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 Slope instability can occur due to external loads such as earthquakes, explosions, 
and pore pressures. In addition, under natural conditions, slope instability can be 
caused by factors such as the erosion of some parts of the slope due to water or wind 
currents and the gradual rise of groundwater levels. Another factor leading to slope 
instability is human activities involving various types of loading and unloading on the 
slope. The instability of slopes may be associated with limited or large displacements, 
which either can cause problems or damage structures on the slope. Therefore, this 
phenomenon needs due care at all slope design and implementation stages. In general, 
slope stability is influenced by natural factors such as rock type (lithology), tectonic 
conditions of the area, rock mass joint conditions, and climatic conditions of the area. 
Furthermore, it is a function of design factors such as dip, height, explosive pattern, 
and explosion method. The present study offers a multi-factorial fuzzy classification 
system using the multi-criteria fuzzy approach to evaluate the slope stability. The 
evaluation is performed in five classes, namely “high stability”, “stable”, “relatively 
stable”, “unstable”, and “highly unstable”. Next, the viability of 28 slopes of 8 large 
open-pit mines in different parts of the world was evaluated. According to the fuzzy 
classification results, 4 and 6 slopes were evaluated in relatively stable and unstable 
conditions, respectively, with the other slopes classified as stable class. Afterward, 
the developed fuzzy classification system was assessed based on the actual behavior 
of the slopes. The results revealed a general large and local failure in most slopes in 
unstable and relatively stable conditions. Hence, a non-linear multi-factorial fuzzy 
classification system with good reliability can be used to evaluate the stability of the 
slopes. 
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1. Introduction 

Designing a slope in open-pit mines involves 
many challenges such as increasing the slope 
depth. This issue increases the waste volume and 
the mining costs. Increasing the slope dip can 
lower the factor of safety (FOS), thereby, 
increasing the risk of slope failure. Fractures that 
occur in open-pit slopes are usually large-scale 
with complex mechanisms. These large fractures 
in the slope also cause economic and human 
losses. For instance, a large-scale slope failure in a 
porphyry copper mine in South Africa has caused 
extensive damage to the mine [1]. Regarding the 

significant impact of slope stability on the open-
pit mines economy, it is necessary to continuously 
monitor the stability conditions to detect the 
necessary signs of instability for its prediction and 
prevention. Thus selecting a sustainable optimum 
slope is required to avoid high mining costs and 
lower the risk of slope instability. Analysis of 
slope stability in open mines is possible through 
empirical methods, limit equilibrium, numerical 
modeling methods, and systematic methods. In 
this respect, classification systems are among the 
most primitive methods for evaluating slope 
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stability. Of the extensive studies conducted for 
this purpose, some are mentioned below.  

Hack et al. (2002) developed a slope stability 
probability classification (SSPC) to classify 
slopes. This system assesses the probability of 
slope stability based on rock mass characteristics. 
In addition, several conversion coefficients were 
applied across different stages depending on the 
current or future weathering and the extent of rock 
mass damage due to drilling. Finally, the slope 
stability is expressed as the probability of the 
occurrence of various failure mechanisms. This 
research was conducted for four years in the 
Falset area of Tarragona, Spain, and was then 
implemented in Australia, South Africa, New 
Zealand, and the Netherlands Antilles [2]. 
Goshtasebi et al. (2008) investigated the critical 
circular slip surface and slope surface 
modification in a heavily jointed rock mass using 
a genetic algorithm (GA). According to the 
obtained results, the modified slope angle of the 
wall was determined to be 48.44° [3]. Ataei and 
Bodaghabadi (2008) investigated slope stability 
and determined stable slopes in the Chador Malo 
iron ore mine using numerical and limit 
equilibrium methods. The results showed that 
some instability problems occur with increasing 
slope height. Therefore, stable slopes for each 
geotechnical zone and prepared sections were 
calculated and presented as a function of slope 
height [4]. Daftaribesheli et al. (2011) assessed 
rock slope stability using the Fuzzy Slope Mass 
Rating (FSMR) system. According to the results, 
the FSMR method provides a better assessment of 
slope stability than other slope stability 
classification systems and can also predict rock 
slope failure [5]. Zare Naghadehi et al. (2011) 
applied a probabilistic systems methodology to 
assess the importance of factors affecting the 
stability of rock slopes by nine parameters. These 
parameters were considered the main factors in 
modeling the stability of the slope system. This 
research selected slopes in the Khosh-Yeylagh 
region in Iran as a case study. The results showed 
that this new approach was a simple but efficient 
tool for evaluating the parameters affecting the 
stability of slopes [6]. Zare Naghadehi et al. 
(2013) and Zare & Jimenez (2015) developed a 
new Mine Slope Instability Index (MSII) to 
evaluate the stability conditions of slopes in open 
pit mines. Slope stability was assessed by 
comparing the MSII values and those of the actual 
behavior for 12 case histories, which showed a 
good agreement [7, 8]. Taherynia et al. (2014) 
investigated slope stability classification systems 

and risk analysis to determine the degree of risk of 
rock slope instability. They performed their study 
on the Lashter Pass (located on the Shiraz-Isfahan 
highway, Iran), which has a high potential for 
instability. To this end, they applied several 
classification methods and Rock-Fall software for 
risk analysis [9]. Friedoni et al. (2015) examined 
the application of the modified Q classification 
system and its composite parameters for analyzing 
and deducing field data for estimating slope 
stability. According to their research, the Q 
classification system can be promising in 
evaluating rock mass quality. In addition, by 
modifying the parameters of the Q classification 
system, they introduced a modified mass rock 
classification system called the slope quality 
rating (SQR) [10]. 

Khosravi et al. (2017) investigated the 
influence of the counterweight balance size on the 
stability of the undercut slopes through a series of 
numerical model tests using FLAC3D software. 
The results showed a significant relationship 
between counterweight balance size and 
maximum stable undercut span, where increasing 
a counterweight balance size results in a wider 
stable span. Finally, a non-linear relationship was 
proposed between counterweight balance size and 
maximum stable undercut span [11]. Fattahi 
(2017) explored slope stability prediction using an 
adaptive neuro-fuzzy inference system (ANFIS) 
based on clustering methods. In this research 
work, three ANFIS models were developed 
including grid partitioning (GP), subtractive 
clustering method (SCM), and fuzzy c-means 
clustering method (FCM). Comparing these three 
models revealed that the ANFIS-SCM model 
outperforms the other two models [12]. 
Samieinejad et al. (2017) conducted field 
investigations using digital terrestrial 
photogrammetry to characterize the geometric 
properties of discontinuities in open-pit slopes. 
The results showed that this new method can be 
used to estimate the structural parameters of the 
rock mass for the analysis of steep slopes in open 
pits [13]. Zebarjadi Dana et al. (2018) investigated 
the effects of geometric and geomechanical 
properties on the slope stability of open pit mines 
using two-dimensional and three-dimensional 
finite difference methods. Finally, it was observed 
that considering the real slope geometry, the 
FOS3D/FOS2D ratio (3D effect) is greater than 1 
in all cases [14]. Fattahi et al. (2018) used a 
Monte Carlo simulation technique to assess 
earthquake-induced displacement of slopes 
(EIDS). This study was conducted to predict EIDS 
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using the Monte Carlo simulation method 
(MCSM). The results showed that the stochastic 
approach can successfully reproduce EIDS values 
and calculate confidence intervals [15]. Evangelin 
& Thirukumaran (2018) investigated the 
sustainability of slopes along roads in India using 
RMR, SMR, and continuous slope mass rating 
(CSMR). The results showed that since the CSMR 
classification represented continuous slope 
stability conditions, it seems more appropriate for 
developing spatial databases and cutting roads. 
Therefore, the steep slope of the walls affected the 
slope stability significantly [16]. Azarfar (2019) 
and Azarfar et al. (2018; 2019) conducted broad 
research on the effect of faults on open pit slope 
stability by employing numerical and 
experimental methods. They carried out 
sensitivity and comparative analyses for the 
numerical simulations to investigate the stability 
of rock slopes on large and small scales (overall 
open-pit slope and bench slope) and the fault 
zones. The sensitivity analysis results showed that 
choosing an adequately low convergence ratio is 
critical for estimating FOS [17-19]. Santos et al. 
(2019) proposed a methodology to evaluate slope 
stability using two techniques of multivariate 
statistics: principal component analysis (PCA) and 
discriminant analysis. The results showed that the 
proposed methodology provides a powerful tool 
for slope hazard assessment in surface mines [20]. 
Khorasani et al. (2019) investigated the effect of 
large block positions on the stability analysis of 
block-in-matrix slopes using physical and 
numerical models. The results showed that the 
position of large blocks significantly influenced 
the slope stability [21]. Shafiei Ganjeh et al. 
(2019) conducted a numerical modeling to 
investigate the effects of earthquake and blasting 
on the slope stability of the Chadormello open pit 
mine. According to the results, seismic study and 
dynamic slope stability should be considered as 
part of the computational design of the mine [22]. 
Sarfaraz et al. (2019) investigated the slide-head-
toppling failure through a series of numerical 
modeling. The results showed the accuracy of the 
finite element method (FEM) for evaluating the 
stability analysis of slopes with the potential of 
slide-head-toppling failure [23]. 

Alikhani et al. (2020) assessed the influence of 
the overall slope angle on the economics of open-
pit mines using the limit equilibrium methods 
(modified Bishop and modified Janbu) and 
numerical models for slope stability analysis [24]. 
Sarfaraz and Amini (2020) investigated the field 
of numerical modeling of rock slopes with the 

potential of block-flexural toppling failure. 
According to these authors, although the 
mechanism of block-flexural toppling failure is 
complicated, the numerical code can analyze this 
failure efficiently [25]. Sarfraz (2020) presented a 
theoretical model for block-flexural toppling 
failure according to the erosion phenomenon. The 
results showed that the presented model is 
conservative in analyzing the block-flexural 
toppling failure; however, it can be used to 
evaluate this failure [26]. Shah et al. (2020) 
investigated rock slope stability in tropical 
climates in Lafarge Quarry, Perak, Malaysia. The 
results showed that the kinematic analysis 
combined with the rock mass classification system 
provides a better insight into analyzing the rock 
slope stability in a tropical climate than 
individually considering the rock mass 
classification system [27]. Adil et al. (2021) 
assessed rock fall hazard using GeoRock 2D 
along Swat Motorway, Pakistan. Finally, they 
stated that drawing a wire mesh on the slope 
surface and retaining wall or fence will be very 
useful and economical to reduce the rock falling 
hazards along the Swat motorway [28]. Sarfaraz et 
al. (2021) developed models using an artificial 
neural network (ANN) for stability analysis of 
undercut slopes. The results showed that the 
presented models have good accuracy [29]. 
Sarfaraz et al. (2021) developed numerical models 
for stability analysis of undercut slopes. 
According to these authors, determining the 
maximum stable undercut span is among the most 
important parameters in designing the undercut 
slopes. The numerical results of this study were 
evaluated through the statistical response surface 
methodology (RSM). Finally, a statistical 
relationship was proposed for computing the 
maximum stable undercut span [30]. Bowa et al. 
(2021) developed a robust analytical model for 
stability analysis of the rock slopes subjected to 
wedge slope failure induced by variable 
groundwater in an open pit mine. Based on the 
obtained results, this model was proved to be a 
robust analytical model for the stability analysis 
of rock slopes subject to wedge failure due to the 
presence of groundwater [31]. Hussain et al. 
(2021) proposed a viable stabilization method for 
the slope in a weak rock mass environment using 
numerical modeling. The results showed that this 
method could be used to stabilize the slope in the 
weakest rock mass environment [32]. Junaid et al. 
(2022) investigated rock mass condition 
quantification based on failure frequency to assess 
slope stability. In this study, kinematic and limit 
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equilibrium analysis (LEM) techniques were used 
to evaluate the stability of rock slopes. These 
techniques are well established in identifying the 
failure type along the rock slope and calculating 
the factor of safety (FOS). According to the 
obtained results, the kinematic analysis showed 
that the rock slope is safe from the risk of planar 
failure and direct toppling. Moreover, the FOS 
obtained for the potential wedge using limit 
equilibrium analysis suggests the rock slope 
stability [33]. Junaid et al. (2022) proposed an 
expeditious approach to assess slope stability 
using integrated 2D electrical resistivity 
tomography. Eventually, the integrated approach 
applied in this research study proved expeditious, 
inexpensive, and rapid for comprehensive slope 
stability assessment [34]. Sarfaraz et al. (2022) 
developed numerical models for slide head 
toppling failure using FEM and DEM methods. 
According to the results of the distinct component 
method, it has acceptable accuracy compared to 
the FEM and can be used to examine the failure 
mentioned [35]. Singh and Roy (2022) studied 
slope stability analysis and preventive actions for 
a landslide location along NH-05 in Himachal 
Pradesh, India. Finally, they recommended some 
preventive measures and modifications 
concerning the economic and physical devastation 
of the considered case [36]. Walia and Roy (2022) 
investigated slope stability and its remedies in 
Palampur, Himachal Pradesh. After calculating 
the safety factor, they suggested some preventive 
steps and a few improvements [37]. 

According to their research on rock mass 
classification techniques and parameters, Qazi et 
al. (2023) stated that GSI has a higher efficiency 
than RMR for slope stability in poor rock 
conditions [38]. Guerrero et al. (2023) evaluated 
20 years (1999-2019) of land use and applied 
techniques of potential environmental fragility 
(PEF) (natural) and emergent fragility (EF) 
(influenced by human activities) in a region of 
Brazil. The authors stated that their findings can 
strengthen planning and help public management. 
Therefore, they encourage using this method in 
other regions with landscape heterogeneity and 
land use conflicts [39]. Dilta and Sharma (2023) 
examined the behavior of a strip footing supported 
by hollow steel piles installed to stabilize a clay 
slope. To this end, they employed numerical 
modeling techniques [40]. Wagay and Suthar 
(2023) investigated the field of slope stability 
using flexible facing. They conducted an 
experiment to evaluate the load-bearing capacity 
of a soil nailing system on a slope with three 

different flexible materials [41]. Rezaei et al. 
(2023) investigated the sustainability analysis of 
waste dumps in Mine No. 4 of Golgohar (Sirjan, 
Iran). The results showed that the FOS of the 
waste dump with three methods, i.e., Spencer, 
Janbu, and Bishop, is 1.26, 1.199, and 1.226, 
respectively [42]. Chand and Koner (2023) 
studied internal mine dump slope stability and 
identified the failure zone through 3D modeling. 
To this end, they evaluated the internal dump 
safety using a 3D limit equilibrium and numerical 
methods. Subsequently, they proposed a method 
to evaluate and identify the potential zone of 
instability in the mine dumps. According to these 
authors, the proposed method is economical, easy 
to use, fast, and practical [43]. 

Following the above research work, the present 
study aims to develop a multi-factorial fuzzy 
classification system to identify and select the 
unstable slope. One of the reasons for using this 
hybrid approach is its adaptation to different 
engineering problems and its results in real 
conditions. Fuzzy sets were introduced in the 
analysis of complex systems. A fuzzy set is a set 
containing elements that have varying degrees of 
membership in the set. Therefore, this idea 
contrasts with the classical sets because members 
of a classical set would not be members unless 
their membership was full in that set. 

2. Methodology 

This study used fuzzy set theory and a multi-
factorial approach to provide a classification 
system for evaluating the slope stability of 28 
slopes from 8 mines. The first step in data analysis 
was to determine the degree of importance of the 
criteria for establishing a new classification 
system. The importance of each criterion was 
determined by referring to experts. At this stage, 
the questionnaire form was first sent to the experts 
in the field of slope wall stability. After collecting 
the questionnaire forms, the degree of importance 
of each criterion was calculated using the fuzzy 
Delphi analytical hierarchy Process (FDAHP). 
After determining the importance of the criteria, 
they were classified into five different quality 
categories, namely “high stability”, “stable”, 
“relatively stable”, “unstable”, and “highly 
unstable”. After determining the qualitative 
categories for each criterion, a Gaussian and 
sigmoidal membership function was defined for 
each criterion, and then five class membership 
functions were presented for all criteria. In the 
following, the research method is described in 
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detail, and then the application of the proposed 
method is presented as a case study. 

2.1. Fuzzy theory and fundamental principles 

Fuzzy theory and fuzzy sets were first 
introduced by Lotfali Asgarzadeh in a treatise 
called “Fuzzy sets” in 1965 to analyze complex 
systems [44]. The fuzzy set is the generalization 
of the characteristic {0,1} to all numbers in the 
interval [0,1] [45]. Indeed, unlike classical sets, 
elements are not divided into two members and 
non-members in fuzzy sets. Instead, according to 
the functions defined, the degree of membership 
of the different elements in the fuzzy sets varies 
between 0 and 1. Suppose A is a fuzzy subset of 
the reference set X. The membership function A 
in the reference set X is defined as Equation (1) 
[46]. 

:஺ߤ ܺ → [0,1] (1) 

where µA represents the degree of membership 
of each member of set A within the interval [0, 1].  

In Equation (1), the values 0 and 1 denote non-
membership and full membership, respectively, 
with all values between these two values used to 
represent the average membership rate of each 
member of set A. Typically, a fuzzy set with a set 
of regular pairs is represented as Equation (2) 
[46]. 

ܣ = {൫ݔ, ,൯(ݔ)஺ߤ ݔ ∈ ܷ} (2) 
where U contains a finite set of Xi. The fuzzy 

finite set can also be represented as Equation (3) 
[47]. 

ܣ = ෍
௜ݔ

஺(௫೔)ߤ

௡

௜ୀଵ

 (3) 

The U set containing an infinite member is 
represented by Equation (4) [47]. 

ܣ = න
ݔ

(ݔ)஺ߤ

⬚

௫
 (4) 

The membership functions represent all the 
information in a given fuzzy set. The membership 
functions of the fuzzy sets must be precisely 
defined concerning the type of function and its 
parameters. The parameters and shape of 
membership functions will greatly affect the 
accuracy of the results [48]. Triangular, 
trapezoidal, bell, and Gaussian functions are 
among the most commonly used functions. 
Regarding the formula’s simplicity and the 
appropriate computational efficiency, both the 
triangular and trapezoidal membership functions 

have been widely used [49, 50]. However, as 
these membership functions consist of straight 
lines, the corner points of the lines are sharp and 
lack the expected smoothness. In the present 
study, Gaussian and sigmoidal non-linear 
membership functions were adopted. A Gaussian 
membership function is completely defined by “a” 
and “b”. Here, “a” represents the center of the 
membership function, and “b” denotes the width 
of the membership function. The Gaussian 
membership function is defined by Equation (5) 
[51]. 

;ݔ) ݊ܽ݅ݏݏݑܽܩ ܽ, ܾ) = exp ൤−
1
2

ቀ
ݔ − ܽ

ܾ
ቁ

ଶ
൨ (5) 

Although the ends of the curves of Gaussian 
and bell-shaped membership functions are 
smooth, they cannot determine asymmetric 
membership functions. Therefore, the sigmoidal 
function was used to solve this disability. A 
sigmoidal membership function is defined as 
Equation (6) [51]. 

;ݔ) ݃݅ݏ ܿ, ݀) =
1

1 + exp[−ܿ × ݔ) − ݀)] (6) 

where c controls the dip at the point x = d. 
Depending on the sign of c, the curve of a 
sigmoidal membership function is inherently left 
or right. Therefore, it is suitable for displaying 
concepts such as “very good” and “very poor”.  

2.2. Multi-criteria evaluation method 

Suppose U is a set of elements for evaluation 
and ∏ = { ଵ݂, ଶ݂, … , ௠݂} is a set of parameters that 
determine the quality of the evaluated elements. 
Also,  ܧ = ൛݁ଵ, ݁ଶ, … , ݁௣ൟ is a set of verbal results. 
Here, ݁௞ determines the quality of class k. For 
each parameter ௝݂ , a fuzzy class ݁௞ is generated 
for each value of k from the set {1, 2, ..., p}. Since 
the fuzzy class ݁௞ is a fuzzy set controlled by ௝݂ , 
the fuzzy set is designed by ܣ௝௞  [52]. If qualitative 
classes are employed by the distance index, the 
objective function ܳ(௞)(ݔ) is defined as the 
membership function. ܳ(௞)(ݔ) = ௝௞ܣ  is (ݔ)
calculated by Equations (7), (8), and (9). 

ܳ௝
(ଵ)(ݔ) =

1
1 + −ൣ݌ݔ݁ ௝ܿ × ൫ݔ − ௝݀൯൧

  (7) 
݆ = 1, 2, … , ݉ 

ܳ௝
(௞)(ݔ) = ݌ݔ݁ ൭−

1
2

ቆ
ݔ − ௝ܽ

௝ܾ
ቇ

ଶ

൱ (8) 

݆ = 1, 2, … , ݉    ,    ݇ = 2, … , ݌ − 1 



Niromand et al. Journal of Mining & Environment, Vol. 15, No. 3, 2024 
 

1034 

ܳ௝
(௣)(ݔ) =

1
1 + −ൣ݌ݔ݁ ௝ܿ × ൫ݔ − ௝݀൯൧

  (9) 
݆ = 1, 2, … , ݉ 

A multi-criteria evaluation system requires the 
following three key parameters: 

 A set of parameters ∏ = { ଵ݂ , ଶ݂ , … , ௠݂} 

 A set of quality classes ܧ = ൛݁ଵ, ݁ଶ, … , ݁௣ൟ 

 For each element ݑ ∈ ܷ, there is a single-factor 
evaluation matrix. 

Note that the number of quality classes for all 
parameters is ௝݂ . By accepting three elements for 
the set ݑ ∈ ܷ, the evaluation results of ܴ௨ =
൫ݎ௝௞(ݑ)൯

௠௫௣
 can be obtained as in Figure 1. 

 
Figure 1. The process of multi-factorial evaluation model [34]. 

Figure 1 displays a mapping of the multi-
criteria evaluation method including the weight of 
the parameters and the corresponding matrix 
combined with a decision function (Equations 10 
and 11) [53]. 

:ߦ ܷ →  (10) (ܧ)ܨ

ݑ → (௨)ܦ     ,      (ݑ)ߦ  = ݂(ܹ, ܴ(௨)) (11) 
In the above equations, f is the decision 

criterion used to evaluate the option. 

2.3. Aggregation 

Using a suitable aggregation of fuzzy sets in 
multi-factorial fuzzy analyses is very important. 
Many transformation functions such as max (min) 
and min (max) have been developed for this 
purpose. Aggregation operators are used to 
evaluate different types of decision behavior. This 
process requires different transformations for the 
judgments. Accordingly, the decision-maker may 

choose a decision function that best reflects the 
goals of the decision [53]. Equation (12), as a 
well-known decision function, was proposed by 
Dubois and Prade to obtain weighted minimum 
(and maximum) operators that can be applied in 
the setting of the possibility theory [47].  

,ଵߤ)ௐܦ ,ଶߤ … , (௠ߤ = ⋀௜ୀଵ
௠ [(1 − ௜ݓ  ௜] (12)ߤ⋁(

In this study, we used the function introduced 
by Dubois and Prade with minimum weight. 

3. Parameters Affecting Slope Stability 

The most important factors affecting slope 
stability include two general groups of 
controllable parameters (e.g. slope characteristics, 
design, and extraction characteristics of mine) and 
uncontrolled parameters (e.g. environmental 
conditions and rock mass characteristics). Figure 
2 represents the parameters affecting slope 
stability.  
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Figure 2. Parameters affecting the slope stability. 

4. Development of Classic Classification 

One of the most important parts of developing 
a classification system is determining the quality 
categories and classifying the criteria into specific 
categories. In the present study, considering the 
five classes of the proposed fuzzy classification 
system, the criteria were divided into five 
categories: very good, good, average, poor, and 

very poor. Table 1 presents the results for the 
criteria classification. As can be seen in this table, 
some criteria have small values, and some have 
descriptive concepts. The terms used to perform 
the fuzzy calculations are referred to in the 
following sections, with values ranging from 0 to 
100. 

 
 
 
 
 
 
 
 
 
 
 
 

Parameters affecting 
the slope stability 

Environment 
condition 

Rock 
Properti

Pit-wall 
geometry and 

blasting 

Uncontrollab
le 

Parameters   

Controllable 
parameters   

C1: Tectonic Regime 

C2: Precipitation  

C3: Intact Rock Strength 

C5: Number of 

C6: RQD 

C7: Discontinuity spacing 

C8: Discontinuity 

C9: Discontinuity 

C10: Discontinuity aperture 

C11: Discontinuity 

C4: lithology 

Intact 
Rock 

Mass 
Rock 

C12: Discontinuity filling 

C13: Groundwater 

C15: Slope (pit-wall) height 

C16: Slope (pit-wall) angle 

C17: Blasting method 

C18: Convexity/Concavity 

C14: Weathering 
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Table 1. A quantitative and qualitative classification of criteria affecting the slope stability. 

Parameters Classification categories 
Very Good Good Medium Weak Very Weak 

Rock type (lithology) 

Igneous: 
Granite, Granodiorite, 
Diorite, and Gabbro 

Metamorphic: 
Gneiss, Quartzite, and 

Amphibolite 

Sedimentary: Breccia, 
Greywacke, Sandstone and 

Conglomerate 
Metamorphic: Hornfels; 

Igneous: 
Dolerite, Obsidian, Andesite, 

Norite, and Agglomerate 

Sedimentary: 
Anhydrite and 

Gypstone Igneous: 
Tuff, Basalt, Breccia, 
Dacite, and Rhyolite 

Sedimentary: 
Limestone shale, 

Dolomite, 
Limestone, Chalk, 

and Siltstone 
Metamorphic: 

Slate, Phyllites, and 
Marble 

Metamorphic: 
Schists and 
Mylonites 

Sedimentary: 
Clay shale, 
Mudstone, 

Claystone, and 
Marble 

Precipitation (annual 
rainfall and snow) (mm/y) < 150 150-300 300–450 450–600 > 600 

Intact rock strength-UCS 
(MPa) > 250 250-100 50-100 25-50 < 25 

RQD (%) 90-100 75-90 50-75 25-50 < 25 

Weathering Fresh Slightly weathered Moderately 
weathered Highly weathered Highly 

weathered 

Tectonic regime Almost the absence of 
meaningful tectonic 

presence of foliation, 
schistosity, and cleavage 

Presence of folds, 
faults, and 

discontinuities 

High fractured 
zones 

Imbrications 
and overthrusts 

Groundwater condition Dry Damp Wet Dripping Flowing 
Number of major 
discontinuity sets 0 2 4 5 > 5 

Discontinuity persistence 
(m) < 5 5-10 10-25 25-40 > 40 

Discontinuity spacing (m) > 2 0.6-2 0.2-0.6 0.06-0.2 < 0.06 

Discontinuity orientation Very favorable Favorable Fair Unfavorable Very 
Unfavorable 

Discontinuity aperture 
(mm) No separation < 0.1 0.1-1 1-5 > 5 

Discontinuity roughness Very rough Rough Slightly rough Smooth Slickensided 

Discontinuity filling Not filled Very hard filling Hard filling Soft filling Very soft 
filling 

Slope (pit-wall) angle < 30 30-40 40-50 50-60 > 60 
Slope (pit-wall) height (m) < 50 50-100 100-200 200-300 > 300 

Blasting method Regular blasting/ 
mechanical Modified production blast Smooth wall/ 

cushion Postsplit Presplitting 

Convexity/Concavity Concavity Concavity to Smooth Smooth Smooth to 
Convexity Convexity 

 

5. Development of Multi-factorial Fuzzy 
Classification 

The first step for establishing a new 
classification system is determining the degree of 
importance of the criteria. The importance of each 
of these criteria was determined by the experts. At 
this stage, the experts completed the 
questionnaire, and the degree of importance of 

each criterion was calculated using the Fuzzy 
Delphi Analytical Hierarchical Process (FDAHP). 
The results of applying this method in many 
studies indicate the feasibility of the FDAHP 
method in determining the degree of importance 
of the criteria. Table 2 shows an example of a 
questionnaire sent to the experts. 
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Table 2. A sample of the questionnaire answered by the first expert. 

Parameters affecting the slope stability Qualitative importance 
Very Strength Strength Moderate Weak Very Weak 

Rock type (major)      
Rainfall (mm/year)      
Intact rock strength-UCS (Mpa)      
RQD (%)      
Weathering      
Tectonic regime      
Groundwater conditions      
Number of major discontinuity sets      
Discontinuity persistence (m)      
Discontinuity spacing (m)      
Discontinuity orientation      
Discontinuity aperture (mm)      
Discontinuity roughness (JRC)      
Discontinuity filling      
Slope (pit-wall) angle (deg)      
Slope (pit-wall) height (m)      
Blasting method      
Convexity/Concavity      

 

Next, the pair-wise comparisons matrix was 
developed based on expert opinions based on 
Saaty (1994) [54]. At this stage, the paired 
comparison matrices were formed by comparing 
the elements of each level in pairs at higher levels 

than any of their existing elements. Numerical 
scores were assigned to pair-wise comparison of 
the significance of the two indices based on Table 
3. 

Table 3. Quantitative and qualitative classification for pair-wise comparison of criteria. 
Definition Intensity of importance 

Extreme importance 9 
Very strong or demonstrated importance 7 
Strong importance 5 
Moderate importance 3 
Equal Importance 1 
Weak, Moderate plus, Strong plus, andVery, very strong 2, 4, 6, and 8 

 
The pair-wise comparison matrix is a ݊ × ݊ 

matrix, where n is the number of elements 
compared. For each pair comparison matrix, the 
elements on the diagonal are equal to 1 and do not 
need to be evaluated. However, in other matrix 
layers, they must be determined based on pair-
wise comparisons. The opposite sides of the 
diagonal are inverse. The pair-wise comparison 
matrix can be computed using Equation (13).  

ܣ = ൣܽ௜௝൧ = ൦

1
1/ܽଵଶ

⋮
1/ܽଵ௡

ܽଵଶ
1
⋮

1/ܽଶ௡

…
…
⋮

…

ܽଵ௡
ܽଶ௡

⋮
1

൪ (13) 

The pair-wise comparison matrix based on the 
first expert’s opinion is listed in Table 4.  
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Table 4. The pair-wise comparison matrix based on the first expert’s opinion. 
Criteria C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 

C1 1.00 9.00 1.00 3.00 5.00 7.00 7.00 5.00 5.00 3.00 3.00 5.00 5.00 7.00 1.00 1.00 3.00 7.00 

C2 0.11 1.00 0.11 0.14 0.20 0.33 0.33 0.20 0.20 0.14 0.14 0.20 0.20 0.33 0.11 0.11 0.14 0.33 

C3 1.00 9.00 1.00 3.00 5.00 7.00 7.00 5.00 5.00 3.00 3.00 5.00 5.00 7.00 1.00 1.00 3.00 7.00 

C4 0.33 7.00 0.33 1.00 3.00 5.00 5.00 3.00 3.00 1.00 1.00 3.00 3.00 5.00 0.33 0.33 1.00 5.00 

C5 0.20 5.00 0.20 0.33 1.00 3.00 3.00 1.00 1.00 0.33 0.33 1.00 1.00 3.00 0.20 0.20 0.33 3.00 

C6 0.14 3.00 0.14 0.20 0.33 1.00 1.00 0.33 0.33 0.20 0.20 0.33 0.33 1.00 0.14 0.14 0.20 1.00 

C7 0.14 3.00 0.14 0.20 0.33 1.00 1.00 0.33 0.33 0.20 0.20 0.33 0.33 1.00 0.14 0.14 0.20 1.00 

C8 0.20 5.00 0.20 0.33 1.00 3.00 3.00 1.00 1.00 0.33 0.33 1.00 1.00 3.00 0.20 0.20 0.33 3.00 

C9 0.20 5.00 0.20 0.33 1.00 3.00 3.00 1.00 1.00 0.33 0.33 1.00 1.00 3.00 0.20 0.20 0.33 3.00 

C10 0.33 7.00 0.33 1.00 3.00 5.00 5.00 3.00 3.00 1.00 1.00 3.00 3.00 5.00 0.33 0.33 1.00 5.00 

C11 0.33 7.00 0.33 1.00 3.00 5.00 5.00 3.00 3.00 1.00 1.00 3.00 3.00 5.00 0.33 0.33 1.00 5.00 

C12 0.20 5.00 0.20 0.33 1.00 3.00 3.00 1.00 1.00 0.33 0.33 1.00 1.00 3.00 0.20 0.20 0.33 3.00 

C13 0.20 5.00 0.20 0.33 1.00 3.00 3.00 1.00 1.00 0.33 0.33 1.00 1.00 3.00 0.20 0.20 0.33 3.00 

C14 0.14 3.00 0.14 0.20 0.33 1.00 1.00 0.33 0.33 0.20 0.20 0.33 0.33 1.00 0.14 0.14 0.20 1.00 

C15 1.00 9.00 1.00 3.00 5.00 7.00 7.00 5.00 5.00 3.00 3.00 5.00 5.00 7.00 1.00 1.00 3.00 7.00 

C16 1.00 9.00 1.00 3.00 5.00 7.00 7.00 5.00 5.00 3.00 3.00 5.00 5.00 7.00 1.00 1.00 3.00 7.00 

C17 0.33 7.00 0.33 1.00 3.00 5.00 5.00 3.00 3.00 1.00 1.00 3.00 3.00 5.00 0.33 0.33 1.00 5.00 

C18 0.14 3.00 0.14 0.20 0.33 1.00 1.00 0.33 0.33 0.20 0.20 0.33 0.33 1.00 0.14 0.14 0.20 1.00 

 

After forming pair-wise comparison matrices, 
the results were used to form the fuzzy pair 
comparison matrix. The triangular membership 
function and, consequently, triangular fuzzy 
numbers are used to form this matrix. The 
calculation for this method involves the following 
steps: 

Step 1. Fuzzy number calculation: 

Fuzzy numbers ܽ௜௝ are cacluated through the 
direct use of expert opinion polls. In this study, 
fuzzy numbers were calculated based on the 
triangular membership function. Figure 3 
indicates the calculation of fuzzy numbers by the 
triangular method.  

 
Figure 3. Triangular membership function in 

Delphi fuzzy method [55]. 

According to Figure 3 in the Delphi fuzzy 
method, a fuzzy number can be calculated using 
Equations (14) to (17). 

ܽ௜௝ = ൫ߙ௜௝, ,௜௝ߜ  ௜௝൯ (14)ߛ

ܽ௜௝ = ݇   ,   ௜௝௞൯ߚ൫݊݅ܯ = 1,2, … , ݊ (15) 

௜௝ߜ = ൭ෑ ௜௝௞ߚ

௡

௞ୀଵ

൱

ଵ
௡

   ,   ݇ = 1,2, … , ݊ (16) 

௜௝ߛ = ݇   ,   ௜௝௞൯ߚ൫ݔܽܯ = 1,2, … , ݊ (17) 
In the above equations, ߛ௜௝ and ߙ௜௝ represent 

the upper and lower boundaries of the experts’ 
decisions, respectively. The ߚ௜௝௞  parameter also 
represents the relative importance of parameter i 
over parameter j based on the expert’s point of 
view [55]. 

Step 2. Establish fuzzy pair-wise comparison 
matrix:  

In this step, the fuzzy numbers matrix of fuzzy 
pair-wise comparison between different 
parameters is created using Equation (18). 

 
 



Niromand et al. Journal of Mining & Environment, Vol. 15, No. 3, 2024 
 

1039 

ሚܣ = ൣ ෤ܽ௜௝൧ 

(18) 

෤ܽ௜௝ × ෤ܽ௜௝ ≈ ,݅ܣ   ,   1 ݆ = 1,2, … , ݊ 

ሚܣ =

⎣
⎢
⎢
⎢
⎡

(1,1,1) ,ଵଶߙ) ,ଵଶߜ (ଵଶߛ ,ଵଷߙ) ,ଵଷߜ (ଵଷߛ

ቀ1 ଵଶൗߛ , 1
ଵଶߜ

ൗ , 1 ଵଶൗߙ ቁ (1,1,1) ,ଶଷߙ) ,ଶଷߜ (ଶଷߛ

ቀ1 ଵଷൗߛ , 1
ଵଷߜ

ൗ , 1 ଵଷൗߙ ቁ ቀ1 ଶଷൗߛ , 1
ଶଷߜ

ൗ , 1 ଶଷൗߙ ቁ (1,1,1) ⎦
⎥
⎥
⎥
⎤
 

 
The fuzzy pair-wise comparison matrix is 

presented in Table 5. 

Table 5. The fuzzy pair-wise comparison matrix.  
C1 C2 C3 C4 C5 C6 

C1 1.00 1.00 1.00 0.33 2.59 9.00 1.00 1.32 3.00 1.00 2.59 5.00 1.00 3.34 5.00 1.00 3.20 7.00 

C2 0.11 0.39 3.00 1.00 1.00 1.00 0.11 0.44 3.00 0.14 0.58 7.00 0.20 0.83 7.00 0.33 0.86 5.00 

C3 0.33 0.76 1.00 0.33 2.28 9.00 1.00 1.00 1.00 1.00 1.97 5.00 1.00 2.94 5.00 1.00 2.82 7.00 

C4 0.20 0.39 1.00 0.14 1.73 7.00 0.20 0.51 1.00 1.00 1.00 1.00 1.00 1.73 3.00 0.33 1.50 5.00 

C5 0.20 0.30 1.00 0.14 1.21 5.00 0.20 0.34 1.00 0.33 0.58 1.00 1.00 1.00 1.00 0.33 1.00 3.00 

C6 0.14 0.31 1.00 0.20 1.16 3.00 0.14 0.35 1.00 0.20 0.67 3.00 0.33 1.00 3.00 1.00 1.00 1.00 

C7 0.14 0.16 0.20 0.11 0.44 3.00 0.14 0.17 0.20 0.20 0.23 0.33 0.20 0.29 0.33 0.20 0.34 1.00 

C8 0.14 0.17 0.20 0.11 0.50 5.00 0.14 0.18 0.20 0.20 0.26 0.33 0.20 0.39 1.00 0.20 0.45 3.00 

C9 0.14 0.21 0.33 0.14 0.70 5.00 0.20 0.23 0.33 0.20 0.39 1.00 0.33 0.58 1.00 0.33 0.58 3.00 

C10 0.14 0.22 0.33 0.11 0.71 7.00 0.14 0.24 0.33 0.20 0.39 1.00 0.33 0.58 3.00 0.20 0.58 5.00 

C11 0.14 0.21 0.33 0.14 0.58 7.00 0.20 0.23 0.33 0.20 0.45 1.00 0.20 0.67 3.00 0.20 0.58 5.00 

C12 0.20 0.23 0.33 0.20 0.76 5.00 0.20 0.26 0.33 0.20 0.51 3.00 0.20 0.88 3.00 0.20 0.88 3.00 

C13 0.14 0.18 0.20 0.14 0.53 5.00 0.20 0.20 0.20 0.20 0.34 1.00 0.20 0.51 1.00 0.20 0.51 3.00 

C14 0.14 0.25 1.00 0.33 0.58 3.00 0.14 0.27 1.00 0.20 0.45 5.00 0.20 0.58 5.00 0.20 0.67 3.00 

C15 0.14 0.47 1.00 0.11 1.73 9.00 0.14 0.61 1.00 0.33 1.00 3.00 0.33 1.50 5.00 0.20 1.43 7.00 

C16 0.20 0.51 1.00 0.14 1.84 9.00 0.20 0.67 1.00 1.00 1.32 3.00 1.00 1.97 5.00 0.33 1.63 7.00 

C17 0.33 0.58 1.00 0.33 1.85 7.00 0.33 0.76 3.00 0.33 1.50 5.00 0.33 2.24 5.00 0.33 2.24 5.00 

C18 0.14 0.41 3.00 1.00 1.32 3.00 0.14 0.47 3.00 0.20 0.63 7.00 0.33 0.94 7.00 0.33 1.14 5.00 

Table 5. Continued.  
C7 C8 C9 C10 C11 C12 

C1 5.00 6.44 7.00 5.00 5.92 7.00 3.00 4.79 7.00 3.00 4.58 7.00 3.00 4.79 7.00 3.00 4.40 5.00 

C2 0.33 2.28 9.00 0.20 2.01 9.00 0.20 1.43 7.00 0.14 1.40 9.00 0.14 1.73 7.00 0.20 1.32 5.00 

C3 5.00 5.92 7.00 5.00 5.44 7.00 3.00 4.40 5.00 3.00 4.21 7.00 3.00 4.40 5.00 3.00 3.87 5.00 

C4 3.00 4.40 5.00 3.00 3.87 5.00 1.00 2.59 5.00 1.00 2.59 5.00 1.00 2.24 5.00 0.33 1.97 5.00 

C5 3.00 3.41 5.00 1.00 2.59 5.00 1.00 1.73 3.00 0.33 1.73 3.00 0.33 1.50 5.00 0.33 1.14 5.00 

C6 1.00 2.94 5.00 0.33 2.24 5.00 0.33 1.73 3.00 0.20 1.73 5.00 0.20 1.73 5.00 0.33 1.14 5.00 

C7 1.00 1.00 1.00 0.33 0.76 1.00 0.33 0.44 1.00 0.20 0.51 1.00 0.20 0.51 1.00 0.20 0.39 1.00 

C8 1.00 1.32 3.00 1.00 1.00 1.00 0.33 0.58 1.00 0.33 0.58 1.00 0.33 0.58 1.00 0.20 0.51 1.00 

C9 1.00 2.28 3.00 1.00 1.73 3.00 1.00 1.00 1.00 0.33 1.00 3.00 0.33 1.00 3.00 0.33 0.76 3.00 

C10 1.00 1.97 5.00 1.00 1.73 3.00 0.33 1.00 3.00 1.00 1.00 1.00 0.33 1.00 3.00 0.20 0.88 3.00 

C11 1.00 1.97 5.00 1.00 1.73 3.00 0.33 1.00 3.00 0.33 1.00 3.00 1.00 1.00 1.00 0.33 0.76 3.00 

C12 1.00 2.59 5.00 1.00 1.97 5.00 0.33 1.32 3.00 0.33 1.14 5.00 0.33 1.32 3.00 1.00 1.00 1.00 

C13 1.00 1.73 3.00 1.00 1.32 3.00 0.33 0.76 1.00 0.33 0.76 3.00 0.33 0.76 1.00 0.33 0.58 1.00 

C14 1.00 1.63 7.00 0.33 1.24 7.00 0.33 0.86 5.00 0.20 0.83 7.00 0.20 1.00 5.00 0.33 0.76 3.00 

C15 1.00 3.64 7.00 1.00 3.34 5.00 0.33 2.24 5.00 1.00 2.59 5.00 0.33 2.24 5.00 0.20 1.97 5.00 

C16 3.00 4.79 7.00 3.00 4.40 5.00 1.00 2.94 5.00 3.00 3.41 5.00 1.00 2.94 5.00 0.33 2.24 5.00 

C17 3.00 5.21 7.00 3.00 4.58 7.00 1.00 3.20 7.00 1.00 2.65 7.00 1.00 3.20 7.00 3.00 3.41 5.00 

C18 1.00 3.00 9.00 0.33 2.28 9.00 0.33 1.63 7.00 0.20 1.52 9.00 0.20 1.88 7.00 0.33 1.50 5.00 
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Table 5. Continued.  
C13 C14 C15 C16 C17 C18 

C1 5.00 5.44 7.00 1.00 3.96 7.00 1.00 2.14 7.00 1.00 1.97 5.00 1.00 1.73 3.00 7.00 2.43 7.00 

C2 0.20 1.88 7.00 0.33 1.73 3.00 0.11 0.58 9.00 0.11 0.54 7.00 0.14 0.54 3.00 1.00 0.76 1.00 

C3 5.00 5.00 5.00 1.00 3.64 7.00 1.00 1.63 7.00 1.00 1.50 5.00 0.33 1.32 3.00 7.00 2.14 7.00 

C4 1.00 2.94 5.00 0.20 2.24 5.00 0.33 1.00 3.00 0.33 0.76 1.00 0.20 0.67 3.00 5.00 1.59 5.00 

C5 1.00 1.97 5.00 0.20 1.73 5.00 0.20 0.67 3.00 0.20 0.51 1.00 0.20 0.45 3.00 3.00 1.06 3.00 

C6 0.33 1.97 5.00 0.33 1.50 5.00 0.14 0.70 5.00 0.14 0.61 3.00 0.20 0.45 3.00 3.00 0.88 3.00 

C7 0.33 0.58 1.00 0.14 0.61 1.00 0.14 0.27 1.00 0.14 0.21 0.33 0.14 0.19 0.33 1.00 0.33 1.00 

C8 0.33 0.76 1.00 0.14 0.81 3.00 0.20 0.30 1.00 0.20 0.23 0.33 0.14 0.22 0.33 3.00 0.44 3.00 

C9 1.00 1.32 3.00 0.20 1.16 3.00 0.20 0.45 3.00 0.20 0.34 1.00 0.14 0.31 1.00 3.00 0.61 3.00 

C10 0.33 1.32 3.00 0.14 1.21 5.00 0.20 0.39 1.00 0.20 0.29 0.33 0.14 0.38 1.00 5.00 0.66 5.00 

C11 1.00 1.32 3.00 0.20 1.00 5.00 0.20 0.45 3.00 0.20 0.34 1.00 0.14 0.31 1.00 5.00 0.53 5.00 

C12 1.00 1.73 3.00 0.33 1.32 3.00 0.20 0.51 5.00 0.20 0.45 3.00 0.20 0.29 0.33 3.00 0.67 3.00 

C13 1.00 1.00 1.00 0.20 0.88 3.00 0.20 0.39 3.00 0.20 0.30 1.00 0.14 0.24 0.33 3.00 0.47 3.00 

C14 0.33 1.14 5.00 1.00 1.00 1.00 0.14 0.45 7.00 0.14 0.41 5.00 0.14 0.31 1.00 1.00 0.44 1.00 

C15 0.33 2.54 5.00 0.14 2.24 7.00 1.00 1.00 1.00 0.33 0.76 1.00 0.14 0.81 3.00 7.00 1.63 7.00 

C16 1.00 3.34 5.00 0.20 2.43 7.00 1.00 1.32 3.00 1.00 1.00 1.00 0.20 0.88 3.00 7.00 1.73 7.00 

C17 3.00 4.21 7.00 1.00 3.20 7.00 0.33 1.24 7.00 0.33 1.14 5.00 1.00 1.00 1.00 5.00 1.70 5.00 

C18 0.33 2.14 7.00 1.00 2.28 3.00 0.14 0.61 9.00 0.14 0.58 7.00 0.20 0.59 3.00 1.00 1.00 1.00 

 
The fuzzy weight of each parameter can be 

determined using Equations (19) and (20) [55]. 

෨ܼ௜ = ൣ ෤ܽ௜௝⨂ … ⨂ ෤ܽ௜௡൧
ଵ
௡ (19) 

෩ܹ௜ = ෨ܼ௜⨂( ෨ܼ௜⨁ … ⨁ ෨ܼ௡) (20) 
where ෩ܹ௜ is a row vector representing the 

fuzzy weight of the ith parameter. Table 6 reports 
the fuzzy Z and W weight vectors.  

Table 6. The fuzzy Z and W weight vectors. 
Z1 1.75 3.08 5.38 W1 0.18 0.14 0.10 
Z2 0.21 0.97 4.76 W2 0.02 0.05 0.09 
Z3 1.55 2.63 4.79 W3 0.1 0.12 0.09 
Z4 0.61 1.54 3.27 W4 0.06 0.07 0.06 
Z5 0.44 1.03 2.70 W5 0.05 0.05 0.05 
Z6 0.31 1.03 3.13 W6 0.03 0.05 0.06 
Z7 0.23 0.36 0.70 W7 0.02 0.02 0.01 
Z8 0.28 0.44 0.97 W8 0.03 0.02 0.02 
Z9 0.36 0.66 1.78 W9 0.04 0.03 0.03 

Z10 0.31 0.66 1.91 W10 0.03 0.03 0.03 
Z11 0.35 0.65 2.16 W11 0.04 0.03 0.04 
Z12 0.37 0.80 2.26 W12 0.04 0.04 0.04 
Z13 0.32 0.53 1.32 W13 0.03 0.02 0.02 
Z14 0.27 0.63 3.16 W14 0.03 0.03 0.06 
Z15 0.37 1.52 3.68 W15 0.04 0.07 0.07 
Z16 0.74 1.84 3.91 W16 0.08 0.09 0.07 
Z17 0.86 2.06 4.81 W17 0.09 0.10 0.09 
Z18 0.31 1.12 5.06 W18 0.03 0.05 0.09 

 
 
Step 3. Defuzzification  

After finding the fuzzy weights of each 
parameter, all the fuzzy numbers are defuzzied 
using Equation (21) [55].  

෩ܹ௜ = ൭ෑ ௝߱

ଷ

௜ୀଵ

൱

ଵ
ଷ

 (21) 

Table 7 reports the degree of importance of the 
parameters affecting slope stability using the 
FDAHP method.  
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Table 7. The degree of importance of the parameters affecting the slope stability. 
Criteria Final weight Criteria Final weight 

Rock type  0.140 Discontinuity spacing 0.033 
Rainfall  0.051 Discontinuity orientation 0.035 
Intact rock strength-UCS  0.123 Discontinuity aperture 0.039 
RQD  0.064 Discontinuity roughness 0.027 
Weathering 0.047 Discontinuity filling 0.038 
Tectonic regime 0.045 Slope (pit-wall) angle 0.058 
Groundwater conditions 0.018 Slope (pit-wall) height 0.078 
Number of major discontinuity sets 0.022 Blasting method 0.090 
Discontinuity persistence  0.033 Convexity/Concavity 0.059 

 
In the next step, according to the classes 

corresponding to each criterion, a Gaussian or 
sigmoidal membership function is defined for 

each criterion. Table 8 and Figure 4 present the 
Gaussian and sigmoidal membership functions 
defined for all criteria.  

Table 8. The Gaussian and sigmoidal membership functions defined for all criteria. 
Qualitative classification Slope (pit-wall) angle Number of major discontinuity sets 

Very Weak ଵܳ
(ଵ)(ݔ) =

1
1 + exp൫(−0.4) × ݔ) − 55)൯

 ଵܳ
(ଵ)(ݔ) =

1
1 + exp൫(−7) × ݔ) − 3.5)൯

 

Weak ଵܳ
(ଶ)(ݔ) = ݌ݔ݁ ቆ−

1
2 ൬

ݔ − 50
4 ൰

ଶ

ቇ ଵܳ
(ଶ)(ݔ) = ݌ݔ݁ ቆ−

1
2 ൬

ݔ − 3
0.3 ൰

ଶ

ቇ 

Medium ଵܳ
(ଷ)(ݔ) = ݌ݔ݁ ቆ−

1
2

൬
ݔ − 43

4
൰

ଶ

ቇ ଵܳ
(ଷ)(ݔ) = ݌ݔ݁ ቆ−

1
2

൬
ݔ − 2.1

0.3
൰

ଶ

ቇ 

Good ଵܳ
(ସ)(ݔ) = ݌ݔ݁ ቆ−

1
2

൬
ݔ − 35

4
൰

ଶ

ቇ ଵܳ
(ସ)(ݔ) = ݌ݔ݁ ቆ−

1
2

൬
ݔ − 1.2

0.3
൰

ଶ

ቇ 

Very Good ଵܳ
(ହ)(ݔ) =

1
1 + exp൫(−0.3) × ݔ) − 15)൯

 ଵܳ
(ହ)(ݔ) =

1
1 + exp൫(8) × ݔ) − 0.7)൯

 

 Intact rock strength Discontinuity persistence 

Very Weak ଵܳ
(ଵ)(ݔ) =

1
1 + exp൫(0.25) × ݔ) − 25)൯

 ଵܳ
(ହ)(ݔ) =

1
1 + exp൫(−0.7) × ݔ) − 40)൯

 

Weak ଵܳ
(ଶ)(ݔ) = ݌ݔ݁ ቆ−

1
2

൬
ݔ − 45

18
൰

ଶ

ቇ ଵܳ
(ସ)(ݔ) = ݌ݔ݁ ቆ−

1
2

൬
ݔ − 32

3.5
൰

ଶ

ቇ 

Medium ଵܳ
(ଷ)(ݔ) = ݌ݔ݁ ቆ−

1
2 ൬

ݔ − 85
23 ൰

ଶ

ቇ ଵܳ
(ଷ)(ݔ) = ݌ݔ݁ ቆ−

1
2 ൬

ݔ − 20
3.5 ൰

ଶ

ቇ 

Good ଵܳ
(ସ)(ݔ) = ݌ݔ݁ ቆ−

1
2

൬
ݔ − 160

27
൰

ଶ

ቇ ଵܳ
(ଶ)(ݔ) = ݌ݔ݁ ቆ−

1
2

൬
ݔ − 8

3.5
൰

ଶ

ቇ 

Very Good ଵܳ
(ହ)(ݔ) =

1
1 + exp൫(−0.1) × ݔ) − 230)൯

 ଵܳ
(ଵ)(ݔ) =

1
1 + exp൫(1.5) × ݔ) − 3)൯

 

 
 RQD Discontinuity spacing 

Very Weak ଵܳ
(ଵ)(ݔ) =

1
1 + exp൫(0.4) × ݔ) − 15)൯

 ଵܳ
(ଵ)(ݔ) =

1
1 + exp൫(1.5) × ݔ) − 5)൯

 

Weak ଵܳ
(ଶ)(ݔ) = ݌ݔ݁ ቆ−

1
2 ൬

ݔ − 35
8 ൰

ଶ

ቇ ଵܳ
(ଶ)(ݔ) = ݌ݔ݁ ቆ−

1
2 ൬

ݔ − 17
6 ൰

ଶ

ቇ 

Medium ଵܳ
(ଷ)(ݔ) = ݌ݔ݁ ቆ−

1
2

൬
ݔ − 60

8
൰

ଶ

ቇ ଵܳ
(ଷ)(ݔ) = ݌ݔ݁ ቆ−

1
2

൬
ݔ − 50

11
൰

ଶ

ቇ 

Good ଵܳ
(ସ)(ݔ) = ݌ݔ݁ ቆ−

1
2

൬
ݔ − 78

7
൰

ଶ

ቇ ଵܳ
(ସ)(ݔ) = ݌ݔ݁ ቆ−

1
2

൬
ݔ − 110

18
൰

ଶ

ቇ 

Very Good ଵܳ
(ହ)(ݔ) =

1
1 + exp൫(−0.4) × ݔ) − 85)൯

 ଵܳ
(ହ)(ݔ) =

1
1 + exp൫(−0.2) × ݔ) − 155)൯

 

 Discontinuity aperture Slope (pit-wall) height 

Very Weak ଵܳ
(ଵ)(ݔ) =

1
1 + exp൫(−5) × ݔ) − 4)൯

 ଵܳ
(ଵ)(ݔ) =

1
1 + exp൫(−0.1) × ݔ) − 340)൯

 

Weak ଵܳ
(ଶ)(ݔ) = ݌ݔ݁ ቆ−

1
2

൬
ݔ − 2.5

0.6
൰

ଶ

ቇ ଵܳ
(ଶ)(ݔ) = ݌ݔ݁ ቆ−

1
2

൬
ݔ − 270

37
൰

ଶ

ቇ 

Medium ଵܳ
(ଷ)(ݔ) = ݌ݔ݁ ቆ−

1
2 ൬

ݔ − 0.8
0.2 ൰

ଶ

ቇ ଵܳ
(ଷ)(ݔ) = ݌ݔ݁ ቆ−

1
2 ൬

ݔ − 130
35 ൰

ଶ

ቇ 
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Good ଵܳ
(ସ)(ݔ) = ݌ݔ݁ ቆ−

1
2 ൬

ݔ − 0.4
0.15 ൰

ଶ

ቇ ଵܳ
(ସ)(ݔ) = ݌ݔ݁ ቆ−

1
2 ൬

ݔ − 48
20 ൰

ଶ

ቇ 

Very Good ଵܳ
(ହ)(ݔ) =

1
1 + exp൫(15) × ݔ) − 0.3)൯

 ଵܳ
(ହ)(ݔ) =

1
1 + exp൫(0.25) × ݔ) − 25)൯

 

 Rainfall Qualitative parameters 

Very Weak ଵܳ
(ଵ)(ݔ) =

1
1 + exp൫(−0.1) × ݔ) − 370)൯

 ଵܳ
(ଵ)(ݔ) =

1
1 + exp൫(0.4) × ݔ) − 15)൯

 

Weak ଵܳ
(ଶ)(ݔ) = ݌ݔ݁ ቆ−

1
2 ൬

ݔ − 330
35 ൰

ଶ

ቇ ଵܳ
(ଶ)(ݔ) = ݌ݔ݁ ቆ−

1
2 ൬

ݔ − 40
8 ൰

ଶ

ቇ 

Medium ଵܳ
(ଷ)(ݔ) = ݌ݔ݁ ቆ−

1
2 ൬

ݔ − 225
35 ൰

ଶ

ቇ ଵܳ
(ଷ)(ݔ) = ݌ݔ݁ ቆ−

1
2

൬
ݔ − 60

8
൰

ଶ

ቇ 

Good ଵܳ
(ସ)(ݔ) = ݌ݔ݁ ቆ−

1
2

൬
ݔ − 100

30
൰

ଶ

ቇ ଵܳ
(ସ)(ݔ) = ݌ݔ݁ ቆ−

1
2

൬
ݔ − 80

7
൰

ଶ

ቇ 

Very Good ଵܳ
(ହ)(ݔ) =

1
1 + exp൫(0.15) × ݔ) − 40)൯

 ଵܳ
(ହ)(ݔ) =

1
1 + exp൫(−0.7) × ݔ) − 92)൯

 

 
6. Case Study 

In this study, sustainability analysis was 
performed by investigating different slopes of 8 
open pit mines. Table 9 reports the studied slopes 
in this study. The information on each slope was 

completed either through field study or based on 
published reports. Table 10 shows an example of 
field data collected from the southwest wall of the 
Sungun copper mine.  

Table 9. The list of studied slopes in the database. 
Case number Name Case number Name 

A1 Sarcheshmeh-Iran-East wall A15 Aznalcollar-Spain-South wall 
A2 Sarcheshmeh-Iran-North wall A16 Aznalcollar-Spain-West wall 
A3 Sarcheshmeh-Iran-South wall A17 Aznalcollar-Spain-North wall 
A4 Sarcheshmeh-Iran-West wall A18 Cadia Hill-Australia-Northeast wall 
A5 Angoran-Iran-Southeast wall A19 Cadia Hill-Australia-East wall 
A6 Sangan-Iran-Baghak wall A20 Cadia Hill-Australia-West wall 
A7 Sangan-Iran-Anomaly A A21 Cadia Hill-Australia-North wall 
A8 Chuquicamata-Chile-Northwest wall A22 Cadia Hill-Australia-South wall 
A9 Chuquicamata-Chile-South wall A23 Aitik-Sweden-East wall 

A10 Chuquicamata-Chile-West wall A24 Aitik-Sweden-Northeast wall 
A11 Chuquicamata-Chile-North wall A25 Aitik-Sweden-Northwest wall 
A12 Chuquicamata-Chile-East wall A26 Aitik-Sweden-Southeast wall 
A13 Aznalcollar-Spain-Southeast wall A27 Aitik-Sweden-Southwest wall 
A14 Aznalcollar-Spain-Southwest wall A28 Sungon-Iran-Southwest wall 

Table 10. An example of field data collected from the Sungun copper mine. 
NO Parameters SW Sungun 

C1 Rock type (major) Quartz monzonite (SP) & Diorite (Dk-1) 
C2 Rainfall (mm/year) 300-450 
C3 Intact rock strength-UCS (Mpa) 30-80 
C4 RQD (%) 50-75 
C5 Weathering W3 
C6 Tectonic regime Strong 
C7 Groundwater conditions Damp 
C8 Number of major discontinuity sets 1 
C9 Discontinuity persistence (m) 10-30 
C10 Discontinuity spacing (m) 0.06-2 
C11 Discontinuity orientation Favorable 
C12 Discontinuity aperture (mm) 0.5-1 
C13 Discontinuity roughness (JRC) Smooth 
C14 Discontinuity filling Hard filling 
C15 Slope (pit-wall) angle (deg) 30-40 
C16 Slope (pit-wall) height (m) 450 
C17 Blasting method Modified production 
C18 Convexity/Concavity Concave 
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Figure 4. Diagram of criteria membership functions. 

The present study attempted to quantitatively 
or qualitatively evaluate all the characteristics 
affecting sustainability. The qualitative values in 

collected forms were scored in 5 classes from 10 
to 100. Table 11 represents the quantitative 
characteristics of the 28 studied slopes.  
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Table 11. The quantitative characteristics of the 28 studied slopes. 
Name C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 

A1 80 135 60 45 90 60 100 3 12.5 5.3 40 3 90 60 35 390 40 60 
A2 80 135 70 55 90 60 100 3 6.5 350 90 3 90 60 35 420 40 60 
A3 80 135 55 45 90 60 60 4 10 350 60 3 80 40 35 620 40 60 
A4 80 135 55 45 90 60 60 4 10 300 40 3 80 50 35 800 40 60 
A5 40 497 73 41 90 60 100 4 20 75 40 3 40 50 30 170 40 60 
A6 60 155 105 45 85 75 100 1 7.5 125 40 0.55 90 50 41 50 40 60 
A7 60 155 90 40 60 75 60 3 15 85 40 0.55 40 50 45 65 40 60 
A8 80 35 59 48 60 60 100 3 5 200 40 0.55 40 60 32 210 40 60 
A9 80 35 52 59 40 60 100 4 2.75 325 60 0.55 90 60 31 700 40 60 

A10 80 35 48 23 60 60 60 5 5.75 325 15 3 60 50 32 750 40 60 
A11 80 35 67 44 40 60 100 5 5.75 400 60 0.55 60 60 31 750 40 60 
A12 60 35 85 46 60 60 100 6 7.75 240 10 3 80 50 42 780 40 60 
A13 80 650 55 60 100 40 100 3 3 225 80 0.1 80 60 34 240 40 60 
A14 40 650 24 25 100 40 60 4 10 165 15 3 60 60 34 210 40 60 
A15 40 650 20 25 60 40 60 4 10 90 40 3 60 40 34 210 40 60 
A16 40 650 35 40 60 40 60 5 15 115 40 3 40 40 32 210 40 60 
A17 60 650 35 40 100 40 60 3 7.5 60 60 0.55 60 60 32 240 40 60 
A18 95 800 87 60 100 60 100 3 6.5 415 60 0.55 90 40 58 500 80 90 
A19 95 800 53 56 100 60 100 2 4.5 375 60 3 90 40 58 500 80 60 
A20 95 800 50 60 100 60 100 3 4.5 105 40 0.55 90 40 46 500 80 60 
A21 95 800 89 68 100 60 100 3 3 175 80 3 100 40 58 500 80 60 
A22 60 800 46 65 90 60 60 4 5.5 75 40 3 80 40 52 500 80 90 
A23 95 680 133 78 60 60 60 4 2.25 350 80 0.55 80 80 42 125 60 90 
A24 60 680 75 80 60 60 60 5 9.5 150 40 3 80 80 47 230 60 90 
A25 95 680 138 82 100 60 100 5 3 325 60 0.55 90 40 51 250 60 90 
A26 95 680 124 78 60 60 100 4 2.5 325 80 0.1 90 40 49 325 60 60 
A27 95 680 138 85 60 60 100 4 3.5 150 60 0.55 90 40 53 325 60 90 
A28 95 375 75 30 60 60 100 1 20 100 90 0.75 40 80 35 475 60 90 

 

6. Discussion 

The ability of the new fuzzy classification 
system was evaluated according to the results of 
assessing the stability of the studied slopes. To 

achieve this goal, a fuzzy matrix was created for 
each slope. Table 12 provides an example of a 
fuzzy matrix belonging to the southwestern slope 
of the Sungun copper mine. 

Table 12. Fuzzy matrix for the southwestern slope of the Sungun copper mine. 

Criterion Evaluation matrix component 
Very Poor (VP) Poor (P) Medium (M) Good (G) Very Good (VG) 

C1 0.89 0.1007 0 0 0 
C2 0 0 0 0.44 0.62 
C3 0 0 0.91 0.25 0 
C4 0 0 0 0 0 
C5 0 0.02 1 0.04 0 
C6 0 0.02 1 0.04 0 
C7 1 0.02 0 0 0 
C8 0.08 0.8 0 0 0 
C9 0 0 1 0 0 

C10 0 0.86 0 0 0 
C11 0.2 0.36 0 0 0 
C12 0 0.066 1 0.01 0 
C13 0 0 0.04 1 0 
C14 0 1 0.04 0 0 
C15 0 1 0.14 0 0 
C16 0 0 0 0 1 
C17 0 0.02 1 0.04 0 
C18 0.2 0.36 0 0 0 
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In the last stage of the evaluation, the 
evaluation vectors summarized using the Dubois-
Prade decision operator are shown as follows: 
݀ଵ(ݑ) = ((1 − ˄((ݑ)ଵଵݎ˅(ଵݓ … ˄൫(1 − ൯(ݑ)ଵ଼ଵݎ˅(଻ݓ = 0.86 

݀ଶ(ݑ) = ((1 − ˄((ݑ)ଵଶݎ˅(ଵݓ … ˄൫(1 − ൯(ݑ)ଵ଼ଶݎ˅(଻ݓ = 0.86 

݀ଷ(ݑ) = ((1 − ˄((ݑ)ଵଷݎ˅(ଵݓ … ˄൫(1 − ൯(ݑ)ଵ଼ଷݎ˅(଻ݓ = 0.86 

݀ସ(ݑ) = ((1 − ˄((ݑ)ଵସݎ˅(ଵݓ … ˄൫(1 − ൯(ݑ)ଵ଼ସݎ˅(଻ݓ = 0.86 

݀ହ(ݑ) = ((1 − ˄((ݑ)ଵହݎ˅(ଵݓ … ˄൫(1 − ൯(ݑ)ଵ଼ହݎ˅(଻ݓ = ૙. ૡૡ 

ܦ = ݂(ܹ, ܴ) = (0.86,0.86, 0.86,0.86, ૙. ૡૡ) 

Overall, the stability class of the southwestern 
slope of the Sungun copper mine is rated as “Very 
good”. The results obtained for all studied slopes 
are shown in Table 13. 

According to the results in Table 13, 9 slopes 
from 3 studied mines in Iran, Sweden, and 
Australia were classified in very good stability 
conditions. Also 9 slopes from 3 mines in Iran, 
Chile, and Spain were classified in the category of 
suitable quality. Six mines from 4 studied mines 
in Iran, Sweden, Spain, and Chile were classified 
as medium or susceptible to instability. Finally, 4 

slopes from two mines in Iran and Spain were 
classified as unstable conditions. The validity and 
reliability of the results were evaluated by 
analyzing the field study reports collected from all 
the mines studied, followed by comparing their 
actual behavior and predicted quality grades. The 
results of these surveys are presented in Table 14. 

Table 13. Slope stability classes for studied mine. 
Case Class Case Class 
A1 Good A15 Poor 
A2 Good A16 Poor 
A3 Good A17 Medium 
A4 Good A18 Very Good 
A5 Poor A19 Very Good 
A6 Medium A20 Very Good 
A7 Medium A21 Very Good 
A8 Good A22 Medium 
A9 Good A23 Very Good 
A10 Good A24 Medium 
A11 Good A25 Very Good 
A12 Medium A26 Very Good 
A13 Good A27 Very Good 
A14 Poor A28 Very Good 

 

Table 14. Actual behavior of studied slopes. 
Case Slope behavior (actual) Class Case Slope behavior (actual) Class 
A1 Stable Good A15 Overall failure Poor 
A2 Stable Good A16 Overall failure Poor 
A3 Stable Good A17 Failure in the set of benches Medium 
A4 Stable Good A18 Stable Very Good 
A5 Overall failure Poor A19 Stable Very Good 
A6 Failure in the set of benches Medium A20 Stable Very Good 
A7 Failure in the set of benches Medium A21 Stable Very Good 
A8 Stable Good A22 Failure in the set of benches Medium 
A9 Stable Good A23 Stable Very Good 

A10 Stable Good A24 Failure in the set of benches Medium 
A11 Stable Good A25 Stable Very Good 
A12 Failure in the set of benches Medium A26 Stable Very Good 
A13 Stable Good A27 Stable Very Good 
A14 Overall failure Poor A28 Stable Very Good 

 
The results of this study and its comparison 

with the actual behavior of slopes in all the 
studied mines suggest the proper performance of 
the non-linear multi-factorial fuzzy classification 
system. All stable slopes were distinguished from 
unstable or unstable slopes by good and very good 
quality. The slopes were classified as poor and 
medium quality, with a general and partial 
collapse in several slopes, respectively. 

7. Conclusions 

The slope stability is a highly technical and 
economically important concept, especially in 
surface mines. The stability conditions required 

for a rock slope depend on the project type and the 
failure outcomes. In this respect, any slight 
changes in the depth of the slopes and, thus, the 
final slope deep of the mine will have a significant 
impact on the economic parameters of mining 
operations. In the design sector, the slope reduces 
the tailing ratio, lowers the return on capital, and 
increases the extractable mineral reserve. At the 
extraction stage, the slopes’ stability will allow 
numerous arbitrary explosions to crush the rocks 
completely. Regarding safety both in the design 
and the extraction phase, the slope stability 
enables better control of the mine walls, better 
control of surface and groundwater, and designing 
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and constructing safety walls in the final wall of 
the mine. The present results offer a non-linear 
multi-factor fuzzy classification system. This 
system is applied to evaluate the stability of 
sloping walls using the data obtained from 28 
sloping walls through fuzzy matrix formation 
through Dubois and Pride fuzzy operators in five 
classes. The accuracy of the results was validated 
by preparing field reports for eight surface mines 
and comparing them with the results of the 
classification system. The results of the 
investigations and their comparison with the 
recorded actual observations revealed that the 
non-linear multi-factor fuzzy classification system 
with the applied operator was able to evaluate and 
rank the slope stability in five classes of very 
good (high stability), very good (stable), moderate 
(relatively stable), weak (unstable), and very weak 
(highly unstable). Overall, the research results 
suggest the ability of the developed non-linear 
multi-factorial fuzzy classification system to 
classify the studied slopes. Also, the results 
revealed that the slope stability could be evaluated 
with high precision using the new fuzzy 
classification system according to information 
such as rock mass characteristics, intact rock 
properties, rainfall, tectonic regime, groundwater 
conditions, slope information, and blasting 
method. 
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  چکیده:

تواند هاي شیبدار میتواند در اثر بارهاي خارجی مانند زلزله، انفجار و فشار آب منفذي رخ دهد.علاوه بر این، در شرایط طبیعی، ناپایداري دیوارهناپایداري شیب می
هاي زیرزمینی باشد. عامل دیگري که منجر بــه ناپایــداري باد و افزایش تدریجی سطح آبهاي از دیواره در اثر جریان آب یا ناشی از عواملی مانند فرسایش بخش

هاي  ها ممکن است با جابجاییهاي انسانی است که شامل انواع مختلف بارگیري و تخلیه در دیواره شیبدار می شود. ناپایداري شیبدیواره شیبدار می شود، فعالیت
ها در دیواره شود. بنابراین این پدیده در تمامی مراحل طراحی و اجراي دیواره شیبدار تواند باعث ایجاد مشکل یا آسیب به سازهمحدود یا بزرگ همراه باشد که می

مــین ســاختی منطقــه، نیاز به تمهیدات و مراقبت لازم دارد. به طور کلی، پایداري دیواره شیبدار تحت تأثیر عوامل طبیعی مانند نوع سنگ (لیتولوژي)، شــرایط ز
روش انفجــار اســت. شرایط ناپیوستگی توده سنگ و شرایط آب و هوایی منطقه است. علاوه بر این، تابعی از عوامل طراحی مانند شیب، ارتفاع، الگوي انفجــاري و 

دهــد. ارزیــابی در ائه مــیمطالعه حاضر یک سیستم طبقه بندي فازي چند فاکتوره را با استفاده از رویکرد فازي چند معیاره براي ارزیابی پایداري دیواره شیبدار ار
معــدن  8دیــواره شــیبدار از  28شود. در ادامه، قابلیت پایــداري پنج کلاس شامل «پایداري بالا»، «پایدار»، «نسبتاً پایدار»، «ناپایدار» و «بسیار ناپایدار» انجام می

شیب به ترتیب در شرایط نسبتاً پایدار و ناپایدار ارزیابی شدند  6و   4بندي فازي،  روباز بزرگ در نقاط مختلف جهان مورد ارزیابی قرار گرفت. با توجه به نتایج طبقه
ها ارزیابی شد. نتایج نشــان بندي شدند. پس از آن، سیستم طبقه بندي فازي توسعه یافته بر اساس رفتار واقعی دیوارهها به عنوان کلاس پایدار طبقهو سایر شیب

توان از یک سیستم طبقه بندي فازي چند ها در شرایط ناپایدار و نسبتاً پایدار، یک شکست عمومی بزرگ و موضعی وجود دارد. از این رو میداد که در اکثر دیواره
 .هاي شیبدار استفاده کردفاکتوره غیرخطی با قابلیت اطمینان خوب براي ارزیابی پایداري دیواره
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