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 The mineral resource estimation process necessitates a precise prediction of the grade 
based on limited drilling data. Grade is crucial factor in the selection of various mining 
projects for investment and development. When stationary requirements are not met, 
geo-statistical approaches for reserve estimation are challenging to apply. Artificial 
Neural Networks (ANNs) are a better alternative to geo-statistical techniques since they 
take less processing time to create and apply. For forecasting the iron ore grade at El-
Gezera region in El- Baharya Oasis, Western Desert of Egypt, a novel Artificial Neural 
Network (ANN) model, geo-statistical methods (Variograms and Ordinary kriging), and 
Triangulation Irregular Network (TIN) were employed in this study. The geo-statistical 
models and TIN technique revealed a distinct distribution of iron ore elements in the 
studied area. Initially, the tan sigmoid and logistic sigmoid functions at various numbers 
of neurons were compared to choose the best ANN model of one and two hidden layers 
using the Levenberg-Marquardt pure-linear output function. The presented ANN model 
estimates the iron ore as a function of the grades of Cl%, SiO2%, and MnO% with a 
correlation factor of 0.94. The proposed ANN model can be applied to any other dataset 
within the range with acceptable accuracy. 
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1. Introduction 

One of the most crucial concepts and difficult 
mining process phases is mineral resource 
estimation. It is important in the decision-making 
process for mining investments including pit 
design, production scheduling, and grade control, 
as previously covered [1-9]. 

The main purpose of mineral resource 
estimation is to determine the mineral grade at a 
location with limited drilling data [10]. Owing to 
complicated geological activity of an era, the 
spatial distribution of mineral deposits is 
unpredictable. Thus estimating mineral resources 
at an unsampled site is difficult [11, 12]. 

Artificial Neural Networks (ANNs) are 
effective computer-based substitutes for 
calculating mineral reserves [1]. A computer model 

called a neural network is based on the structure of 
neuron cells in the biological nervous system. The 
neural network may learn the data pattern with the 
help of a learning algorithm and a training batch of 
data [13–15]. When the second-order stationary 
assumption regarding the spatial distribution of ore 
grade inside the ore body is not met, the learning 
ability of ANNs offers an exciting alternative to 
conventional geostatistical ore reserve calculation 
[1, 16, 17]. Additionally, the grade of spatial 
variability is captured by ANNs using a nonlinear 
input-output mapping via a set of connection 
weights (global fitting model), as opposed to 
Kriging, which uses nearby sample points to 
estimate the grade of a specific place using a linear 
weighting (local fitting model). Yet there is no 
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requirement for experimental variogram 
calculations in the ANNs method with a small 
amount of input data [18]. Because geostatistical 
calculations require a certain number of samples, 
the calculation of variograms becomes 
progressively uncertain, if not impossible [19, 20]. 
Geostatistical calculations also necessitate the use 
of appropriate computer systems and a rigorous 
mathematical foundation [21, 22].  

Artificial neural networks have proven to be a 
reliable and fast method in a variety of sectors, 
turning out to be a good selection when you need a 
comprehensive predictive analysis with many 
variables [23]. Neural networks are capable of 
capturing erratic and extremely complicated 
interactions between process inputs and outputs. 
They are effective in terms of computing and do 
not require prior knowledge of the depicted process 
[24]. 

A few data points presented as sampling with 
known locations in 3D space are utilized as input 
data for grade estimation using neural networks, 
and the grade attribute is an output for the relevant 
datasets. A network captures the complex spatial 
organization of input and output patterns using a 
collection of link weights that are modified during 
network training. Through training, the network 
captures an input-output relationship and gains 
some prediction power, allowing it to provide 
output (grades) for a certain input (northing, 
easting, and elevation coordinates). The hidden and 
output layers of a neural network can employ 
various activation functions. 

This research work aims to suggest ANN-based 
models to calculate the grade of iron ore as a 
function of Cl%, SiO2%, and MnO% in El-Gezera 
area in the Bahariya oasis, Egypt. In addition, GIS 
and geo-statistical-based modeling is introduced to 
anticipate the spatial distribution of Fe%, MnO%, 
Cl%, and SiO2% and create distribution maps for 
various items based on grades. The whole work is 
done in 2D based on composite samples. 

2. Description of El-Gezera Area 

The Bahariya oasis area and the area around the 
Bahariya Depression, where hematite and limonite 
are visible on the surface, are rich in iron ore 
resources [25, 26]. The iron ores are located in the 
main four areas within Bahariya Oasis, which 
include El-Gedida, El-Haraa, Ghorabi, and Naser 
mines. El-Gezera area is bounded by latitudes 28o 
 'N and longitudes 29o 10 ״and 28o 25' 44.5 ״10.5 '26
 E. El-Gezera area is a new ״and 29o 11' 27.5 ״21.5
extension for El-Gedida iron ore mine, as shown in 

Figure 1. El-Gedida region is situated on El-
Bahariya depression's northeastern plateau. 
Latitude 28o 27' N and longitude 29o 10' are the 
approximate coordinates of El-Gedida area's core. 
El-Gedida iron ore deposit is part of Bahariya Oasis 
and it is the largest and richest iron ore deposit in 
Egypt's Western Desert [27]. In this study, the 
dataset (Fe%, MnO%, Cl%, and SiO2%) was 
collected from 74 drill holes distributed over the 
study area as shown in Figure 2. These datasets 
include coordinates (north and east), altitudes, ore 
thickness, and chemical analyses of the samples 
retrieved from boreholes. 

3. Geologic Setting of El-Gezera Area 

El-Gezera and El-Gedida mines are near the 
northeastern coast plateau of the Bahariya Oasis 
depression in Egypt's Western Desert, which is an 
oval-shaped depression surrounded by deteriorated 
karst cone hills from the Naqb Formation. A high 
relief characterizes the central part of the 
depression, which is peppered by prominent hills. 
Lyon's hill, at 254.5 meters above sea level and 42 
meters over the plateau surface of the high center 
area, is the highest hill. The Naqb Formation's 
highly silicified nummulitic limestone makes up 
these hills. Passing through a hard silcrete crust on 
the northern half of the depression's floor. The low 
wadi region, which rises to 198 meters above sea 
level, surrounds the high mountain core area and its 
related relict hills. On the northern part of the 
depression's floor, there are some silcrete hillocks. 
The high center area and wadi area, except for the 
prominent hills, are mostly iron ore deposits that lie 
unconformably underlying the Bahariya formation. 
A major anticline and normal, significant faults are 
the main structural components of El-Gezera 
interior and the El-Gedida mine area. The Bahariya 
Formation has an impact on the anticline. It strikes 
NE-SW and plunges to the northeast. The faults 
have NE-SW, N-S, and NW-SE trends. The 
tectonic phase that predominated towards the end 
of the Oligocene and activated ancient structures 
may be connected to these significant faults [28, 
29]. The geologic setting of El-Gedida mine area 
and El-Gezera area is shown in Figure 3. 

In local areas, upon the submarine swells of the 
northeastern plateau of the Bahariy Depression 
(e.g. El Gedida, El Gezera, El Harra, and Ghorabi 
mine areas), the Lutetian carbonate sequence 
changes entirely into a condensed section of 
oncolitic-oolitic and nummulitic ironstone facies 
(iron ores) punctuated by several deposition breaks 
and unconformities. The ore stratigraphic profile 
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represents an unconformity-bounded reduced 
section underlain by the Cenomanian clastics and 

overlain by the Lutetian-Bartonian glauconitic 
sequence and/or Oligocene fluvial sediments [30]. 

 
Figure 1. Location map of El-Gezera iron ore area. 

 
Figure 2. Boreholes distribution over the studied area. 
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Figure 3. a) Google Earth picture of El-Gezera region, b) Bahariya Oasis geological map, western desert, Egypt 

showing El-Gezera mine area [28–31]. 

4. Methods 
4.1. GIS analysis 

A triangulated irregular network (TIN) was 
employed in this study to examine the spatial 
distribution of iron ore elements. A surface is 
represented by the TIN as a collection of irregularly 
spaced points connected by lines, creating a 
network of neighboring triangles that don't overlap 
of various sizes and proportions. The x, y, and z 
values are stored in each triangle node [32]. When 
it comes to surface analysis, TINs have a lot of 
benefits. First, they include the original sample 
points, which serve as a useful check on the model's 
accuracy. Secondly, because of the variable density 
of triangles, a TIN is an effective way to store 

surface characterizations such as terrains with 
significant topographic variations. Finally, the data 
structure makes calculating elevation, aspect, 
slope, and line-of-sight between points a breeze. 
The TIN data structure has become widely used in 
applications such as volumetric computation for 
roadway design, drainage research for land 
development, and visualization of urban forms due 
to a combination of these variables [33-35]. 

4.2. Variogram and Kriged models 

The variogram is a graph that displays the 
spatial variability of  ݔ(ݑ௔) , where ݑ௔  is the 
coordinate vector at each of the observation points 
ܽ = (1, 2, 3, … ܰ) for the variable x. The average 
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quadratic difference between two observations of a 
variable separated by a distance-vector h is half 
what is known as the empirical variogram ߛ(ℎ) 
[36, 37]: 

(ℎ)ߛ =
1

2ܰ(ℎ) ෍ (௔ݑ)ݔ] − ௔ݑ)ݔ + ℎ)]ଶ

ே(௛)

௔ୀଵ

 (1) 

The experimental variogram was fitted with the 
three most widely used theoretical variogram 
models, as measured below [36]: 

Spherical model: 

൝ߛ(ℎ) = ଴ܥ + ൤ଷ௛
ଶ௔

− ଵ
ଶ

ቂ௛
௔

ቃ
ଷ

൨

(ℎ)ߛ = ܥ
ൡ ݂ݎ݋ℎ < ܽ

ℎݎ݋݂ ≥ ܽ (2) 

Experimental model: 

(ℎ)ߛ = ଴ܥ + ൜1 − ݌ݔ݁ ൬
−3ℎ

ܽ
൰ൠ (3) 

Gaussian model: 

(ℎ)ߛ = ଴ܥ + ቊ1 − ݌ݔ݁ ቆ
−3ℎଶ

ܽଶ ቇቋ (4) 

Kriging is a method for getting the best, most 
objective estimates of regionalized variables in 
unsampled areas by utilizing the structural 
properties of the variogram and the initial set of 
data values. Since Kriging takes the spatial 
structure of the parameter into account, it performs 
better than other methods including the arithmetic 
mean technique, the closest neighbour method, the 
distance weighted method, and polynomial 
interpolation. The estimation variance at each 
estimated point is also provided via kriging, which 
is a measure of the estimated value's accuracy. This 
is seen as kriging's primary benefit over other 
estimating methods [37]. 

The mean can vary spatially using ordinary 
kriging (OK): the mean is estimated for each 
prediction neighborhood. The weighted averages 
of the available data are used to make OK 
predictions. The best linear unbiased predictor is 
defined by the OK weights (BLUP). The OK 

forecasting, ܼ(ݔ଴)௢௞ , is defined as [38], [39], and 
[40]: 

௢௞(଴ݔ)ܼ = ෍ ௔ߣ
௢௞

௡

௡ୀଵ

 (5) (௔ݔ)ܼ

Given the requirement that the weights, ߣ௔
௢௞ 

OK, equal to 1, in order to provide an unbiased 
prediction: 

෍ ௔ߣ
௢௞ = 1

௡

௡ୀଵ

 (6) 

As a result, the kriging system aims to discover 
suitable weights to multiply the given observations 
before summing them to get the anticipated value. 
The model's coefficients fitted to the variogram are 
used to calculate these weights (or a different 
function like the covariance function). The 
forecasted value of the kriging prediction error 
must be zero: 

௢௞(଴ݔ)ܼ}ܧ − {(଴ݔ)ܼ = 0 (7) 

The kriging (or prediction) variance is written 
as ߪ௢௞

ଶ  :(଴ݔ)

௢௞ߪ
ଶ (଴ݔ) = ௢௞(଴ݔ)ܼ}]ܧ −  [ଶ{(଴ݔ)ܼ

 

(0)ߛ − ෍ ෍ ௔ߣ
௢௞ߣఉ

௢௞ߛ൫ݔ௔ − ఉ൯ݔ
௡

ఉୀଵ

௡

௔ୀଵ

+ 

(8) 
2 ෍ ௔ߣ

௢௞
௡

௔ୀଵ

௔ݔ)ߛ −  (଴ݔ

Thus we look for the values of 
ଵߣ … … … … … …  ௡  (the weights) that minimal thisߣ
expression with the constraint that the weights sum 
equal to one (Eq. (6)). Lagrange multipliers are 
used to achieve this minimization. The OK system, 
which consists of n + 1 equation and n + 1 
unknown, specifies the minimization requirements: 

 

෍ ఉߣ
௢௞ߛ൫ݔ௔ − ఉ൯ݔ + ߰௔௞ = ௔ݔ൫ߛ − ఉ൯ܽݔ = 1, … . , ݊

௡

ఉୀଵ

෍ ఉߣ
௢௞

௡

ఉୀଵ

= 1

 (9) 

 



Ismael et al. Journal of Mining & Environment, Vol. 15, No. 3, 2024 
 

894 

where ߰௢௞  is a Lagrange muliplier. Knowing 
߰௢௞  , the OK's prediction variance may be 
expressed as: 

௢௞ߪ
ଶ = ߰௢௞ − (0)ߛ + ෍ ௔ߣ

௢௞
௡

௔ୀଵ

௔ݔ)ߛ −  ଴) (10)ݔ

4.3. Artificial neural networks model  

In this study, an ANN model was developed 
using MATLAB software to predict the ore grade 
as a function of Cl%, SiO2%, and MnO%. The 
developed model was trained validated and tested 
using 70% (52 datasets), 15% (11), and 15% (11 
datasets). The correlation between the input 
parameters and the output parameters is first 
checked as shown in Figure 4. After that all the 
datasets are normalized, and transformed and then 
we check various models at different numbers of 
neurons for the hidden layer. The optimization 
technique used in this study is Levenberg-
Marquardt technique. Levenberg-Marquardt 
technique is one of the built-in MATLAB software 
techniques. This is trial and error technique used to 
compare between the model predicted values and 
the actual values. This technique is used to solve 
nonlinear least squares problems by minimizing the 
sum of the squares of the errors between the model 

predicted values and the actual ones. The 
Levenberg-Marquardt algorithm combines two 
numerical minimization algorithms: the gradient 
descent method and the Gauss-Newton method. In 
the gradient descent method, the sum of the 
squared errors is reduced by updating the 
parameters in the steepest-descent direction. In the 
Gauss-Newton method, the sum of the squared 
errors is reduced by assuming the least square’s 
function is locally quadratic in the parameters and 
finding the minimum of this quadratic. The 
developed model is described in Section 5.4. 

5  . Results and discussion 
5.1. Statistical analysis 

Statistical analysis is a tool that assists in 
drawing useful inferences from raw and 
unstructured information [41], [42], [43], [44], and 
[45]. The statistical analysis as presented in Table 
1 shows the statistical description of the data, 
where Cl% ranges from 0.26 to 3.41, SiO2% ranges 
from 3.67 to 21.17, MnO% ranges from 0.02 to 
3.08, and iron ore grade ranges from 40.76 to 59.1. 
Figure 4 indicates that the iron ore grade is directly 
proportional to MnO% and Cl% and inversely 
proportional to SiO2%. 

Table 1. Statistical analysis of the iron ore elements. 
Statistical parameters Cl, % SiO2, % MnO, % Fe, % 

Minimum 0.26 3.67 0.02 40.76 
Maximum 3.41 21.17 3.08 59.10 
Mean 0.93 10.04 0.48 50.9 
Stan. error 0.06 0.50 0.06 0.50 
Variance 0.29 18.00 0.26 17.68 
Stan. deviation 0.54 4.24 0.51 4.20 
Range 3.15 17.5 3.06 18.34 
Co. of variation 0.58 0.42 1.06 0.08 
Kurtosis 7.06 2.58 11.25 2.05 
Skewness 1.57 0.58 2.45 -0.18 
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Figure 4. Correlation coefficients between iron ore grade and input parameters. 

5.2. Spatial distribution of iron ore elements 

The interpolated TIN was used to construct iso-
chemical maps for iron ore elements distributions 
in El-Gezera iron ore mine, as shown in Figure 5. 
This TIN was classified, where each class has a 
specific color and represents a specific percentage 
of iron ore element. The Fe percentages in the El-
Gezera iron ore mine range from 40.76 to 59.1, 
while the average Fe percentage in the whole mine 
is 50.87. The regions with the highest Fe% are 
distributed in the east part of the mine, while the 
regions with the lowest Fe% are concentrated in the 
center part of the mine toward the south. Also, the 
results showed that the Fe% distribution decreased 
in the direction from east to west. The Cl 
percentages in the El-Gezera iron ore mine range 
from 0.26 to 3.41, while the overall average of Cl% 

in the mine is 0.94. The Cl% distribution increases 
in the direction from west to east, while the region 
with the highest Cl% is concentrated in the upper 
east of the El-Gezera mine. The SiO2% in El-
Gezera mine ranges from 3.67 to 21.17, while the 
average SiO2% in the whole mine is 10.05. The 
SiO2% distribution increases from east to west, 
while the regions with the highest SiO2% are 
concentrated in the extension between the center 
and west of the El-Gezera mine. The MnO 
percentages range from 0.02 to 3.08, while the 
average MnO% in the whole mine is 0.49. The 
MnO% distribution increases from west to east, 
while the regions with the highest MnO% are 
concentrated in the east part of El-Gezera area. The 
majority of MnO% in El-Gezera mine is less than 
0.4%, which is distributed in the west part of the 
mine. 
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Figure 5. Iso-chemical maps of iron ore elements distribution in the El-Gezera iron ore mine: (a) Fe% 

distribution, (b) Cl% distribution, (c) MnO% distribution, and (d) SiO2% distribution. 

5.3. Geostatistical analysis 
5.3.1. Construction of variograms 

The construction of a variogram is the first step 
in any geo-statistical study, and has a vital role in 
the ore evaluation process. The selected variogram 
model will be used in the kriging calculation and 
will affect all results and conclusions. A global 
variogram was constructed using GS+  program for 

Cl%, SiO2%, MnO, and Fe% depending on the 
available data for each parameter, and a spherical 
model was selected as a more suitable model for 
Cl%, SiO2%, and Fe%, whereas a Gaussian model 
was selected for MnO%, as shown in Figure 6. The 
variogram parameters for Cl%, SiO2%, MnO%, 
and Fe% in the studied area are summarized in 
Table 2. 
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Figure 6. Variogram models for iron ore elements at the El-Gezera area: (a) Spherical variogram model for 
Cl%, (b) Spherical variogram model for SiO2%, (c) Gaussian variogram model for MnO%, (d) Spherical 

variogram model for Fe %. 

Table 2. Variogram parameters of the iron ore dataset.  
Variogram parameters Cl% SiO2% MnO% Fe% 

Type Spherical Spherical Gaussian Spherical 
Direction Global Global Global Global 
Range, m 167 356 162 114 
Nugget effect (C0), %2 0.07 4 0.02 0 
Sill (C), %2 0.3 19 0.31 16.8 
Screen effect ratio C0/C 0.23 0.21 0.06 0 

 
5.3.2. Kriged models  

Ordinary Kriging was used to interpolate 
unsampled locations by creating map analyses that 
show the spatial distribution of Cl%, SiO2%, 
MnO%, and Fe% in the studied area, as shown in 
Figure 7, depending on the selected variogram 
model for each one. Maps are classified into 
colures; each color represents a definite range of 
percentages of Cl%, SiO2%, MnO%, and Fe%. As 
shown in Figure 7, the low percent of Cl is located 
in the NW direction of the studied area; on the other 
hand, the lowest percentages of SiO2 are located in 

the NE direction. Also both MnO and Fe have the 
highest percentages in the NE direction. The rest of 
the studied area is characterized by high 
percentages of Cl and SiO2, which require more 
attention in the production stage to adjust to an 
allowable percent, which is preferable in iron 
production by blast furnace technique. Also maps 
indicate that most of the Fe% and MnO% are 
suitable for the iron production processes, except 
for small pockets that need little attention in the 
production stage. In general, the iron ore and its 
impurities in the studied area are suitable for steel 
production by blast furnace technique. 
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Figure 7. Kriged models of iron ore elements at the El-Gezera iron ore mine: (a) Fe% distribution, (b) Cl% 

distribution, (c) MnO% distribution, and (d) SiO2% distribution. 

5.4. ANN model optimization and description  

The proposed model is composed of three 
layers. The input layer, for example, contains three 
neurons for the input parameters of Cl%, SiO2%, 
and MnO%. There are 12 neural cells in the hidden 
layer. One neuron is included for the output layer's 
output parameter, which is the iron ore grade. To 
find the best ANN model, we compared the tan 
sigmoid vs. logistic sigmoid functions for one 
hidden layer at different numbers of hidden 
neurons (6, 7, 8, 9, 10, 11, and 12), as shown in 
Tables 3 and 4. Then for two hidden layers, we 

compared the tan sigmoid as a transfer function to 
the logistic sigmoid functions at varied numbers of 
hidden neurons (10, 11, and 12). 

The logistic sigmoid function with one hidden 
layer of 12 neurons was discovered to be the most 
optimal case. The model with these properties has 
the highest correlation coefficient (0.94) as well as 
the lowest RMSE (1.47%). We arrived at this 
conclusion using the Levenberg-Marquardt 
optimization technique and an output function that 
is pure linear. Table 6 lists the proposed model's 
properties, while Figures 8 and 9 depict the 
suggested ANN architecture. 
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Table 3. Tan sigmoid function accuracy evaluation at various neuronal densities for a single hidden layer. 
Parameters 6 7 8 9 10 11 12 

R 0.895 0.935 0.921 0.898 0.811 0.941 0.926 
SD 4.43 3.26 3.4 3.96 5.801 3.061 3.579 

RMSE 2.042 1.641 1.673 2.013 2.808 1.516 1.823 
MRE 0.446 0.046 0.208 -0.316 1.573 -0.363 -0.513 
MAE 3.289 2.529 2.592 2.876 3.973 2.158 2.597 

Table 4. Sigmoid function accuracy evaluation at various neuron counts for a single hidden layer. 
Parameters 6 7 8 9 10 11 12 

R 0.908 0.934 0.829 0.932 0.915 0.914 0.94 
SD 3.654 3.443 4.547 3.334 4.142 3.448 2.951 

RMSE 1.83 1.656 2.307 1.704 1.957 1.71 1.478 
RE 0.165 -0.697 2.148 1.495 0.193 -0.18 0.098 
AE 2.887 2.686 3.671 2.65 3.094 2.666 2.132 

Table 5. Evaluation of accuracy for two hidden layers using sigmoid and tan sigmoid functions for various 
numbers of neurons. 

Parameters 1010T 1010S 1111T 1111S 1212T 1212S 
R 0.901 0.931 0.941 0.914 0.918 0.933 

SD 4.427 3.449 3.061 3.448 3.592 3.392 
RMSE 2.107 1.695 1.516 1.71 1.742 1.68 

RE -1.527 -0.388 -0.363 -0.18 -0.672 0.045 
AE 3.356 2.649 2.158 2.666 2.718 2.519 

Table 6. lists the attributes of the suggested ANN model. 
Parameter Value 

No. of layers Three 
Number of neurons in the input layer Three 
Count of neurons in the hidden layer twelve  
Training algorithm Levenberg-Marquardt 
The algorithm layer's activation process Logistic sigmoid  
The output layer's ability to activate Pure-linear  

 
Figure 8. The suggested ANN model for estimating iron content. 
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Figure 9. Depicts the architectural design of the proposed ANN model for iron content estimation. 

The following equations are used to normalize 
the real input parameters for each dataset: 

௡݈ܥ = ݈ܥ0.634921 − 1.165079 (11) 

ܱܵ݅2௡ = 0.067204ܱܵ݅2 − 1.24664 (12) 

݊ܯ ௡ܱ = ܱ݊ܯ0.653595 − 1.013072 (13) 

The iron ore grade (IOG), which is stated in 
Eq. 14, is calculated using the normalized 
parameters for each dataset and the model 
coefficients for each neuron in Table 7. 

 

ܩܱܫ = 13.185 ൤෍ ൬
௛௜ݓ

1 + ݁ିൣ஼௟೙ௐ೔,భାௌ௜ைଶ೙ ௐ೔,మାெ௡ைௐ೔,యା௕೔൧
൰ + ܾ௛௜൨ + 45.915 (14) 

 
where ܾ௜ represents the bias of neuron i, ܾ௛௜ is the bias of hidden layer, and ௜ܹ,ଵ, ௜ܹ,ଶ, ௜ܹ,ଷ represent the 

weight of neuron i and inputs 1, 2, and 3, respectively. ݓ௛௜ represent the weight of the hidden neuron i. 

Table 7. Coefficients of the proposed model. 
 ࢏ࢎ࢈ ࢏ࢎࢃ ࢏࢈ ૜,࢏ࢃ ૛,࢏ࢃ ૚,࢏ࢃ ࢏
1 6.9216 1.3239 -0.46593 -5.8893 -1.6456 0.48331 
2 -5.2527 0.44629 3.556 5.5244 -0.85084  
3 4.9567 3.7406 1.4072 -4.0856 0.41816  
4 5.9483 2.5124 1.8044 -2.9855 -1.0177  
5 3.0611 4.2142 3.7521 -1.7646 0.012133  
6 -3.0765 6.0548 6.1678 4.7859 -0.58613  
7 -4.739 -5.0098 -1.9871 -5.1214 0.412  
8 -3.8942 -2.7984 -9.4329 -7.5697 -0.75808  
9 2.1839 -4.554 -3.9374 3.0022 1.0912  
10 -3.22 -3.6835 5.0078 -2.4559 0.4085  
11 1.8354 1.6825 -5.9187 6.1958 -0.11845  
12 -5.381 -2.5286 -5.991 -9.1067 0.37113  

 
The proposed ANN model's iron ore grade 

predictions are shown against the actual values for 
training, validation, and all data sets in Figures 
10,11, and 12. The data points are close to the unit-

slope line, which shows how accurate the model is; 
for the training, validation, and all datasets, the 
correlation coefficients are 0.93, 0.991, and 0.943, 
respectively. 
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Figure 10. Cross-plot of training data; the suggested model. 

 
Figure 11. Cross plot of validation data of the suggested model. 

 
Figure 12. Cross-plot of all the data from the suggested model. 
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6. Conclusions 

In this paper, the iron ore grade (Fe%, MnO%, 
Cl%, and SiO2%) in the El-Gezera area has been 
predicted using Triangulation Irregular Network 
(TIN) methods, geostatistical-based modeling, and 
Artificial Neural Network (ANN) model. The 
following conclusions can be drawn: 

The TIN method for iron ore elements 
distributions proved that the regions with the 
highest Fe% are distributed in the east part of the 
mine, while the regions with the lowest Fe% are 
concentrated in the center part of the mine toward 
the south. Also, the Fe% distribution decreases 
from east to west. The Cl% distribution increases 
from west to east, while the region with the highest 
Cl% is concentrated in the upper east of El-Gezera 
mine. The SiO2 % distribution increases from east 
to west, while the regions with the highest SiO2% 
are concentrated in the extension between the 
center and west of El-Gezera mine. The MnO% 
distribution increases from west to east, while the 
regions with the highest MnO% are concentrated in 
the east part of El-Gezera area. The majority of 
MnO% in El-Gezera mine is less than 0.4%, which 
is distributed in the west part of the mine. 

The constructed variograms kriged models for 
iron ore elements in El-Gezera area showed that the 
lowest percentage of Cl is located in the NW 
direction of the studied area; on the other hand, the 
lowest percentages of SiO2 are located in the NE 
direction. Also, both MnO and Fe high percent are 
located in the NE direction. The rest of the studied 
area suffered from high percentages of Cl and SiO2. 

With a correlation coefficient of 0.94, a novel 
artificial neural network (ANN)-based empirical 
correlation was created for calculating the iron 
grade as a function of MnO%, Cl%, and SiO2%. 
Without having to write any code, the suggested 
ANN model may be used to predict the iron grade 
for other datasets that fall within the range. 

Furthermore, most of the Fe% and MnO% are 
suitable for the iron production processes, except 
for small pockets that need little attention in the 
production stage. In general, the iron ore with its 
impurities in the studied area are still suitable for 
steel production by blast furnace technique. 
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  چکیده:

ــاس داده اری ـع   قیدق  ینیبشیبه پ ازی ـن  یمنـابع معـدن  نیتخم ندیفرآ  يمختلف برا  یمعـدن  يهاعامل مهم در انتخـاب پروژه  کی ـدارد. درجه   يمحـدود حفـار  يهابر اسـ
 یعصــب  يهااســت. شــبکه  زیچالش برانگ رهیبرآورد ذخ يبرا  يآمار نیزم  يهاشــود، روشیکه الزامات ثابت برآورده نم  یو توســعه اســت. هنگام  يگذار هیســرما
سنگ آهن در  اریع   ینیبشیپ ي. برابرندیو اعمال م جادیا  يبرا  يزمان پردازش کمتر رایهستند ز  يآمارنیزم  يهاکیتکن يبرا  يبهتر نیگزیجا  )ANN(  یمصنوع 

حرا  ا،یمنطقه الجزرا در واحه البهار ر،   یغرب يصـ ب دیمدل جد کیمصـ بکه عصـ نوع  یشـ ) و  ی معمول  نگیجیها و کر  وگرامی(وار يآمار  نیزم  يها، روش)ANN(  یمصـ
عناصـر سـنگ آهن را در منطقه مورد مطالعه    زیمتما عیتوز TIN  کیو تکن يآمار  نیزم  يهامطالعه به کار گرفته شـدند. مدل نیدر ا )TIN(  یشـبکه نامنظم مثلث

پنهان با  هیو دو لا  کیاز   ANNمدل   نیانتخاب بهتر يمختلف نورون برا  داددر تع  کیلجسـت  دیگموئیبه زرد و س ـ لیما  يقهوها  دیگموئینشـان داد. در ابتدا، توابع س ـ
 بیبا ضر  ٪MnO، و 2SiOکلر،   اریاز ع   یارائه شده سنگ آهن را به عنوان تابع  ANNشدند. مدل   سهیمارکوارت مقا-خالص لوونبرگ  یخط  یاستفاده از تابع خروج

 در محدوده با دقت قابل قبول اعمال کرد. يگریهر مجموعه داده د يتوان برایرا م يشنهادیپ ANNزند. مدل یم نیتخم 0.94 یهمبستگ

  .GISآمار،  نیسنگ آهن، منطقه الجزره، زم اریع  ،یمصنوع  یشبکه عصب کلمات کلیدي:

 

 

 

 


