Poormirzaee, R. (2009). Using ASTER Image Processing for Hydrothermal Alteration and Key Alteration Minerals Mapping in Siyahrud area, IRAN. International Journal of Geology, 3, 38–43.
[31]. Alimohammadi, M., Alirezaei, S., & Kontak, D. J. (2015). Application of ASTER data for exploration of porphyry copper deposits: A case study of Daraloo-Sarmeshk area, southern part of the Kerman copper belt, Iran. Ore Geology Reviews, 70, 290–304.
[32]. Testa, F.J., Villanueva, C., Cooke, D.R., & Zhang, L. (2018). Lithological and Hydrothermal Alteration Mapping of Epithermal, Porphyry and Tourmaline Breccia Districts in the Argentine Andes Using ASTER Imagery. Remote Sensing, 10, 203.
[33]. Fakhari S, Jafarirad A, Afzal P, & Lotfi M. (2019). Delineation of hydrothermal alteration zones for porphyry systems utilizing ASTER data in Jebal barez area, SE Iran. Iran Journal of Earth Sciences, 11, 80–92.
[34]. Sikakwe, G. U. (2023). Mineral exploration employing drones, contemporary geological satellite remote sensing and geographical information system (GIS) procedures: A review. Remote Sensing Applications: Society and Environment, 31.
[35]. Yousefi, M., Carranza, E. J. M., Kreuzer, O. P., Nykänen, V., Hronsky, J. M. A., & Mihalasky, M. J. (2021). Data analysis methods for prospectivity modelling as applied to mineral exploration targeting: State-of-the-art and outlook. Journal of Geochemical Exploration, 229, 106839.
[36]. Yousefi, M., Kreuzer, O. P., Nykänen, V., & Hronsky, J. M. A. (2019). Exploration information systems – A proposal for the future use of GIS in mineral exploration targeting. Ore Geology Reviews, 111, 103005.
[37]. Yousefi, M. (2017). Recognition of an enhanced multi-element geochemical signature of porphyry copper deposits for vectoring into mineralized zones and delimiting exploration targets in Jiroft area, SE Iran. Ore Geology Reviews, 83, 200–214.
[38]. Calvin, W. M., Littlefield, E. F., & Kratt, C. (2015). Remote sensing of geothermal-related minerals for resource exploration in Nevada. Geothermics, 53, 517–526.
[39]. Haldar, S. K. (2013). Chapter 6 - Photogeology, Remote Sensing and Geographic Information System in Mineral Exploration. Mineral Exploration, pp. 95–115. Elsevier.
[40]. Knyihár, A., & Winkler, G. (1993). Environmental information system and remote sensing. Computers, Environment and Urban Systems, 17(3), 217-221.
[41]. Yousefi, M. & Hronsky, J. M. A. (2023). Translation of the function of hydrothermal mineralization-related focused fluid flux into a mappable exploration criterion for mineral exploration targeting. Applied Geochemistry, 149, 105561.
[42]. Ja’afar Abubakar, A., Hashim, M., Beiranvand Pour, A., & Shehu, K. (2017). A Review of Geothermal Mapping Techniques Using Remotely Sensed Data. Science World Journal, 12(4).
[43]. Achieng, J., Mutua, J., Mibei, G., Olaka, L., & Waswa, A. K. (2017). Mapping of Hydrothermal Minerals Related to Geothermal Activities Using Remote Sensing and GIS: Case Study of Paka Volcano in Kenyan Rift Valley. International Journal of Geosciences, 8(5), 711–725.