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 The Mineral Prospectivity Mapping (MPM) is a procedure of integrating various 
exploration data to identify promising areas for follow up mineral exploration programs. 
MPM facilitates identification of mineral deposit prospects through reducing search 
spaces for the purpose of mitigating cost and time shortages. In this regard, geochemical 
anomaly maps constitute one of the most important evidential layers for MPM. In this 
research work, to produce an efficient geochemical evidential layer, the Staged Factor 
Analysis (SFA) method and Geochemical Mineralization Probability Index (GMPI) were 
performed on a dataset of 657 stream sediment samples. In addition to the mentioned 
maps, a layer of proximity to faults was used to efficiently identify the intended targets 
of copper hydrothermal deposits. The layers were then weighted and combined using 
logistic functions and the geometric average method. Based on the obtained results, the 
promising areas were found in three parts including western, central, and northern areas, 
which correspond to the faulted units of andesite, tuff, granite, and granodiorite intrusive 
masses. Finally, in order to evaluate the generated model, the prediction-area (P-A) plot 
was used, which shows the relative success of the generated map in specifying the desired 
exploration targets. The P-A plot showed that this model has a prediction rate of 64%. It 
seems that the proposed method by considering multi-element geochemical signatures 
and combination by another exploratory layer target the promising areas, those that are 
simultaneously present with other exploration evidence. 
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1. Introduction 

Identification of promising mineral exploration 
targets at different scales using spatial exploration 
data analysis is known as Mineral Prospectivity 
Mapping (MPM), which leads to increase the 
probability of success while reducing exploration 
costs [1, 2]. The knowledge-driven, data-driven, 
continuous (based on logistic function), and hybrid 
methods are four major categories to integrate 
weighted evidential maps in the MPM procedure 
[1, 3-7]. If number of the known mineral 
occurrences and the availability of evidential data 
in the studied area is high enough, the data-driven 
methods have successful prediction; otherwise,  the 
results will not be reliable [8-10]. Also, the use of 
known mineral occurrences in this method causes 

the promising exploratory district identified in the 
MPM map to be biased towards them, which is 
considered a negative point for this method [11-
13]. 

Along with data-driven methods, knowledge-
driven methods can be used, in which the 
knowledge of several experts are used to assign 
weights to the evidential map. This causes different 
outputs to be produced because the vision of 
experts differs from each other depending on 
various factors [13].There are also other methods 
that are a combination of data-driven and 
knowledge-driven methods; therefore, these 
methods are not immune to the aforementioned 
limitations [3]. In the continuous methods, the 
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location of known mineral occurrences is not used 
as training points, and the evidential values that 
represent the mineralization are not discretized 
using arbitrary intervals, which cause the 
uncertainties to be significantly reduced [3]. 

In preparing the MPM, many researchers have 
used methods such as fuzzy-AHP, AHP-TOPSIS, 
fuzzy, geometric average, index overly, and 
extreme learning [8, 14-18]. One of the most 
important data layers in the MPM is the evidential 
layer of geochemical anomalies [19-23]. 
Geochemical data processing of stream sediments 
and separation of anomalies from the background 
is a common tool in mineral exploration, especially 
for finding ore deposits [24-31]. Sampling of 
stream sediment is mostly considered in the 
reconnaissance stage, which allows to identify the 
target areas and reduce the size of the exploration 
area to promising areas [25, 27]. In order to 
separate anomalies in geochemical dataset, various 
processing methods including fractal [29, 30, 32-
38], statistical methods [39, 40], and intelligent 
methods [41] have been used. For a detail view on 
statistical methods, they include the univariate and 
multivariate methods, which the multivariate 
methods provide better results than the univariate 
due to consider the multi-element halos instead of 
single one. Such as the multivariate methods, it can 
be mentioned to the factor analysis method, which 
many researchers have been used to process 
geochemical data and examine the main 
indicator or multi-element indicator [42-44]. As a 
shortcoming in the result of the factor analysis, the 
indicator and pathfinder elements of a specific 
mineralization type do not show significantly 
association in a given factor. 
One of the reasons for this can be attributed to the 
nature of geochemical data and factor analysis 
method. The factor analysis method uses the whole 
data in matrix form for processing. If there have 
been annoying geochemical elements in the data, 
the factor score values will deviate from their true 
value, which can cause errors and increase 
uncertainty [45]. To solve the mentioned problem, 
Yousefi et al. developed Staged Factor Analysis 
(SFA), which is actually an improved method of 
the factor analysis. The SFA reduces the number of 
outputs factors and intensifies the anomalies by 
removing annoying geochemical elements. The 
output of SFA is a number of factors, so-called 
clean factors, which have been obtained according 
to the specific mineralization type in the studied 
area. 

Now, despite the existence of some clean 
factors, the question arises, which factor or factors 

should be used to explore the desired type of 
mineralization in the studied area? Using a factor 
without paying enough attention to other factors 
can cause the loss of part of the genese information, 
which can ultimately lead to a degradation in the 
accuracy of exploration operations. To subject this 
challenge, Yousefi et al. (2012) presented the 
Geochemical Mineralization Probability Index 
(GMPI), which is a new data-driven fuzzification 
technique and weighting [46]. In this method, the 
predictive factors in mineralization are weighted 
using the logistic function. 

According to the mentioned aspects, the aim of 
this research is the continuous weighting to 
exploration layers based on the logistic function, 
regardless of the presence of known mineral 
occurrences and also without using expert 
judgment, which is expected to reduce uncertainty 
by using this method. For this purpose, the 
geochemical evidential map was produced with 
SFA and GMPI. Furthermore, according to the 
mineralization-type sought, the criterion of the 
distance from the fault was also defined, and 
finally, the exploratory layers were combined using 
the geometric average method. To quantitatively 
evaluate the MPM, the prediction-area plot and 
normalized density was used . Figure 1 shows the 
stages of the research work. 

 
Figure 1. Research work steps to produce the MPM 

in the studied area. 
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2. Geological Settings 

The studied area is the northern part of 
1:100000 geological sheet of Feizabad located in 
the Razavi Khorasan province, which the sheet is 
widespread between longitude 59◦ to 59◦ 30' E and 
latitude 35◦ to 35◦ 30'N. Feizabad sheet is divided 
into two different regions by the major Dorouneh 
strike–slip fault, which is the border between two 
important structural zones in Iran, called Lut Block 
in south and Central Iran zone in north. The main 
rock types exposed in the studied area include 
Jurassic and Tertiary sedimentary rocks, which 
cover vast areas of northern and eastern parts, 
Tertiary volcanic rocks with acidic and 
intermediate composition in east and west, 
Paleogene volcano-sedimentary rock with rhyolite 
and rhyodacite composition in central to western 
parts, and Eocene–Oligocene intrusive rocks of 
granodiorite and diorite, which are the major host 

of Cu–Au mineralization, in southern and central 
parts of the area (Figure 2) [47]. 

The most dominant structural features related to 
mineralization in the studied area are two major 
types of faults: (1) E-W trending faults, especially 
the deep Dorone regional fault, which has a distinct 
influence on magma intrusion and mineralization, 
and (2) N-E- and N-W trending faults and 
lineaments. These faults are responsible for 
alteration zone such as phyllic, argillic, silicified 
and propylitic with quartz-mineralized veins. The 
dominated deposit types in studied area include 
IOCG, epithermal base and precious metals types, 
and porphyry copper-gold system (Figure 2) [48]. 
The primary ore mineral assemblage in the main 
zones of mineralization are mostly pyrite, 
chalcopyrite, magnetite, specularite, and gold, and 
the secondary minerals, goethite, hematite, 
malachite, and azurite are common in the oxidized 
zones [49, 50]. 

 

 
Figure 2. Simplified geological map of studied area (modified after Behroozi 1987 [47]). 

3. Materials and Methods 
3.1. Sampling 

In this research work, 657 samples of stream 
sediment samples with 1400-m intervals were 
systematically collected by the Geological Survey 
of Iran (GSI). For sampling, a regular sampling 
network with a cell size of 1400*1400 square 
meters was designed, and then some stream 

sediment samples were collected from the main 
drainage of each window. Then all the samples 
collected in each window were mixed together, and 
finally, a composite sample was attributed to the 
center of the window. The location of the center 
samples was shown in Figure 3. After preparation 
and coding, the samples were analyzed by ICP-
OES methods for 28 elements and by fire-assay 
method for Au measurement. 
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Figure 3. Location of the stream sediment samples systematically collected from the studied area. 

3.2. Sigmoid logistic function 

In MPM, based on the conceptual model of the 
mineral deposit-type sought, various criteria are 
used to generate evidential layer. Considering that 
different layers have different type and scale of 
data and scope of changes, consequently makes 
decision-making, interpretation, and comparison 
extremely difficult in this case. Therefore, to 
interpret the results more accurately, the range of 
the evidential maps can be transferred to a uniform 
space such as 0 and 1 [3]. Hence, the logistic 
function (Equation 1), whose slope and inflection 
point are determined based on the maximum and 
minimum of the layer, can be used to transfer the 
evidential layers to the 0 and 1 space. 

퐹 =
1

1 + 푒 ( ) (1) 

where FE is the value of the fuzzy membership 
and assigned fuzzy score, s is the slope of the 
logistic function, i is the inflection point of the 
logistic function, and E is a weighted fuzzy 
evidential layer that is transformed to the domain 
[0, 1]. Also, the values of i and s are obtained from 
the Equations 2 and 3: 

푖 =
퐸 + 퐸

2
 (2) 

푠 =
9.2

퐸 − 퐸
 (3) 

The Equation 1 has an additive effect, that is 
greater values get more weight (closer to 1). 
However, in some cases, and according to the 
relevant goal, the criteria are used, in which lower 
numerical values should have more weight. One of 
these criteria is the distance from the fault. 
Therefore, Equation 4 can be used to produce the 
evidential layer weighted by the distance from the 
fault. 

  퐹 = 1 − 퐹  (4) 

where FW is the final fuzzy weight value. 

3.3. Geometric average method 

To combine the exploratory evidential layers, 
various methods are used, one of which is the 
geometric average [17]. The geometric average for 
n values is defined as the nth root of their product. 
This function is obtained for a set of data using 
Equation 5: 

퐺 (푉 , 푉 , . . . 푉 ) = 푉 . 푉 . . . 푉  (5) 

where Vi is the ith evidential layer. 
The geometric average method is only used for 

positive values. Therefore, if the evidential layers 
have negative values, they must first be transferred 
to the positive space. For this purpose, the logistic 
function (Equation 1) can be used, which transfers 
the negative values to the positive space [45]. 
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3.4. SFA and GMPI method 

In most cases, univariate maps resulting from 
univariate analysis are not proper for checking the 
distribution pattern of elements for a given type of 
mineralization because the location of anomalies of 
different elements are the same in some areas and 
different in other areas [51]. For this purpose, the 
use of multivariate methods such as Staged Factor 
Analysis (SFA) and the results of these methods 
have more confident for determining exploratory 
goals.  

The SFA method has two main steps. In the first 
step, if there is an element (elements) that has no 
enough contribution to the output factors according 
to the threshold, it is removed from the input data. 
This procedure continues until there are no more 
elements that have a low contribution to the factors. 
The resulting factors in this stage are called clean 
factors due to the reduction of geochemical noise. 
In the second step, according to the deposit types, 
if there is an element that is not essentially related 
to the desired type, so it is eliminated, and again 
the first step continues until clean factors are 
obtained. The output factors obtained from this 
method are more accurate and reliable than 
conventional factor analysis [45, 51]. The GMPI is 
one of the earliest  methods for fuzzy weighting and 
producing geochemical evidential maps of stream 
sediments. Using this index in MPM can improve 
the probability of success in exploration 
operations. Since exploration data are often 
multiscale and continuous data, to examine the 

layers more accurately and combine them, the scale 
of the exploration data can be changed and 
transferred to the range of 0 and 1. Yousefi et al. 
used such a logistic function in the MPM, which 
showed in Equation 6 [46]: 

퐺푀푃퐼 =
푒

1 + 푒
 (6) 

where Fs is the score of the considered factor in 
each sample, and e is the Napier number. 

4. Results and Discussion 
4.1. Implantation of SFA and GMPI method 

After data preparation and normalization, 
according to the expected purpose, SFA method 
was implemented for the elements Pb, Ag, Zn, Cu, 
As, Sb, Hg, Au, and Sn, which the results can be 
seen in Table 1. Usually, the threshold value is 
considered to be between 0.3 and 0.6, and in this 
research work, the limit of 0.6 was used to extract 
the geochemical layer with greater  reliability. In 
the first step, according to the threshold limit of 0.6, 
the Ag was removed from the dataset and the factor 
analysis was repeated again. In the second step, all 
the elements in two factors show high participation 
and have the condition of the clean factor. 
Therefore, these factors are suitable for the 
exploration of copper mineralization with 
hydrothermal origin. Figure 4 shows the 
interpolation maps of the spatial distributions of 
factor 1 and 2 scores in the second step of the SFA 
method. 

Table 1. The values of factor score in the SFA method for the first and second steps. 
Staged factor analysis  

Second step  First step  
F2  F1  Element  F2  F1  Element 

0.216  0.898  Pb 0.218  0.894  Pb  
0.277  0.826  Zn  0.427  0.444  Ag  
0.765  0.172  Cu  0.274  0.820  Zn  
0.008  0.794  As  0.746  0.159  Cu  
0.129  0.895  Sb  0.004  0.792  As  
0.619  0.034  Hg  0.125  0.890  Sb 
0.756  0.181  Au  0.607  0.025  Hg 
0.129  0.703  Sn  0.754  0.171  Au 

21.176  43.464  Var.  0.149  0.702  Sn 
64.640  43.464  Cum.var  20.401  40.401  Var. 

0.802 KMO 60.802  40.401  Cum.var 
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Figure 4. Interpolated maps depicting spatial distributions of (A) F1 factor scores obtained in the second step of 

factor analysis (B) F2 factor scores obtained in the second step of factor analysis. 

By implementing the SFA method, two key 
factors representing mineralization were obtained. 
Here, the main challenge is that according to the 
type of copper mineralization with hydrothermal 
origin, how should each of the factors be involved 
in the preparation of the MPM? Therefore, 
combining these layers and reaching a map related 
to a deposit type becomes important, which using 
the GMPI method provides this possibility well. In 
this method, the GMPI values of all factors can be 
obtained by using Equations 7 and 8. 

퐺푀푃퐼 =
푒

1 + 푒  (7) 

퐺푀푃퐼 =
푒

1 + 푒
 (8) 

Due to the presence of Cu, Hg and Au, which 
are important in F2, Equation 8 is a proper operator  
for the exploration of copper hydrothermal 
deposits in the region. In order to increase the 
accuracy of exploration operations and reduce its 
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risk, the results of another factor related to copper 
mineralization with hydrothermal origin should 
also be used. Therefore, Equation 7 is also 
considered as one of the effective. To calculate 
GMPICu according to Equations 7 and 8, the 
threshold limit must be selected to separate the 
anomaly from the background. The threshold value 
in this research work was considered equal to 90% 
cumulative frequency for the GMPI values of each 
factor. To delineated GMPICu anomaly, it is 
possible to conditionally determine the amount of 

GMPICu from several sub-equations according to 
Equation 9. Therefore, to obtain the final map, 
there would be the following situations: 

1. If the GMPI values are greater than or equal 
to 90% of the cumulative frequency and another is 
smaller than this value, the GMPICu value is equal 
to the GMPI value greater than or equal to 90%. 

2. If both are larger or smaller, the final GMPI 
value will be equal to the average of the two GMPI 
values. 

 

GMPI(hydrithermalCu)=      

 

퐺푀푃퐼          if 퐺푀푃퐼 >=0.74 and 퐺푀푃퐼 < 0.75 
퐺푀푃퐼                     if 퐺푀푃퐼 >=0.75 and 퐺푀푃퐼 <= 0.74 
Average(퐺푀푃퐼 , 퐺푀푃퐼 ) if 퐺푀푃퐼 >= 0.74 and           
퐺푀푃퐼 >= 0.75       
Average (퐺푀푃퐼 , 퐺푀푃퐼 ) if     퐺푀푃퐼 <= 0.74  and   
퐺푀푃퐼  < 0.75       

(9)

 
After implementing the above equations in the 

studied area, the geochemical evidential layer was 
obtained. As illustrated in Figure 5, there is a 

strong qualitative correspondence between the 
known mineral occurrences and the geo-chemistry 
layer in the region. 

 
Figure 5. GMPI values converted from F1and F2 factor scores obtained in the second step of the. SFA 

accompanied by known mineral occurrences locations. 

4.2. Production of evidential layer of distance 
from fault 

The faults 
exerted an important constructive role in the 
formation of many mineral deposits, since the 
presence of faults causes the transmission of 

hydrothermal fluids through rocks and the site of 
ore deposition. The faults of the studied area after 
being extracted from the geological map depend on 
the measurements of the distance from the fault 
were converted to the fuzzy system using the 
sigmoid logistic function in Equation 1, the 
resulting map is shown in Figure 6. 
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Figure 6. An evidential layer of the distance from the fault accompanied by known mineral occurrence locations. 

4.3. Combination of exploratory layers and 
generation of MPM 

There are different methods for combination 
exploratory layers in finding the possibility of 
mineralization. What is important in determining 
promising areas is the optimal use of all available 
data layer. In this study, the geochemical evidential 
layers and the distance from the faults were 
combined in order to prepare the MPM, using the 
geometric average method, the result of which can 
be seen in Figure 7.  

The comparison of the obtained MPM, and the 
geological map (Figure 2) illustrates that the areas 
with the maximum probability of mineralization in 
the center towards the west of the region 
correspond to the faulted andesite with the lower 
Eocene age, and are adjacent to the granodiorite 
intrusive masses in the west of the region. 
According to the research work of Shafai 
Moghadam et al., these granitoid intrusive masses 
of the region with geochemical type I and with an 
age of 40 to 41 million years ago [52] have 
penetrated the volcanic and pyroclastic rocks with 
the lower Eocene age. Also, in the center to the 
east, promising areas correspond to granodiorite 
intrusive masses, andesite, and faulted rhyolite tuff. 
In the northern areas of the region, promising areas 
are smaller than the center, which has a weak 
spatial relationship with the known mineral 
occurrence location (one index) and are spatially 
correlated with tuff. 

 
 

4.4. Evaluating of generated MPM 

To evaluate and validate the model produced 
using the geometric average method, prediction-
area plot was used. This plot is one of the most 
efficient methods for evaluating 
predictive capabilities of the model, and it can 
express the accuracy of each model quantitatively 
[53]. The MPM can be evaluated by examining the 
spatial relationship of the known mineral 
occurrences with each of the produced model 
classes. To achieve the mentioned evaluation, the 
MPM was classified by the equal interval criterion, 
then the number of known mineral occurrences 
placed in each class and the occupied area by each 
class was measured. The intersection point of 
prediction rate and occupied area curves shows the 
success rate and accuracy of the model. Also the 
normalized density value for the MPM is 
calculated from the ratio of the percentage of 
known mineral occurrences to the occupied area 
percent at the intersection point. As much as the 
value of this indicator is greater than 1, the validity 
of the MPM is confirmed. 

 According to the plot shown in Figure 8, 64% 
of known mineral occurrences are predicted in an 
area of about 36% of the studied area in the 
produced model. Also, the normalized density 
value for the MPM is equal to 1.7, which is 
sufficiently greater than 1, and confirms the 
credibility of the results. So it can be concluded that 
the geometric average method has a relatively 
great efficiency for combining the evidential layers 
in this area. 
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Figure 7. Combination of weighted evidential layers using geometric average method. 

 
Figure 8 . Prediction-area plot to evaluate the model generated using the geometric average method. 

5. Conclusions 

In the present study, the promising exploration 
targets were determined using the SFA and GMPI 
methods and combination with distance from the 
faults using the geometric average method. The 
results revealed three promising areas in the west, 
center, and north of the region, which are related to 
the andesite, tuff and granite, and granodiorite 
intrusive masses. These rock units are spatially and 
temporally related to- and host- hydrothermal 
deposits of copper. Furthermore, there is a 
spatial correspondence between the known mineral 
occurrences and the identified promising areas that 

was confirmed by prediction-area (P-A) plot. The 
P-A plot obtained for the final model shows that 
this model has a prediction rate of 64%. Therefore, 
according to the comparison between the final 
model with the geological map and the location of 
the known mineral occurrences, it is demonstrated 
that the use of SFA and GMPI methods in 
conjunction with other exploration evidence layers 
improves the prediction of promising areas and 
increases the exploration success. This improving 
may be due to  considering the  multi-elements 
geochemical anomaly, attention to mineralization-
type sought, and also optimal weighting of layers. 
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  چکیده:

ادي معدن   رایط اقتصـ رو، ایمنی شـبکه معدن، نرخ تولید و متعاقباً شـ ته به شـرایط پایداري گالريدر روش معدنکاري جبهه کار طولانی پیشـ ها اسـت. پایداري وابسـ
ت که عبارتگالري یب1اند از: ها تابعی از دو عامل مهم اسـ یات ناحیه آسـ ) اثر بارگذاري ناشـی از ناحیه تخریب در بالاي 2دیده حفاري در بالاي گالري و ) خصـوصـ

دیده حفاري را گسـترش دهد. عموماً در اثر شـیب لایه زغال اسـتخراجی، امکان وقوع شـکسـت در گالري اصـلی تواند ناحیه آسـیبکارگاه جبهه کار طولانی که می
دیده آسـیبونقل) بیشـتر از گالري تهویه اسـت؛ بنابراین هدف از انجام این تحقیق، تعیین اثر کارگاه اسـتخراج جبهه کار طولانی بر روي گسـترش ناحیه (گالري حمل

یات لایه زغال (شـیب و ض ـ وصـ یات ناحیه تخریب، خصـ وصـ ه عامل خصـ یدن به این هدف، با در نظر گرفتن سـ ت. براي رسـ لی اسـ خامت) و  حفاري در بالاي گالري اصـ
ریب  ی، یک رابطه جدید براي تعیین ضـ بات هندسـ اس محاسـ پس بر اسـ د. سـ عه داده شـ ی جدید توسـ یات ژئومکانیکی کمربالا، یک مدل هندسـ وصـ تأثیر کارگاه  خصـ

نجی مدل ارائهبد نهاد شـد. اعتبار سـ لی پیشـ ت آمد. همچنین با در نظر گرفتن مدل هندسـی جدید، یک الگوریتم براي تحلیل پایداري گالري اصـ ده بهسـ یله  شـ وسـ
تخراج جبهه کار طولانی معدن پروده نتایج ابزار بندي و رفتار نگاري یکی از کارگاه بی بین نتایج مدل   2هاي اسـ ان دادند که توافق مناسـ د. نتایج نشـ طبس انجام شـ

عه داده ده و مقادیر اندازهتوسـ یب لایه زغال شـ تم نگهداري و شـ یسـ یت بر روي اثر عرض پایه، ظرفیت باربري سـ اسـ ده وجود دارد. درنهایت، یک تحلیل حسـ گیري شـ
 انجام شد.
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