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 Complexity of geomaterial’s behavior is beyond the capabilities of conventional 

numerical methods alone for realistically model rock structures. Coupling of 

numerical methods can make the numerical modeling more realistic. Discontinuous 

Deformation Analysis (DDA) and Displacement Discontinuous Method (DDM) are 

hybridized for modeling block displacement and crack propagation mechanism in a 

blocky rock mass. DDA is used to compute the displacements of the blocks, and DDM 

is used to predict the crack propagation paths due to the specified boundary 

conditions. The displacements obtained from DDA are converted into stress and 

considering Kelvin's solution of the problem the crack propagation mechanism within 

each block is investigated. Boundary stresses are updated due to crack propagation 

and new stress boundary conditions in DDA. This cycle continued until crack 

propagation stopped or a new block formed. Numerical solutions of the experimental 

rock samples including two random cracks with crack 1 fixed and crack 2 created 

with different angles and one crack with a slope angle of 30 degrees are compared 

with the existing experimental and numerical results. This comparison validates the 

accuracy and effectiveness of the proposed procedure because crack propagation 

paths predicted are in good agreement with the corresponding experimental results of 

rock samples. 
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1. Introduction 

Rock masses are mostly anisotropic, 

heterogeneous, and brittle materials associated 

with discontinuities in nature [1]. The main 

discontinuities in rock formations include fractures 

and weak planes such as defects, fissures, joints, 

faults, and bedding planes. They are formed by a 

wide range of geological processes due to the low 

tensile and shear strengths of rock mass, and 

relatively higher fluid conductivity compared to 

that of intact rock [2]. Rock joints are associated 

with intact rock bridges, which affect their 

persistency and interrupt the continuity of joints. 

The rock mass strength and stability in rock 

structures are significantly affected by rock 

bridges. Numerical methods for the analysis of 

rock materials are usually based on displacement 

and stress analysis. Generally, they are classified 

into three methods; boundary element method 

includes an indirect boundary element method such 

as a displacement discontinuity method (DDM) 

and a direct boundary element method [3], a finite 

difference method [4], and a finite element method 

[5]. Many mechanical and structural problems 

including fracture mechanics, heterogeneity and 

functionally graded layers are solved in literature 

using the analytical and numerical solutions [6-8]. 

For displacement and stress analysis in jointed 

rock masses, discrete element methods are used, 

which are usually classified into the following two 

categories: (a) the implicit method such as the 

http://www.jme.shahroodut.ac.ir/
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discontinuous deformation analysis (DDA) [9-10], 

and (b) the explicit methods such as those used in 

the Itasca codes, e.g. PFC2D, PFC3D, UDEC, and 

3DEC [11-13]. If the rock mass contains a large 

number of discontinuities or the conditions are 

complex, it is impossible to use analytical methods. 

Considering the development of computers, the 

complex conditions of the rock mass can be 

modeled using the capability of each of the 

numerical methods. 

The DDA numerical method for modeling the 

dynamic behavior of discontinuities and blocky 

systems was first proposed by Shi, which is widely 

used in rock engineering problems such as masonry 

structures stability analysis, rock slope stability, 

dynamic wave propagation and blasting, and deep 

underground excavations, modeling of hydraulic 

fracture. The DDA method like the finite element 

method uses the principle of minimizing the total 

potential energy to obtain the equilibrium 

equations, and the displacements of the center of 

the block are the unknowns of the simultaneous 

equations [14]. 

Many researchers applied some changes to the 

original code provided by Shi to solve some 

problems in the DDA including crack propagation 

modeling capability. For example, Ke [15-16] 

pointed out that parameters such as fracture 

initiation, stress and strain distribution in the 

fracture process, crack propagation angle, energy 

reduction in the fracture process, and rock behavior 

in the presence of a joint should be considered for 

fracture simulation. He proposed a DDA code 

using ‘artificial’ joints for numerically simulating 

fracture propagation. Also, DDA with ‘artificial’ 

joints was used by Chiou et al. [17] to model the 

masonry structures. Chang [18] used a finite 

element mesh inside the DDA blocks to model the 

cantilever beam, but the results are qualitative. 

Clatworthy and Scheele [19] suggested sub-

meshing to enhance block deformability. Koo and 

Chern [20] proposed an algorithm for modeling 

fracture blocks based on principal stresses which 

enables the gradual failure of blocks in the 

simulation process. They modeled the rock mass 

failure considering both tensile (mode 1) and shear 

(mode 2) failure modes. Amadi et al. [21-22] 

proposed the concept of sub-blocking in order to 

create the ability to block fracturing. These initial 

developments led to the coupling between DDA 

and FEM. 

Ma et al. [23] proposed a Moving Least Squares 

(MLS) approximation for modeling crack 

propagation inside blocks and block failure in a 

similar way to DDA coupling with the Element 

Free Galerkin (EFG) method. Bao and Zhao [24-

26] used the nodal-based DDA method for failure 

analysis, which has also been investigated by other 

researchers. Recently, Wang et al. [27] modeled 

the crack propagation mechanism by modifying the 

generalized maximum tangential stress criterion 

and using J-integrals (𝐽1 and 𝐽2 integrals). 

The DDM numerical method has been 

developed to simulate crack propagation in brittle 

materials. Three important failure initiation criteria 

have been proposed to study the crack propagation 

mechanism of brittle materials: (a) the maximum 

energy release rate (G-criterion), (b) the minimum 

energy density criterion (S-criterion), and (c) the 

maximum tangential stress (𝜎𝜃-criterion) [28- 31]. 

In this study, the maximum tangential stress 

criteria in the DDM were used to investigate crack 

propagation. 

The aim of this article is the simulation of rock 

failure mechanism in jointed rock masses 

considering the effects of rock bridges by coupling 

the DDA and the DDM. The DDA is used to 

determine the displacement of the block system 

due to the updated boundary stresses in each cycle 

of crack propagation, and the DDM is used to 

determine the crack propagation path due to the 

stresses resulting from the displacement in the 

DDA. 

2. Methodology 

Due to the presence of rock bridges in the rock 

mass and its effect on rock failure because of crack 

propagation caused by boundary displacement, 

simultaneous modeling of block system 

displacement and crack propagation caused by this 

displacement is required. Therefore, the DDA 

proposed by Shi has been used to model the 

displacement of the block system and the DDM 

proposed by Crouch [32] for the solution of 

elastostatic problems in solid mechanics has been 

used to model the crack propagation. 

2-1- Discontinuity deformation analysis (DDA) 

The DDA is a fundamental discontinuity 

method that is suitable for modeling large 

displacements. In the initial formulation of the 

DDA, the first-order displacement approximation 

is used, which makes the stress and strain constant 

in each block. The displacement (u, v) of each point 

(x, y) of each block can be represented by six 

displacement variables (𝑢0, 𝑣0, 𝑟0, 𝜀𝑥 , 𝜀𝑦, 𝛾𝑥𝑦) 

(Figure 1), where (𝑢0, 𝑣0) is the vertical and 

horizontal displacement of the specified point 

(𝑥0, 𝑦0) in the block, 𝑟0 is the rotation angle of the 
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block with the center of rotation (𝑥0, 𝑦0) in radians 

and 𝜀𝑥 , 𝜀𝑦, 𝛾𝑥𝑦 are the normal and shear strains of 

the block [33]. 

Equation 1 can be used to calculate the vertical 

and horizontal displacement at any point inside the 

block or on the block boundary when the 

displacements and strains of the center of the block 

are calculated. It should be noted that in the DDA 

formulation, the center of rotation with the (𝑥0, 𝑦0) 

coordinate corresponds to the center of the block. 

 
Figure 1. Displacement variables of DDA [33]. 

 

(
𝑢

𝑣
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(

 
 
 

𝑢0
𝑣0
𝑟0
𝜀𝑥
𝜀𝑦
𝛾𝑥𝑦)

 
 
 

 (1) 

 

After calculating the horizontal and vertical 

displacement (u, v) on the block boundary, in order 

to convert these displacements into stress to be 

used as boundary stress in the DDM method, 

Kelvin's solution can be used [34]. The stresses for 

the plane strain version of Kelvin’s solution are: 

 

𝜎𝑥𝑥 = 𝐹𝑥[2(1 − 𝜈)𝑔,𝑥 − 𝑥𝑔,𝑥𝑥] + 𝐹𝑦[2𝜈𝑔,𝑦 − 𝑦𝑔,𝑥𝑥] 

(2) 𝜎𝑦𝑦 = 𝐹𝑥[2𝜐𝑔,𝑥 − 𝑥𝑔,𝑦𝑦] + 𝐹𝑦[2(1 − 𝜈)𝑔,𝑦 − 𝑦𝑔,𝑦𝑦] 

𝜎𝑥𝑦 = 𝐹𝑥[(1 − 2𝜈)𝑔,𝑦 − 𝑥𝑔,𝑥𝑦] + 𝐹𝑦[(1 − 2𝜈)𝑔,𝑥 − 𝑦𝑔,𝑥𝑦] 

 

where 𝐹𝑥 and 𝐹𝑦 are the force in the X direction 

and the force in the Y direction, respectively, and 𝜈 

is the Poisson’s ratio. The derivatives of the 

function 𝑔(𝑥, 𝑦) in the above expressions are found 

directly from (3). 

𝑔(𝑥, 𝑦) =
−1

4𝜋(1 − 𝜐)
𝑙𝑛(𝑥2 + 𝑦2)

1
2 (3) 

To use Kelvin's solution, first, according to 

Equation 4, the boundary displacements calculated 

from the DDA are converted into horizontal and 

vertical forces. 

𝐹𝑥 = 𝐾 ∗ 𝑢  

(4) 
𝐹𝑦 = 𝐾 ∗ 𝑣 

where K is the stiffness of the spring, and (u, v) 

are displacement in horizontal and vertical 

directions, respectively. 

2.2. Displacement discontinuity method (DDM) 

A displacement discontinuity method (DDM) is 

an indirect boundary element method for the 

solution of elastostatic problems in solid 

mechanics that was originally proposed by Crouch 

[34]. This method is very practical and appropriate 

for modeling crack propagation problems in rock 

fracture mechanics. In this method, the amount of 

deformation normal and parallel to the crack 

(deformation caused by crack opening and 

deformation caused by crack sliding) can be easily 

calculated. In this article, displacement 

discontinuity elements with a higher order 

(quadratic elements, i.e., elements that are of order 

two and have three sub-elements) are used to 

achieve high accuracy in discontinuity 

displacements. A displacement discontinuity 

element of length 2c on the x-axis is shown in 

Figure 2(a), and the widespread displacement 



Khanizadeh Bahabadi et al. Journal of Mining & Environment, Vol. 15, No. 3, 2024 

 

1074 

discontinuity variable 𝑢(𝜁) can be calculated. By 

taking the 𝑢𝑥 and 𝑢𝑦 components of the general 

displacement discontinuity 𝑢(𝜁) in the interval (-c 

+c), as shown in Figure 2(b); 𝐷𝑥 and 𝐷𝑦 are easily 

determined. The displacement discontinuity 

element surfaces can be distinguished into a 

positive side of y (𝑦 = 0+) and a negative side of y 

(𝑦 = 0−) [35].  

 
Figure 2. (a) Displacement discontinuity element and widespread displacement discontinuity variable 𝒖(𝜻), (b) 

constant element displacement discontinuity [35]. 

Therefore, the constant element displacement discontinuities 𝐷𝑥 and 𝐷𝑦 can be written as: 

 

𝐷𝑥 = 𝑢𝑥(𝑥, 0−) − 𝑢𝑥(𝑥, 0+),     𝐷𝑦 = 𝑢𝑦(𝑥, 0−) − 𝑢𝑦(𝑥, 0+) (5) 

 

The positive sign convention of 𝐷𝑥 and 𝐷𝑦 is 

shown in Figure 2(b), and demonstrates that when 

the two surfaces of the displacement discontinuity 

overlap 𝐷𝑦 is positive, it leads to a physically 

impossible situation. This conceptual difficulty is 

overcome by considering that the element has a 

finite thickness, in its undeformed state which is 

small compared to its length, but bigger than 𝐷𝑦 

[36]. 

The quadratic element displacement 

discontinuity is based on the analytical integration 

of quadratic collocation shape functions over 

collinear, straight-line displacement discontinuity 

elements. Figure 3 shows the displacement 

distributions at the quadratic collocation point ‘n’, 

which can be written in a general form as: 

𝐷𝑗(𝜁) = 𝑁1(𝜁)𝐷𝑗
1 +𝑁2(𝜁)𝐷𝑗

2 +𝑁3(𝜁)𝐷𝑗
3 (6) 

𝑗 = 𝑥, 𝑦 

where 𝐷𝑗
1, 𝐷𝑗

2, and 𝐷𝑗
3 are the quadratic nodal 

displacement discontinuities, and 

𝑁1(𝜁) =
𝜁(𝜁 − 2𝑐1)

8𝑐1
2   

𝑁2(𝜁) =
−(𝜁2 − 4𝑐1

2)

4𝑐1
2  (7) 

𝑁3(𝜁) =
𝜁(𝜁 + 2𝑐1)

8𝑐1
2   

are the quadratic collocation shape functions 

using 𝑐1 = 𝑐2 = 𝑐3. A quadratic element has three 

nodes, which are at the centers of its three sub-

elements (see Figure 3) [35]. 

 
Figure 3. Quadratic collocations for higher order displacement discontinuity variation [35]. 
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The displacements and stresses for a line crack 

in an infinite body along the x-axis, in terms of 

single harmonic functions g(x,y) and f(x,y), are 

given by Crouch and Starfield (1983) as: 

 

𝑢𝑥 = [2(1 − 𝜐)𝑓,𝑦 − 𝑦𝑓,𝑥𝑥] + [−(1 − 2𝜐)𝑔,𝑥 − 𝑦𝑔,𝑥𝑦] 
(8) 

𝑢𝑦 = [(1 − 2𝜐)𝑓,𝑥 − 𝑦𝑓,𝑥𝑦] + [2(1 − 𝜐)𝑔,𝑦 − 𝑦𝑔,𝑦𝑦] 

 

and the stresses are: 

𝜎𝑥𝑥 = 2𝜇[2𝑓,𝑥𝑦 + 𝑦𝑓,𝑥𝑦𝑦] + 2𝜇[𝑔,𝑦𝑦 + 𝑦𝑔,𝑦𝑦𝑦] 

(9) 𝜎𝑦𝑦 = 2𝜇[−𝑦𝑓,𝑥𝑦𝑦] + 2𝜇[𝑔,𝑦𝑦 − 𝑦𝑔,𝑦𝑦𝑦] 

𝜎𝑥𝑦 = 2𝜇[2𝑓,𝑦𝑦 + 𝑦𝑓,𝑦𝑦𝑦] + 2𝜇[−𝑦𝑔,𝑥𝑦𝑦] 

where 𝜇 is shear modulus, and 𝑓,𝑥 , 𝑔,𝑥 , 𝑓,𝑦, 𝑔,𝑦 , 

etc. are the partial derivatives of the single 

harmonic functions f(x, y) and g(x,y) with respect 

to x and y. These potential functions (for a 

quadratic variation of displacement discontinuity 

along the element) can be found from: 

𝑓(𝑥, 𝑦) =
−1

4𝜋(1 − 𝜐)
∑𝐷𝑥

𝑗
𝐹𝑗(𝐼0, 𝐼1, 𝐼2)

3

𝑗=1

 

(10) 

𝑔(𝑥, 𝑦) =
−1

4𝜋(1 − 𝜐)
∑𝐷𝑦

𝑗
𝐹𝑗(𝐼0, 𝐼1, 𝐼2)

3

𝑗=1

 

The common function 𝐹𝑗, is defined as: 

𝐹𝑗(𝐼0, 𝐼1, 𝐼2) = ∫𝑁𝑗(𝜁)𝑙𝑛[(𝑥 − 𝜁) + 𝑦
2]
1
2𝑑𝜁, 

(11) 

𝑗 = 1 − 3 

The integrals 𝐼0, and 𝐼1 and 𝐼2 are expressed as: 

 

𝐼0(𝑥, 𝑦) = ∫ 𝑙𝑛[(𝑥 − 𝜁)2 + 𝑦2]
1
2𝑑𝜁 = 𝑦(𝜃1 − 𝜃2) − (𝑥 − 𝑐) 𝑙𝑛(𝑟1) + (𝑥 + 𝑐) 𝑙𝑛(𝑟2) − 2𝑐

𝑐

−𝑐

 (12-a) 

𝐼1(𝑥, 𝑦) = ∫ 𝜀𝑙𝑛[(𝑥 − 𝜁)2 + 𝑦2]
1
2𝑑𝜁 = 𝑥𝑦(𝜃1 − 𝜃2) + 0.5(𝑦

2 − 𝑥2 + 𝑐2) 𝑙𝑛 (
𝑟1
𝑟2
) − 𝑐𝑥

𝑐

−𝑐

 (12-b) 

𝐼2(𝑥, 𝑦) = ∫ 𝜀2𝑙𝑛[(𝑥 − 𝜁)2 + 𝑦2]
1
2𝑑𝜁 =

𝑐

−𝑐

 

(12-c) 

𝑦

3
(3𝑥2 − 𝑦2)(𝜃1 − 𝜃2) +

1

3
(3𝑥𝑦2 − 𝑥3 + 𝑐3) 𝑙𝑛(𝑟1) −

1

3
(3𝑥𝑦2 − 𝑥3 + 𝑐3) 𝑙𝑛(𝑟2) −

2𝑐

3
(𝑥2 − 𝑦2 +

𝑐2

3
) 

 

where the terms 𝜃1, 𝜃2, 𝑟1, and 𝑟2 are defined as: 

𝜃1 = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑦

𝑥 − 𝑐
) 

(13) 

𝜃2 = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑦

𝑥 + 𝑐
) 

𝑟1 = [(𝑥 − 𝑐)
2 + 𝑦2]

1
2 

𝑟2 = [(𝑥 + 𝑐)
2 + 𝑦2]

1
2 

In order to eliminate the singularity of stress and 

displacement calculations near the crack tip and 

increase the accuracy of DDM near the crack tip, 

as shown in Figure 4, by using a special crack tip 

element with the length of 2c, the displacement 

discontinuity variations along this element can be 

written as the following form: 

𝐷𝑗(𝜁) = 𝐴𝑇1(𝜁)𝐷𝑗
1 + 𝐴𝑇2(𝜁)𝐷𝑗

2 + 𝐴𝑇3(𝜁)𝐷𝑗
3 

(14) 

𝑗 = 𝑥, 𝑦 

The shape functions 𝐴𝑇1, 𝐴𝑇2, and 𝐴𝑇3 can be 

calculated according to Equation 15. 

𝐴𝑇1(𝜁) =
15𝜁

1
2

8𝑐1

1
2

−
𝜁
3
2

𝑐1

3
2

+
𝜁
5
2

8𝑐1

5
2

  

𝐴𝑇2(𝜁) =
−5𝜁

1
2

4√3𝑐1

1
2

+ 3
𝜁
3
2

2√3𝑐1

3
2

−
𝜁
5
2

4√3𝑐1

5
2

 (15) 
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𝐴𝑇3(𝜁) =
3𝜁
1
2

8√5𝑐1

1
2

−
𝜁
3
2

2√5𝑐1

3
2

+
𝜁
5
2

8√5𝑐1

5
2

  

 
Figure 4. A special crack tip element with three 

equal sub-elements [35]. 

Based on the LEFM theory, the Mode I and 

Mode II stress intensity factors 𝐾𝐼 and 𝐾𝐼𝐼 can be 

written in terms of the normal and shear 

displacement discontinuities as [36]: 

 

𝐾𝐼 =
𝜇

4(1 − 𝜐)
(
2𝜋

𝑐
)
1
2𝐷𝑦(𝑐) 

(16) 

𝐾𝐼𝐼 =
𝜇

4(1 − 𝜐)
(
2𝜋

𝑐
)
1
2𝐷𝑥(𝑐) 

 

2.3. Coupling of DDA and DDM methods 

Generally, in rock mechanics and porous media 

making a coupling between two physics or two 

different numerical methods is really complex due 

to the complexity of the equations and 

programming algorithms [37-39]. Although the 

mentioned couplings are very complicated, in this 

article, an attempt is made to establish a coupling 

between the two methods DDM and DDA. In fact, 

this article uses the DDM method to simulate crack 

propagation and the DDA method to simulate 

displacement. For modeling crack propagation 

simultaneously with displacements due to the 

initial stress state in block systems, firstly, the 

DDA method is employed to establish the 

numerical model and for the initial solution of the 

problem. The displacements calculated from DDA 

are converted into boundary stresses by using 

Kelvin's problem, and then they are used as 

boundary conditions in the DDM method, and 

stress intensity factors and crack growth angles are 

calculated. The boundary stresses caused by crack 

propagation are updated and applied as stresses on 

the boundary in the DDA method, and the 

displacement caused by the new stresses is 

calculated. This cycle will continue until the crack 

growth stops, and if a new block is formed, the 

geometric model will be updated. Figure 5 

illustrates the process of calculating crack 

propagation by a couple of DDA and DDM 

methods. 
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Figure 5. The flow chart couple of DDA and DDM methods. 

3. Numerical Simulation 

A coupling between DDA and DDM methods is 

verified herein for the simulation of close crack 

propagation. The simulation results of crack 

propagation were analyzed and compared with the 

experimental tests of Haeri et al. [40] and a study 

of the failure process in brittle rocks containing 

pre-existing flaws under uniaxial compression has 

been conducted by Wong et al. [41-43]. In these 

experimental studies, differences in the patterns of 

cracks created under compressive stress have been 

seen, which depend on the materials used and crack 

angle. 

3.1. Numerical simulation of sample with double 

cracks 

Haeri et al. [40] investigated a series of 

experiments on the samples containing 2 random 

cracks 1 and 2. Figure 6 depicts the geometry and 

loading conditions of rock-like samples consisting 

of pozzolana Portland cement, fine sand, and 

water. The diameter and length of the used samples 

are 60 and 120 mm, respectively. The specimen 

was loaded with the vertical load. The mechanical 

characteristics of rock-like samples without cracks 

(intact) are given in Table 1 [40]. 
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Figure 6. Geometry of rock-like sample under uniaxial pressure [40]. 

Table 1. Mechanical properties of the rock-like specimens [40]. 

Characteristic Value 

Uniaxial compression strength (MPa) 28 

Modulus of elasticity (GPa) 17 

Poisson’s ratio 0.21 

Fracture toughness (MPa.𝑚
1

2) 2 

 

Uniaxial compression tests have been 

performed on samples containing 2 random cracks 

1 and 2 with lengths 2b = 10 mm. In these samples, 

crack 1 is fixed with a slope angle of 45 degrees, 

and the slope of crack 2 is created with different 

angles of 0, 30, 60, and 90 degrees, as 

schematically shown in Figure 7. The uniaxial 

compressive stress σ is uniformly applied at a 

constant rate of 0.2 MPa/s. Also, the locations of 

these 2 cracks are determined by the position of the 

crack tips, that is tip 1, tip 2, tip 3, and tip 4, 

respectively. 

The calculation parameters of the DDA method 

are as follows: the time step was set at 1s, the 

maximum displacement ratio was 0.001, and the 

stiffness of the contact between the blocks was 200 

GPa. 

Figures 8a-d show the simulation results of 

crack propagation of the four different specimens 

already shown in Figures 7a–d by the proposed 

numerical method. According to the comparison 

shown in Figures 9a-d between the proposed 

numerical method results in this paper, 

experimental results, and numerical results 

obtained by the boundary element simulation [40], 

the simulation data match the experimental, and 

DDM simulation results. 

 
Figure 7. Crack geometries with spacing S = 20 mm 

[40]. 
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Figure 8. Proposed numerical method results illustrating the coalescence path of rock-like specimens containing 

two cracks: (a) 𝜶 = 𝟒𝟓°, 𝝋 = 𝟎; (b) 𝟒𝟓°, 𝝋 = 𝟑𝟎°; (c) 𝟒𝟓°, 𝝋 = 𝟔𝟎°; (d) 𝟒𝟓°, 𝝋 = 𝟗𝟎°. 

 
Figure 9. Comparison between experimental results and proposed numerical results obtained by DDM 

illustrating the coalescence path of rock-like specimens containing two cracks: (a) 𝜶 = 𝟒𝟓°, 𝝋 = 𝟎; (b) 𝟒𝟓°, 𝝋 =
𝟑𝟎°; (c) 𝟒𝟓°, 𝝋 = 𝟔𝟎°; (d) 𝟒𝟓°, 𝝋 = 𝟗𝟎°. 
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3.2. Numerical simulation of sample with single 

crack 

Wong et al. [41] numerically presented the 

solution for the compression test on the rock-like 

specimens with a single random crack by using a 

finite element code, which one of the mentioned 

cases is simulated herein. Figure 10 illustrates the 

geometry and loading conditions of the specimen. 

The length and width of the specimen containing a 

center slant flaw with a half-length b =10 mm and 

inclination angle of 30 degrees are 170 mm and 50 

mm, respectively. The mechanical parameters of 

the specimen used in the simulation are presented 

in Table 2.  
Figure 10. The geometry and loadingconditions of 

the test specimen [44]. 

Table 2. Mechanical properties of the rock-like specimen [44]. 

Characteristic Value 

Uniaxial compression strength (MPa) 200 

Modulus of elasticity (GPa) 50 

Poisson’s ratio 0.25 

Fracture toughness (MPa.𝑚
1

2) 1.2 

 

The numerical results obtained by coupling the 

DDA and DDM method are shown in Figure 11. 

For this example, Wong et al. [41] used the 

RFPA2D (a 2D finite element code) to conduct 

numerical simulation, and Haeri et al. [44] used the 

indirect boundary element method for numerical 

simulation. Figure 12. demonstrates that the 

simulation results obtained from the coupling DDA 

and DDM method are in good agreement with the 

finite element code and indirect boundary element 

method results.  

 
Figure 11. Proposed numerical method simulation 

of crack propagation process in pre-cracked 

specimen with crack inclination angle 30 degrees. 
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Figure 12. (a) Result of coupling between DDA and DDM method, (b) Indirect boundary method result of Haeri 

et al. [44], and (c) A finite element code result (RFPA2D) of Wong et al. [41] of crack propagation process in pre-

cracked specimen with crack inclination angle 30 degrees. 

3. Simulation Results 

The uniaxial compression of the specimens with 

a single center crack and double cracks are 

simulated by the coupling of DDA and DDM 

methods, and the simulation data is compared with 

the experimental and numerical results. Figure 9 

depicts the comparison between the proposed 

numerical method, experimental and indirect 

boundary element method results for the case, 

where crack 1 is fixed with a slope angle of 45 

degrees and the slope of crack 2 is created with 

different angles of 0, 30, 60, and 90 degrees. All of 

the proposed numerical method simulation data 

agreed with the experimental findings and DDM 

simulation data. 

 Figure 13 compares the simulation data by two 

numerical methods with the experimental results in 

detail. The black line represents the crack 

propagation path obtained from the experimental 

result and DDM simulation result, while the red 

line represents the crack propagation path in 

coupling DDA and DDM method simulation 

results. The coupling between DDA and DDM 

simulation data agrees well with the experimental 

results and DDM simulation results. 

In addition, the effect of the inclination angle of 

crack 2 compared to crack 1 is analyzed, and the 

comparison results are listed in Table 3. The 

difference between the coupling DDA and DDM 

simulation data, experimental data, and DDM 

simulation data is minimal, confirming that the 

proposed numerical method can effectively 

simulate crack propagation. 

 

Table 3. The comparison of equation of the line coalescence of cracks propagating from the tips of pre-existing 

cracks in numerical methods and experimental data 

Crack inclination angle Line equation Propagation angle (degree) 

Crack 1 Crack 2 Experimental Proposed numerical DDM method 
Experim

ental 

Proposed 

numerical 

DDM 

method 

𝛼 = 45° 

𝜑 = 0° y = -2.2476x + 0.1397 y = -2.6289x + 0.15 y = -2.0251x + 0.1291 -66.01 -69.17 -63.72 

𝜑 = 30° y = 0.4046x + 0.0545 y = -2.6167x + 0.1356 y = -2.2349x + 0.1275 22.03 -69.08 -65.89 

𝜑 = 60° y = -4.5152x + 0.1693 y = -2.4787x + 0.1257 y = -2.7013x + 0.1277 -77.51 -68.03 -69.68 

𝜑 = 90° y = 0.0178x + 0.0294 y = 0.0043x + 0.0302 y = -0.0059x + 0.0323 1.02 0.25 -0.33 
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Figure 13. Qualitative examination of the compatibility of the results of the experimental method and the DDM 

numerical method with the results of the coupled DDA and DDM method in the rock-like specimens containing 

two cracks: (a) 𝜶 = 𝟒𝟓°, 𝝋 = 𝟎; (b) 𝟒𝟓°, 𝝋 = 𝟑𝟎°; (c) 𝟒𝟓°, 𝝋 = 𝟔𝟎°; (d) 𝟒𝟓°, 𝝋 = 𝟗𝟎°. 

Figure 14 shows the comparison of crack 

propagation results in the sample with a single 

crack under compression test by three numerical 

methods: indirect boundary method, finite element 

code (RFPA2D) and coupling DDA, and DDM 

method. According to this figure, the coupling 

DDA and DDM simulation data agrees well with 

the RFPA2D results and DDM simulation results. 

One of the most important and influential 

parameters in the crack propagation process is its 

growth angle, which depends on the values of the 

stress intensity factors (KI and KII) and the crack 

inclination angle. In the numerical process of 

coalescence, the cracks step by step, in each step, 

the values of the stress intensity factors and the 

starting angle of wing cracks have been calculated. 

At this stage, the crack expansion from each pre-

existing crack tip is developed by 1 mm to 2 mm 

and joins together at a point between the rock 

bridges. The numerical values of the stress 

intensity factors for the 4 samples introduced in 

Figure 7, in the first step of the crack propagation 

process, are given in Table 4. 

 
Figure 14. Qualitative examination of the 

compatibility of the results of the RFPA2D method 

and the DDM numerical method with the results of 

the coupled DDA and DDM method in the rock-like 

specimens containing a single crack. 
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Table 4. Numerical Values of KI and KII for the four crack tips of two pre-existing cracks. 

Crack inclination angle 𝑲𝑰 𝑲𝑰𝑰 

Crack 1 Crack 2 Tip 1 Tip 2 Tip 3 Tip 4 Tip 1 Tip 2 Tip 3 Tip 4 

𝛼 = 45° 

𝜑 = 0° 0.7446 0.653886 0.676481 0.70628 0.754628 0.643411 0.613789 0.67096 

𝜑 = 30° 0.78038 0.710145 0 0 0.75525 0.675427 0.717474 0.655737 

𝜑 = 60° 1.12938 1.04679 0 0 1.06537 0.929959 0.723031 0.664009 

𝜑 = 90° 0.72371 0.64487 0.816449 0.726444 0.712308 0.565902 0.794558 0.631245 

 

Figure 15 shows the numerical results of crack 

initiation and coalescence stresses. The numerical 

values of wing crack initiation stresses for the 4 

introduced samples are around 2.24-5.23 MPa, and 

the experimental values of wing crack initiation 

stresses are around 6.8-12.7 MPa. On the other 

hand, the coalescence stresses of the numerical 

cracks are around 13.2-16.8 MPa, and the stress of 

the initiation of experimental wing cracks is around 

17.8-20.3 MPa. 

 
Figure 15. Stresses of crack initiation and coalescence process versus different angles of crack 2 with respect to 

the direction of crack 1 (𝝋 =0, 30, 60, and 90) in the proposed numerical method. 

The ratios of final breakage stress to the 

uniaxial compressive strength (
𝜎𝐹

𝜎𝐶
) for the four 

cases 𝜑 = 0, 30, 60, and 90 are given in Figure 16. 

As shown in Figures 15 and 16, the stresses of the 

cracked specimens at different stages of the crack 

propagation process are increasing for 𝜑 = 30° and 

𝜑 = 60° but decreasing for 𝜑 = 0° and 𝜑 =
90°, respectively. 

 
Figure 16. 

𝝈𝑭

𝝈𝑪
 ratio versus different angles of crack 2 with respect to the direction of crack 1 (𝝋 =0, 30, 60, and 90) 

in the proposed numerical method. 
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Since the coupling of discontinuous 

deformation analysis and discontinuity 

displacement method is used in this article, it is 

possible to calculate the strain values resulting 

from the crack initiation and coalescence process. 

Figure 17 shows the strain values obtained from the 

discontinuous deformation analysis method. 

 
Figure 17. Strains of crack initiation and coalescence process versus different angles of crack 2 with respect to 

the direction of crack 1 (𝝋 = 0, 30, 60, and 90). 

4. Conclusions 

The natural fractures and rock bridges in blocky 

rock masses affect the stability of engineering rock 

structures. In rock blocks, the crack initiation and 

coalescence phenomena depend on the rock 

bridges which may cause the formation of new 

blocks and create instability in rock slopes. The 

displacements that occur in the block system may 

lead to the growth of cracks in the rock bridges and 

join them to form new blocks. In this research 

work, the modeling of rock bridges and the way of 

crack propagation in the rock block are 

investigated numerically using the coupling 

methods. The following main conclusions are 

obtained: 

In order to simultaneously model block 

displacement and crack propagation mechanism (in 

a rock block), discontinuous deformation analysis 

(DDA) and displacement discontinuity method 

(DDM) have been coupled. 

In this approach, the displacements obtained 

from the DDA solution of the problem are 

converted into stress boundary conditions for each 

block, and then based on Kelvin's problem, the 

fundamental solution for each boundary element is 

evaluated using DDM. 

The crack propagation mechanism is 

investigated using the higher-order (quadratic) 

displacement discontinuity elements in the DDA-

DDM code. 

The crack propagation paths that are affected by 

rock bridges and the boundary stresses are updated 

after each step and applied as new boundary 

conditions for the DDA solution.  

The numerical and experimental modeling 

results of cracked rock samples under the uniaxial 

compression test are compared with one another. 

The crack propagation angles and the crack 

coalescence paths of the two cracks in the 

experimental and modeled rock samples were in 

good agreement. 

The results of this study showed the effect of 

stress ratio and orientation of the second crack on 

the paths of propagation and coalescence of the two 

cracks in the rock sample. 

In this new method, it is also possible to 

calculate strain values at each stage of crack 

propagation. 

This method can be used for the stability 

analysis of rock slopes considering the 

simultaneous effects of displacements and crack 

propagations resulting in a more accurate stability 

analysis of the rock structures. 
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 چکیده:

های عددی  وپل روشهای سونیی اسوتداده شوود  های عددی مرسووم اسوت  ه به تنهایی برای مداسوازی وا عی سوازهپیچیدگی رفتار ژئومتریال فراتر از توانایی روش

( برای مداسووازی مکانیزم بابیایی بلوو و DDM( و ناپیوسووتیی بابیایی  DDAتر  ند  روش آناایز تغییرشووکل ناپیوسووته  تواند مداسووازی عددی را وا عیمی

بینی مسویر انتشوار ترو ناشوی از  برای پیش DDMها اسوتداده شوده و  های بلووبرای محاسوبه بابیایی DDAانتشوار ترو در توده سونب بلو ی تر یش شوده اسوت   

حل  لوی ، مسوئله مکانیزم  به تنش تبدیل شوده و با توبه به راه  DDAهای بدسوت آمده از  شورایط مرزی تعیی  شوده، مورد اسوتداده  رار گرفته شوده اسوت  بابیایی

شوود  اعمال می  DDAهای مرزی بدایل انتشوار ترو بروزرسوانی شوده و بعنوان شورایط بدید تنش مرزی در  گردد  تنشدر داخل هر بلوو بررسوی میانتشوار ترو 

هایی  ه  های سونیی آزمایشویاهی شوامل نمونهگردد، ادامه خواهد داشوت  حل عددی نمونه  ای  چرخه تا زمانی  ه انتشوار ترو متو   شوود یا بلوو بدید تشوکیل

دربه با نتایج عددی و   30ای شووامل یت ترو با زاویه شوویش  با زوایای مختل  اییاد شووده و نمونه 2ثابت شووده و ترو  1شووامل دو ترو تدووادفی  ه ترو 

بینی شوده با نتایج تیربی   ند زیرا مسویرهای انتشوار ترو پیشو اثربخشوی روش پیشونهادی را تییید می  آزمایشویاهی موبود ماایسوه شوده اسوت  ای  ماایسوه د ت

 های سنب مطابات دارد مربوطه نمونه

 های عددی ژئومتریال، آناایز تغییرشکل ناپیوسته، روش ناپیوستیی بابیایی، انتشار ترو،  وپل روش کلمات کلیدی:

 

 

 

 


