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The mineral resource estimation process necessitates a precise prediction of the grade
based on limited drilling data. Grade is crucial factor in the selection of various mining
projects for investment and development. When stationary requirements are not met,
geo-statistical approaches for reserve estimation are challenging to apply. Artificial
Neural Networks (ANNs) are a better alternative to geo-statistical techniques since they
take less processing time to create and apply. For forecasting the iron ore grade at El-
Gezera region in El- Baharya Oasis, Western Desert of Egypt, a novel Artificial Neural
Network (ANN) model, geo-statistical methods (Variograms and Ordinary kriging), and
Triangulation Irregular Network (TIN) were employed in this study. The geo-statistical
models and TIN technique revealed a distinct distribution of iron ore elements in the
studied area. Initially, the tan sigmoid and logistic sigmoid functions at various numbers
of neurons were compared to choose the best ANN model of one and two hidden layers
using the Levenberg-Marquardt pure-linear output function. The presented ANN model
estimates the iron ore as a function of the grades of Cl%, Si02%, and MnO% with a
correlation factor of 0.94. The proposed ANN model can be applied to any other dataset
within the range with acceptable accuracy.

1. Introduction

One of the most crucial concepts and difficult
mining process phases is mineral resource
estimation. It is important in the decision-making
process for mining investments including pit
design, production scheduling, and grade control,
as previously covered [1-9].

The main purpose of mineral resource
estimation is to determine the mineral grade at a
location with limited drilling data [10]. Owing to
complicated geological activity of an era, the
spatial distribution of mineral deposits is
unpredictable. Thus estimating mineral resources
at an unsampled site is difficult [11, 12].

Artificial Neural Networks (ANNs) are
effective ~ computer-based  substitutes  for
calculating mineral reserves [1]. A computer model
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called a neural network is based on the structure of
neuron cells in the biological nervous system. The
neural network may learn the data pattern with the
help of a learning algorithm and a training batch of
data [13-15]. When the second-order stationary
assumption regarding the spatial distribution of ore
grade inside the ore body is not met, the learning
ability of ANNs offers an exciting alternative to
conventional geostatistical ore reserve calculation
[1, 16, 17]. Additionally, the grade of spatial
variability is captured by ANNs using a nonlinear
input-output mapping via a set of connection
weights (global fitting model), as opposed to
Kriging, which uses nearby sample points to
estimate the grade of a specific place using a linear
weighting (local fitting model). Yet there is no
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requirement  for  experimental  variogram
calculations in the ANNs method with a small
amount of input data [18]. Because geostatistical
calculations require a certain number of samples,
the calculation of variograms becomes
progressively uncertain, if not impossible [19, 20].
Geostatistical calculations also necessitate the use
of appropriate computer systems and a rigorous
mathematical foundation [21, 22].

Artificial neural networks have proven to be a
reliable and fast method in a variety of sectors,
turning out to be a good selection when you need a
comprehensive predictive analysis with many
variables [23]. Neural networks are capable of
capturing erratic and extremely complicated
interactions between process inputs and outputs.
They are effective in terms of computing and do
not require prior knowledge of the depicted process
[24].

A few data points presented as sampling with
known locations in 3D space are utilized as input
data for grade estimation using neural networks,
and the grade attribute is an output for the relevant
datasets. A network captures the complex spatial
organization of input and output patterns using a
collection of link weights that are modified during
network training. Through training, the network
captures an input-output relationship and gains
some prediction power, allowing it to provide
output (grades) for a certain input (northing,
easting, and elevation coordinates). The hidden and
output layers of a neural network can employ
various activation functions.

This research work aims to suggest ANN-based
models to calculate the grade of iron ore as a
function of Cl1%, Si0,%, and MnO% in El-Gezera
area in the Bahariya oasis, Egypt. In addition, GIS
and geo-statistical-based modeling is introduced to
anticipate the spatial distribution of Fe%, MnO%,
Cl%, and Si0,% and create distribution maps for
various items based on grades. The whole work is
done in 2D based on composite samples.

2. Description of El-Gezera Area

The Bahariya oasis area and the area around the
Bahariya Depression, where hematite and limonite
are visible on the surface, are rich in iron ore
resources [25, 26]. The iron ores are located in the
main four areas within Bahariya Oasis, which
include El-Gedida, El-Haraa, Ghorabi, and Naser
mines. El-Gezera area is bounded by latitudes 28°
26'10.5" and 28° 25' 44.5" N and longitudes 29° 10'
21.5" and 29° 11' 27.5" E. El-Gezera area is a new
extension for El-Gedida iron ore mine, as shown in
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Figure 1. El-Gedida region is situated on EI-
Bahariya depression's northeastern plateau.
Latitude 28° 27' N and longitude 29° 10' are the
approximate coordinates of El-Gedida area's core.
El-Gedida iron ore deposit is part of Bahariya Oasis
and it is the largest and richest iron ore deposit in
Egypt's Western Desert [27]. In this study, the
dataset (Fe%, MnO%, Cl%, and SiO;%) was
collected from 74 drill holes distributed over the
study area as shown in Figure 2. These datasets
include coordinates (north and east), altitudes, ore
thickness, and chemical analyses of the samples
retrieved from boreholes.

3. Geologic Setting of El-Gezera Area

El-Gezera and El-Gedida mines are near the
northeastern coast plateau of the Bahariya Oasis
depression in Egypt's Western Desert, which is an
oval-shaped depression surrounded by deteriorated
karst cone hills from the Nagb Formation. A high
relief characterizes the central part of the
depression, which is peppered by prominent hills.
Lyon's hill, at 254.5 meters above sea level and 42
meters over the plateau surface of the high center
area, is the highest hill. The Nagb Formation's
highly silicified nummulitic limestone makes up
these hills. Passing through a hard silcrete crust on
the northern half of the depression's floor. The low
wadi region, which rises to 198 meters above sea
level, surrounds the high mountain core area and its
related relict hills. On the northern part of the
depression's floor, there are some silcrete hillocks.
The high center area and wadi area, except for the
prominent hills, are mostly iron ore deposits that lie
unconformably underlying the Bahariya formation.
A major anticline and normal, significant faults are
the main structural components of El-Gezera
interior and the El-Gedida mine area. The Bahariya
Formation has an impact on the anticline. It strikes
NE-SW and plunges to the northeast. The faults
have NE-SW, N-S, and NW-SE trends. The
tectonic phase that predominated towards the end
of the Oligocene and activated ancient structures
may be connected to these significant faults [28,
29]. The geologic setting of El-Gedida mine area
and El-Gezera area is shown in Figure 3.

In local areas, upon the submarine swells of the
northeastern plateau of the Bahariy Depression
(e.g. El Gedida, El Gezera, El Harra, and Ghorabi
mine areas), the Lutetian carbonate sequence
changes entirely into a condensed section of
oncolitic-oolitic and nummulitic ironstone facies
(iron ores) punctuated by several deposition breaks
and unconformities. The ore stratigraphic profile
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represents an unconformity-bounded reduced overlain by the Lutetian-Bartonian glauconitic
section underlain by the Cenomanian clastics and sequence and/or Oligocene fluvial sediments [30].
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Figure 2. Boreholes distribution over the studied area.
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4. Methods
4.1. GIS analysis

A triangulated irregular network (TIN) was
employed in this study to examine the spatial
distribution of iron ore elements. A surface is
represented by the TIN as a collection of irregularly
spaced points connected by lines, creating a
network of neighboring triangles that don't overlap
of various sizes and proportions. The x, y, and z
values are stored in each triangle node [32]. When
it comes to surface analysis, TINs have a lot of
benefits. First, they include the original sample
points, which serve as a useful check on the model's
accuracy. Secondly, because of the variable density
of triangles, a TIN is an effective way to store

L)
B ©r-teix Formation

T
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wew Faults
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M7 Syncline Folds
Figure 3. a) Google Earth picture of El-Gezera region, b) Bahariya Oasis geological map, western desert, Egypt

showing El-Gezera mine area [28-31].
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surface characterizations such as terrains with
significant topographic variations. Finally, the data
structure makes calculating elevation, aspect,
slope, and line-of-sight between points a breeze.
The TIN data structure has become widely used in
applications such as volumetric computation for
roadway design, drainage research for land
development, and visualization of urban forms due
to a combination of these variables [33-35].

4.2. Variogram and Kriged models

The variogram is a graph that displays the
spatial variability of x(u,) , where u, is the
coordinate vector at each of the observation points
a=(1,2,3,..N) for the variable x. The average
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quadratic difference between two observations of a
variable separated by a distance-vector h is half
what is known as the empirical variogram y (h)
[36, 37]:

N(h)

1
Y = 5 Z [e(ua) — x(ug + W2 (D)

The experimental variogram was fitted with the
three most widely used theoretical variogram
models, as measured below [36]:

Spherical model:
3
y(h) = Cy + ﬂ—l[ﬁl ] forh<a
2a 2la forh>a (2)
y(h=¢ -
Experimental model:
—3h
y(h) =Cy + {1 — exp (T)} 3)
Gaussian model:
—3h?
y(h)=Cy+4{1—exp o 4

Kriging is a method for getting the best, most
objective estimates of regionalized variables in
unsampled areas by utilizing the structural
properties of the variogram and the initial set of
data values. Since Kriging takes the spatial
structure of the parameter into account, it performs
better than other methods including the arithmetic
mean technique, the closest neighbour method, the
distance weighted method, and polynomial
interpolation. The estimation variance at each
estimated point is also provided via kriging, which
is a measure of the estimated value's accuracy. This
is seen as kriging's primary benefit over other
estimating methods [37].

The mean can vary spatially using ordinary
kriging (OK): the mean is estimated for each
prediction neighborhood. The weighted averages
of the available data are used to make OK
predictions. The best linear unbiased predictor is
defined by the OK weights (BLUP). The OK
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forecasting, Z(xg) ok, is defined as [38], [39], and
[40]:
n
Z(0)oe = ) A% Z(xa)

n=1

®)

Given the requirement that the weights, 19¥
OK, equal to 1, in order to provide an unbiased
prediction:

n
Y ak=1
n=1

As a result, the kriging system aims to discover
suitable weights to multiply the given observations
before summing them to get the anticipated value.
The model's coefficients fitted to the variogram are
used to calculate these weights (or a different
function like the covariance function). The
forecasted value of the kriging prediction error
must be zero:

E{Z(x0)ox — Z(x0)} =0 (7
The kriging (or prediction) variance is written
as 02, (xq):

(6)

Uozk(xo) = E[{Z(x0)or — Z(x0)}?]

n n
y(0) — Z Z 25525y (xq — x5) +

a=1pf=1
n (®)
2> 284 (g = x0)
a=1
Thus we look for the wvalues of

A e e e e e Ay (the weights) that minimal this
expression with the constraint that the weights sum
equal to one (Eq. (6)). Lagrange multipliers are
used to achieve this minimization. The OK system,
which consists of n + 1 equation and n + 1
unknown, specifies the minimization requirements:

n
Z Agky(xa - xﬁ) + Yok = v(xq — xﬁ)a =1,..
B=1

n
Y ag=1
p=1

LN

©)
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where Y, is a Lagrange muliplier. Knowing
Yor , the OK's prediction variance may be
expressed as:

0 = o = ¥(©O) + ) 2 yxg — ) (10)
a=1

4.3. Artificial neural networks model

In this study, an ANN model was developed
using MATLAB software to predict the ore grade
as a function of Cl1%, Si0,%, and MnO%. The
developed model was trained validated and tested
using 70% (52 datasets), 15% (11), and 15% (11
datasets). The correlation between the input
parameters and the output parameters is first
checked as shown in Figure 4. After that all the
datasets are normalized, and transformed and then
we check various models at different numbers of
neurons for the hidden layer. The optimization
technique used in this study is Levenberg-
Marquardt  technique. = Levenberg-Marquardt
technique is one of the built-in MATLAB software
techniques. This is trial and error technique used to
compare between the model predicted values and
the actual values. This technique is used to solve
nonlinear least squares problems by minimizing the
sum of the squares of the errors between the model
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predicted values and the actual ones. The
Levenberg-Marquardt algorithm combines two
numerical minimization algorithms: the gradient
descent method and the Gauss-Newton method. In
the gradient descent method, the sum of the
squared errors is reduced by updating the
parameters in the steepest-descent direction. In the
Gauss-Newton method, the sum of the squared
errors is reduced by assuming the least square’s
function is locally quadratic in the parameters and
finding the minimum of this quadratic. The
developed model is described in Section 5.4.

5. Results and discussion
5.1. Statistical analysis

Statistical analysis is a tool that assists in
drawing useful inferences from raw and
unstructured information [41], [42], [43], [44], and
[45]. The statistical analysis as presented in Table
1 shows the statistical description of the data,
where C1% ranges from 0.26 to 3.41, Si0,% ranges
from 3.67 to 21.17, MnO% ranges from 0.02 to
3.08, and iron ore grade ranges from 40.76 to 59.1.
Figure 4 indicates that the iron ore grade is directly
proportional to MnO% and Cl% and inversely
proportional to Si0,%.

Table 1. Statistical analysis of the iron ore elements.

Statistical parameters Cl, % Si0;, % MnO, % Fe, %
Minimum 0.26 3.67 0.02 40.76
Maximum 341 21.17 3.08 59.10
Mean 0.93 10.04 0.48 50.9
Stan. error 0.06 0.50 0.06 0.50
Variance 0.29 18.00 0.26 17.68
Stan. deviation 0.54 4.24 0.51 4.20
Range 3.15 17.5 3.06 18.34
Co. of variation 0.58 0.42 1.06 0.08
Kurtosis 7.06 2.58 11.25 2.05
Skewness 1.57 0.58 2.45 -0.18
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Figure 4. Correlation coefficients between iron ore grade and input parameters.

5.2. Spatial distribution of iron ore elements

The interpolated TIN was used to construct iso-
chemical maps for iron ore elements distributions
in El-Gezera iron ore mine, as shown in Figure 5.
This TIN was classified, where each class has a
specific color and represents a specific percentage
of iron ore element. The Fe percentages in the El-
Gezera iron ore mine range from 40.76 to 59.1,
while the average Fe percentage in the whole mine
is 50.87. The regions with the highest Fe% are
distributed in the east part of the mine, while the
regions with the lowest Fe% are concentrated in the
center part of the mine toward the south. Also, the
results showed that the Fe% distribution decreased
in the direction from east to west. The Cl
percentages in the El-Gezera iron ore mine range
from 0.26 to 3.41, while the overall average of C1%
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in the mine is 0.94. The Cl1% distribution increases
in the direction from west to east, while the region
with the highest C1% is concentrated in the upper
east of the El-Gezera mine. The SiO,% in El-
Gezera mine ranges from 3.67 to 21.17, while the
average Si0,% in the whole mine is 10.05. The
Si0,% distribution increases from east to west,
while the regions with the highest SiO,% are
concentrated in the extension between the center
and west of the EI-Gezera mine. The MnO
percentages range from 0.02 to 3.08, while the
average MnO% in the whole mine is 0.49. The
MnO% distribution increases from west to east,
while the regions with the highest MnO% are
concentrated in the east part of El-Gezera area. The
majority of MnO% in El-Gezera mine is less than
0.4%, which is distributed in the west part of the
mine.
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Figure 5. Iso-chemical maps of iron ore elements distribution in the El-Gezera iron ore mine: (a) Fe%
distribution, (b) C1% distribution, (¢) MnO% distribution, and (d) Si02% distribution.

5.3. Geostatistical analysis
5.3.1. Construction of variograms

The construction of a variogram is the first step
in any geo-statistical study, and has a vital role in
the ore evaluation process. The selected variogram
model will be used in the kriging calculation and
will affect all results and conclusions. A global
variogram was constructed using GS™ program for
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Cl1%, Si0,%, MnO, and Fe% depending on the
available data for each parameter, and a spherical
model was selected as a more suitable model for
Cl1%, Si0,%, and Fe%, whereas a Gaussian model
was selected for MnO%, as shown in Figure 6. The
variogram parameters for Cl%, Si0.%, MnO%,
and Fe% in the studied area are summarized in
Table 2.



Ismael et al.

04
O
% 03 ——
< 0O g O
£ 02
> 0.11
0.0
0 200 400 600 80
Separation Distance (h), m
c
y ©
% 0.3 g8 —FoT o
£ 0.2 O
> 04
0.0
0 200 400 600 800

Separation Distance (h), m

Journal of Mining & Environment, Vol. 15, No. 3, 2024

(b)
gg nB o g

1%
10

O0o

Y(h), %2

0 200 400 600 800

Separation Distance (h), m

(d)
25
20 s

10

Y(h), %*

0 200 400 600 800

Separation Distance (h), m

Figure 6. Variogram models for iron ore elements at the EI-Gezera area: (a) Spherical variogram model for
C1%, (b) Spherical variogram model for SiO:%, (c) Gaussian variogram model for MnO%, (d) Spherical
variogram model for Fe %.

Table 2. Variogram parameters of the iron ore dataset.

Variogram parameters C1% Si02% MnO% Fe%
Type Spherical Spherical Gaussian Spherical
Direction Global Global Global Global
Range, m 167 356 162 114
Nugget effect (C0), %2 0.07 4 0.02 0
Sill (C), %2 0.3 19 0.31 16.8
Screen effect ratio C0/C 0.23 0.21 0.06 0

5.3.2. Kriged models

Ordinary Kriging was used to interpolate
unsampled locations by creating map analyses that
show the spatial distribution of Cl%, Si0,%,
MnO0%, and Fe% in the studied area, as shown in
Figure 7, depending on the selected variogram
model for each one. Maps are classified into
colures; each color represents a definite range of
percentages of Cl1%, Si0,%, MnO%, and Fe%. As
shown in Figure 7, the low percent of Cl is located
in the NW direction of the studied area; on the other
hand, the lowest percentages of SiO; are located in
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the NE direction. Also both MnO and Fe have the
highest percentages in the NE direction. The rest of
the studied area 1is characterized by high
percentages of Cl and SiO,, which require more
attention in the production stage to adjust to an
allowable percent, which is preferable in iron
production by blast furnace technique. Also maps
indicate that most of the Fe% and MnO% are
suitable for the iron production processes, except
for small pockets that need little attention in the
production stage. In general, the iron ore and its
impurities in the studied area are suitable for steel
production by blast furnace technique.
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Figure 7. Kriged models of iron ore elements at the EI-Gezera iron ore mine: (a) Fe% distribution, (b) C1%
distribution, (¢) MnO% distribution, and (d) Si0:2% distribution.

5.4. ANN model optimization and description

The proposed model is composed of three
layers. The input layer, for example, contains three
neurons for the input parameters of Cl1%, Si0,%,
and MnO%. There are 12 neural cells in the hidden
layer. One neuron is included for the output layer's
output parameter, which is the iron ore grade. To
find the best ANN model, we compared the tan
sigmoid vs. logistic sigmoid functions for one
hidden layer at different numbers of hidden
neurons (6, 7, 8, 9, 10, 11, and 12), as shown in
Tables 3 and 4. Then for two hidden layers, we
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compared the tan sigmoid as a transfer function to
the logistic sigmoid functions at varied numbers of
hidden neurons (10, 11, and 12).

The logistic sigmoid function with one hidden
layer of 12 neurons was discovered to be the most
optimal case. The model with these properties has
the highest correlation coefficient (0.94) as well as
the lowest RMSE (1.47%). We arrived at this
conclusion using the Levenberg-Marquardt
optimization technique and an output function that
is pure linear. Table 6 lists the proposed model's
properties, while Figures 8 and 9 depict the
suggested ANN architecture.
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Table 3. Tan sigmoid function accuracy evaluation at various neuronal densities for a single hidden layer.

Parameters 6 7 8 9 10 11 12
R 0.895 0.935 0.921 0.898 0.811 0.941 0.926

SD 4.43 3.26 34 3.96 5.801 3.061 3.579
RMSE 2.042 1.641 1.673 2.013 2.808 1.516 1.823
MRE 0.446 0.046 0.208 -0.316 1.573 -0.363 -0.513
MAE 3.289 2.529 2.592 2.876 3.973 2.158 2.597

Table 4. Sigmoid function accuracy evaluation at various neuron counts for a single hidden layer.

Parameters 6 7 8 9 10 11 12
R 0.908 0.934 0.829 0.932 0.915 0914 0.94
SD 3.654 3.443 4.547 3.334 4.142 3.448 2.951
RMSE 1.83 1.656 2.307 1.704 1.957 1.71 1.478
RE 0.165 -0.697 2.148 1.495 0.193 -0.18 0.098
AE 2.887 2.686 3.671 2.65 3.094 2.666 2.132

Table 5. Evaluation of accuracy for two hidden layers using sigmoid and tan sigmoid functions for various
numbers of neurons.

Parameters 1010T 1010S 11T 11118 1212T 12128
R 0.901 0.931 0.941 0.914 0.918 0.933
SD 4.427 3.449 3.061 3.448 3.592 3.392
RMSE 2.107 1.695 1.516 1.71 1.742 1.68
RE -1.527 -0.388 -0.363 -0.18 -0.672 0.045
AE 3.356 2.649 2.158 2.666 2.718 2.519
Table 6. lists the attributes of the suggested ANN model.
Parameter Value
No. of layers Three
Number of neurons in the input layer Three
Count of neurons in the hidden layer twelve
Training algorithm Levenberg-Marquardt
The algorithm layer's activation process Logistic sigmoid
The output layer's ability to activate Pure-linear
Hidden Layer Output Layer
Input Output
OF | gL
3 b g 1
12 1

Figure 8. The suggested ANN model for estimating iron content.
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Hidden Layer with 12 Neurons

Iinput Layer

Output Layer
j,_} Fe

Figure 9. Depicts the architectural design of the proposed ANN model for iron content estimation.

The following equations are used to normalize

the real input parameters for each dataset: MnOp = 0.653595Mn0 —1.013072 (13)

The iron ore grade (I0G), which is stated in

Cln = 0.634921C1 — 1165079 (1) Eq. 14, is calculated using the normalized
. _ e parameters for each dataset and the model
5102, = 0.0672045102 — 1.24664 (12) coefficients for each neuron in Table 7.
W .
10G = 13.185 [Z( Whi ) + b,u-] +45.915 (14)
1 + e~ [ClaWi 145102, W; 3+ MNOW, 3+D]

where b; represents the bias of neuron i, by; is the bias of hidden layer, and W; ;, W; ,, W; 3 represent the
weight of neuron i and inputs 1, 2, and 3, respectively. wy; represent the weight of the hidden neuron i.

Table 7. Coefficients of the proposed model.

i Wi, Wi, W3 b; W, by

1 6.9216 1.3239 -0.46593  -5.8893 -1.6456 0.48331

2 -5.2527  0.44629 3.556 5.5244 -0.85084

3 4.9567 3.7406 1.4072 -4.0856 0.41816

4 5.9483 2.5124 1.8044 -2.9855 -1.0177

5 3.0611 4.2142 3.7521 -1.7646 0.012133

6 -3.0765 6.0548 6.1678 4.7859 -0.58613

7 -4.739 -5.0098 -1.9871 -5.1214 0412

8 -3.8942 -2.7984 -9.4329 -7.5697 -0.75808

9 2.1839 -4.554 -3.9374 3.0022 1.0912

10 -3.22 -3.6835 5.0078 -2.4559 0.4085

11 1.8354 1.6825 -5.9187 6.1958 -0.11845

12 -5.381 -2.5286 -5.991 -9.1067 0.37113

The proposed ANN model's iron ore grade slope line, which shows how accurate the model is;

predictions are shown against the actual values for for the training, validation, and all datasets, the
training, validation, and all data sets in Figures correlation coefficients are 0.93, 0.991, and 0.943,
10,11, and 12. The data points are close to the unit- respectively.
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Figure 10. Cross-plot of training data; the suggested model.
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Figure 11. Cross plot of validation data of the suggested model.
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Figure 12. Cross-plot of all the data from the suggested model.
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6. Conclusions

In this paper, the iron ore grade (Fe%, Mn0%,
Cl%, and Si0,%) in the El-Gezera area has been
predicted using Triangulation Irregular Network
(TIN) methods, geostatistical-based modeling, and
Artificial Neural Network (ANN) model. The
following conclusions can be drawn:

The TIN method for iron ore elements
distributions proved that the regions with the
highest Fe% are distributed in the east part of the
mine, while the regions with the lowest Fe% are
concentrated in the center part of the mine toward
the south. Also, the Fe% distribution decreases
from east to west. The Cl% distribution increases
from west to east, while the region with the highest
Cl% is concentrated in the upper east of El-Gezera
mine. The SiO, % distribution increases from east
to west, while the regions with the highest Si0,%
are concentrated in the extension between the
center and west of El-Gezera mine. The MnO%
distribution increases from west to east, while the
regions with the highest MnO% are concentrated in
the east part of El-Gezera area. The majority of
MnO% in El-Gezera mine is less than 0.4%, which
is distributed in the west part of the mine.

The constructed variograms kriged models for
iron ore elements in El-Gezera area showed that the
lowest percentage of Cl is located in the NW
direction of the studied area; on the other hand, the
lowest percentages of SiO, are located in the NE
direction. Also, both MnO and Fe high percent are
located in the NE direction. The rest of the studied
area suffered from high percentages of Cl and SiOs..

With a correlation coefficient of 0.94, a novel
artificial neural network (ANN)-based empirical
correlation was created for calculating the iron
grade as a function of MnO%, Cl1%, and SiO,%.
Without having to write any code, the suggested
ANN model may be used to predict the iron grade
for other datasets that fall within the range.

Furthermore, most of the Fe% and MnO% are
suitable for the iron production processes, except
for small pockets that need little attention in the
production stage. In general, the iron ore with its
impurities in the studied area are still suitable for
steel production by blast furnace technique.
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