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 Opencast coal mines play a crucial role in meeting the energy demands of a country. 
However, the operations will result in deterioration of ambient air quality, particularly 
due to particulate emissions. The dispersion of particulate matter will vary based on the 
mining parameters and local meteorological conditions. There is a need to establish a 
suitable model for predicting the concentration of particulate matter on a regional basis. 
Though a number of dispersion models exist for prediction of dust concentration due to 
opencast mining, machine learning offers several advantages over traditional modeling 
techniques in terms of data driven insights, non-linearity, flexibility, handling complex 
interactions, anomaly detection, etc. An attempt has been made to assess the dispersion 
of particulate matter using machine learning techniques by considering the mining and 
meteorological parameters. Historical data comprising of mine working parameters, 
meteorological conditions, and particulate matter pertaining to one of the operating 
opencast coal mines in southern India has been utilized for the study. The data has been 
analyzed using different machine learning techniques like bagging, random forest, and 
decision tree. The performance metrics of test data are compared for different models 
in order to find the best fit model among the three techniques. It is found that for 
PM10, many of the times bagging technique gave a better accuracy, and for PM2.5, 
decision tree technique gave a better accuracy. Integration of mine working parameters 
with meteorological conditions and historical data of particulate matter in developing 
the model using machine learning techniques has helped in making more accurate 
predictions. 

Keywords 

Opencast coal mine 
PM10 
PM2.5 
Dispersion 
Machine learning 

1. Introduction 

Opencast coal mines are contributing to major 
portion of coal supply to thermal power plants in 
India, and are expected to persist for few more 
decades until there is a significant transition 
towards renewable sources of energy. The main 
air pollutants associated with opencast coal 
mining are particulate matter and gaseous 
emissions. The particulate matter includes PM10 & 
PM2.5, and gaseous emissions consist of CO, CO2, 
SO2, and NOx. Fine particulate emissions resulting 
from opencast mining will have significant impact 
on the health of the nearby habitation. Hence, 
there is a need to assess the dust concentration due 
to opencast mining, and take pro-active mitigation 

measures to safeguard the well-being of 
surrounding environment through implementation 
of sustainable mining practices. 

Many studies have been conducted on 
dispersion of particulate matter based on 
mathematical models but very few have evaluated 
with testing at mine sites [3, 29]. A number of 
models were developed such as Box model, 
Gaussian model, Eulerian model, and Lagrangian 
model, which were reported to be applied for air 
quality prediction in the mining industry [26]. 
However, many of the studies have been focusing 
on a single activity. For example, the particulate 
dispersion due to blasting, using computational 
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fluid dynamics model was studied [29]. The paths 
of the mineral particles were modeled using 
Lagrangian particle tracking. The study concluded 
that 30-60% emissions will be retained in the 
quarry, but the dispersion of dust concentrations 
to different directions was not estimated. The 
techniques used for isolated buildings and wind 
tunnels are suitable for analyzing quarry area or 
building recirculation [7]. Similarly, studies were 
carried out for prediction of particulate matter due 
to stock piles in opencast mines [2].   

The dispersion equations developed within the 
pit boundary provide a reasonable accurate 
estimate of PM10 dispersion within the near field 
of the deep OC coal mines [29, 31]. Some studies 
were conducted to estimate the particulate matter 
level inside the mine and understanding its 
dispersion as they travel from source to the 
surface. An empirical relationship between the 
particulate matter concentration and depth of the 
mine was also proposed [10]. 

However, the factors being implemented are 
required to adapt to the local conditions of each 
mine [18]. The same empirical formulae for 
determination of emission rates cannot be 
considered for all Indian mines [5]. Development 
of region-specific dispersion techniques with 
regard to changing mine parameters and local 
meteorological conditions for PM10 and PM2.5 

emanating from opencast coal mines is necessary 
to allow accurate prediction of PM dispersion to 
make decisions [8, 27]. 

Some studies were conducted on the effect of 
meteorological parameters on fine and coarse 
particulate matter. It was concluded that the 
meteorological parameters have a major effect on 
the monitored PM2.5 and PM10 [19]. However, the 
changes in mining parameters have not been taken 
into account for their impact on particulate matter 
concentration. 

Instead of manually driven rules and build 
models from analyzing large amount of data, 
machine learning offers a more efficient 
alternative for complex data analysis. Studies 
were carried out on improved machine learning 
approach for optimizing dust estimation in open-
pit mines [20]. Studies were conducted based on 
the meteorological data and dust concentration at 
a single point. The study proposed a machine 
learning model to estimate dust concentrations in 
opencast coal mines. However, the dust 
concentration at different locations in and around 
the mine was not taken into account. 

Machine Learning (ML) has evolved as a sub-
field of artificial intelligence that involves the 

development of self-learning algorithms in order 
to make more accurate predictions. It helps in 
making prediction based on complex interaction 
between various factors, allowing mines to 
proactively manage and mitigate particulate 
emissions while optimizing their operations.  

Machine learning can handle a wide variety of 
data types such as numerical, categorical, and 
time-series data. In the context of particulate 
emissions, one can incorporate data like 
production rates, equipment specifications, 
weather conditions, and historical emissions 
records. ML models can seamlessly integrate and 
analyze this diverse data, capturing complex 
relationships. Mining operations are dynamic, 
which changes in equipment, processes and 
environmental conditions. Machine learning 
models can adapt to these shifts. They can learn 
from new data and evolving trends, ensuring that 
their predictions remain relevant and effective 
over time. 

Beyond predictions, ML models can offer 
recommendations for optimization and control. 
For instance, if the model anticipates high 
emissions due to adverse weather conditions, it 
can suggest adjustments to operations like 
reducing production during that period or 
deploying dust control measures. This proactive 
approach helps in emissions reduction and cost 
savings. In essence, machine learning enhances air 
quality modeling by leveraging the power of data 
and algorithms to make more accurate and timely 
predictions, helping to manage and mitigate the 
effects of air pollution on public health and the 
environment. It is a valuable tool to improve air 
quality, and reduce the impact of pollution on the 
communities, thereby, accomplishing the 
objective of green mining practices. 

Out of the various machine learning techniques 
available for different data sets, three techniques 
viz., bagging, random forest, and decision tree 
have been used for analyzing the data for arriving 
at a suitable prediction model for application in 
the opencast mines. 

This study, therefore, incorporates the mining 
parameters, meteorological data, and estimating 
the particulate matter concentration at different 
locations using different machine learning 
techniques, and also suggesting better technique 
when compared to each other. Further, the 
performance metrics of test data are compared for 
different models in order to select the best model 
among the three techniques. 

The study also included the identification of 
significant parameters responsible for dust 
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dispersion, ranked in order of preference for each 
specific location. Recursive Feature Elimination 
(RFE) technique is used to know the rank order of 
the independent variables in terms of importance 
in order to aid the mine management to take 
mitigation measures accordingly. 

2. Methodology 

One of the opencast coal mines located in 
South India has been considered for evaluating the 
impact of coal mining parameters and 
meteorological conditions on ambient particulate 
matter dispersion in the core and buffer zones of 
the project. Core zone is the project area or the 
area lying within the project boundary. Buffer 
zone is the area lying within 10 km radius from 
the project. It is crucial to monitor the dispersion 

of particulate matter in the core zone to determine 
the concentration of dust exposure of working 
personnel, enabling the implementation of 
necessary measures in the event of concentrations 
exceeding the prescribed limit. Similarly, 
evaluating particulate matter within the buffer 
zone is equally important for implementing 
preventive measures aimed at reducing pollution 
and averting potential health threats to the general 
public. The mine is in operation since 1993 with a 
production capacity of 4Mtpa in an area of 900 
Ha. Mining operations in the opencast mine 
involve drilling and blasting, while loading and 
transportation of overburden and coal are carried 
out by shovel-dumper combination. A view of the 
opencast mine is shown in Figure 1. 

 
Figure 1. View of the opencast mine under study. 

The study involves field investigations, 
encompassing the collection of data related to 
mine configuration, meteorological parameters, 
and particulate matter concentrations in both the 
core and buffer zones of the studied area. Further, 
the data is analyzed using various machine 
learning techniques. 

2.1. Field investigations 

Field investigations involved collection of 
mine working parameters, and monitoring of 
meteorological data and particulate matter for the 
last two years and compilation of previous 8 years 
data. A total of 10 years data, spanning from 2012 
to 2022, has been taken into account for the 
analysis. Processing of the data include mine 
working plans for determining the effective area 
contributing to pollution, quarry depth, 
overburden dump height, distance of material 
transportation and production. Figure 2 illustrates 
a representation of the working plan from, which 
the data has been processed. 

2.1.1. Mine working parameters 

The mine working parameters include effective 
area contributing for pollution, quarry depth, 
overburden dump height, distance of 
transportation of material from extraction point to 
dumping point, and coal extracted and overburden 
removed. 

i. Effective area contributing to pollution 

Total project area of an opencast coal mine 
may not be the source of pollution. Certain areas 
may be highly contributing to pollution, while 
others may have a moderate impact and some may 
not contribute significantly or not at all. 
Accordingly, the total area of the project is 
classified into different types like quarry area, 
dumping area, infrastructure area consisting of 
office buildings, coal handling plant, workshop, 
roads, etc., and other areas like undisturbed area, 
reclaimed area, etc. Among these areas, the 
dumping area, infrastructure area, undisturbed 
area, and reclaimed areas have fixed locations, 
with consistent distances from the monitoring 
points. However, in the quarry area, where 
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progress occurs over time, the concentration of 
dust at monitoring points is minimally affected, as 
significant portion of the dust is contained within 
the quarry itself. The quarry area, dumping area, 
and infrastructure area are the sources of air 
pollution due to mining activities, whereas 
undisturbed and reclaimed areas are not 
considered as sources of pollution. The 
undisturbed area is where mining operations are 
yet to start, which is treated as virgin area. The 
reclaimed areas are those areas where technical 
and biological reclamation of overburden dumps 

have been carried out. Technical reclamation 
involves leveling, sloping, stabilizing and 
compaction of dumps, and spreading of top soil, 
whereas biological reclamation involves planting 
of saplings on the spread top soil. As such, the net 
effective area contributing to pollution has been 
arrived at by considering quarry area, dump area 
& infrastructure area, whereas undisturbed & 
reclaimed areas are exempted. Figure 3 presents 
the variation in different areas from the year 2012 
to 2021. 

 
Figure 2. Working plan of opencast mine.

 
Figure 3. Different areas during the years 2012 to 2021. 
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ii. Quarry depth 

The dispersion of the pollutants from the 
quarry varies with depth of working, and hence, 
the depth of the quarry has been taken from the 
year-wise working plans on the dates of 
monitoring, for a period of 10 years. 

iii. Overburden dump height 

The varying dump heights, dependent on the 
progress of the mine workings, have also been 
collected from the year-wise plans. 

iv.Transportation distance of coal and 
overburden from the point of extraction to 
dumping area. 

The transportation of coal was done by 35 t 
trucks, whereas that of overburden was done using 
50 t trucks. The average distance of coal and 
overburden transportation has been recorded for 
the specified dates. 

v. Quantity of coal produced and overburden 
removed 

The quantity of coal extraction and overburden 
removal was collected for the particular days 
during which air quality monitoring was carried 
out. 

The minimum and maximum values of the 
mining parameters processed from the year 2012 
to 2022 are given in Table 1. 

2.1.2. Meteorological data 

The mine area experiences hot summers 
reaching 480C in peak summer. The winter season 
is from November to early March followed by 
summer season from mid of March to early June. 
The period from mid of June to September 
receives rains due to southwest monsoon, while 
the period from October to November forms the 
post-monsoon season with occasional rains from 
northeast monsoon.  

A meteorological station was functioning at the 
project site for continuous monitoring of 
meteorological parameters, and also to aid in 
establishing a network of air quality monitoring 
stations in and around the project based on 
predominant wind direction. The meteorological 
station had sensors for recording wind speed, 
wind direction, temperature, relative humidity, 
and rainfall. Data pertaining to meteorological 
conditions existing in the surrounding area has 
been collected for the corresponding dates of air 
quality monitoring from a standard WM271 
system, as shown in Figure 4. 

Table 1. Minimum and maximum values of mining parameters from 2012 to 2022. 
Effective area contributing 

to pollution (ha) Quarry depth (m) Overburden 
dump height (m) Lead (km) Quantity of coal produced and 

overburden removed (t) 
Min Max Min Max Min Max Min Max Min Max 

121.83 340.03 182 235 70 80 0.2 5 8,390 148,682 
 
 

The meteorological data of daily average 
temperature, humidity, rainfall, predominant wind 
direction, and wind speed on the dates of 
particulate matter monitoring has been collected 
from the year 2012 to 2022. 

2.1.3. Particulate matter (PM) data 

The ambient air quality monitoring was carried 
out in the opencast project as per the guidelines of 
Central Pollution Control Board (CPCB) and 
Ministry of Environment, Forest & Climate 
Change (MoEF&CC). The air quality monitoring 
was carried out at a frequency of once in a 
fortnight at 2 locations in the core/work zone 
environment and 4 locations in the surrounding 
villages. Particulate matter of two critical sizes 
viz., PM10 and PM2.5 using the United States 
Environmental Protection Agency (USEPA) 

approved Respirable Dust Sampler and Fine 
Particulate Sampler, respectively. 

The samplers were placed at a height of 3.0m 
above the ground level and at least 2.0m apart, 
while monitoring for negating the effects of wind-
blown ground dust. The samplers were placed at 
open space free from any obstruction including 
trees and vegetation which otherwise act as a sink 
of pollutants resulting in lower levels of 
concentration. Two monitoring locations in the 
core zone were identified near Coal Handling 
Plant (CHP) and Base Workshop (BWS). 
Similarly, 4monitoring locations in the buffer 
zone are identified near 4 different villages in the 
vicinity of the opencast project covering all four 
directions.  

Fortnightly air quality monitoring data of 24 
hours sampling duration for PM10 and PM2.5 has 
been collected for a period of 10 years from the 
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year 2012 to 2022. The monitoring points at CHP, 
BWS, and other locations in the buffer zone 
remained constant and these points have not been 
relocated during this period. Figure 5 shows the 

Google image of the opencast mine and air quality 
monitoring locations identified in the core and 
buffer zone of the project. 

 
Figure 4. Micro-meteorological station. 

 
Figure 5. Location of mine and monitored points. 

The distance of air quality monitoring 
locations established at the villages from the mine 
site is given in Table 2. 
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Table 2. Directions and distances of villages from the mine boundary. 
Station code Direction Distance from the mine (m) 

B1 East 1000 
B2 North  1500 
B3 West  2000 
B4 South 2500 

 

2.2. Data analysis using machine learning 
techniques 

An approach is made in this study to analyze 
the concentration of particulate matter at different 
locations in and around the opencast coal mine 
vis-a-vis coal produced, overburden extracted, 
area contributing to pollution, meteorological 
conditions using different machine learning 
techniques. Machine learning is a branch of 
Artificial Intelligence (AI) and computer science, 
which focuses on the use of data and algorithms to 
imitate the way that humans learn, gradually 
improving its accuracy by itself. Machine learning 
algorithms are classified into 3 types: 

1. Supervised learning: This algorithm consists of 
a target / outcome / dependent variable, which is 
to be predicted from a given set of predictors / 
independent variables. Using these sets of 
variables, a function has been generated that 
maps inputs to desired output. The training 
process continues until the model achieves a 
desired level of accuracy on the training data. 

2. Unsupervised learning: In this algorithm, we 
will not have any target or outcome variable to 
predict / estimate. It is used for clustering 
population into different groups, which is 
widely used for segmenting customers in 
different groups for specific intervention. 

3. Reinforcement learning: Using this algorithm, 
the machine is trained to make specific 
decisions as the machine is exposed to an 
environment where it trains itself continually 
using trial and error. 

Since the data has target/response variable, 
supervised learning algorithms are used for 
choosing the model. Choosing the right algorithm 
will depend on the type of the problem to be 
solved, and also depends on the scale of the 
dependent variable. In case of continuous target 
variable, regression algorithms are used and in 
case of categorical target, classification algorithms 
are preferred. 

For the given data, the response variables are 
CHP, BWS, and 4villages at which PM10 and 
PM2.5are monitored. The remaining features like 
mine parameters and meteorological data are 

independent variables. Since the data is related to 
time and the response variables are continuous, 
many of the methods have high time complexity 
and the methods, which take less time to execute 
when compared to others, are random forest, 
decision tree, and bagging algorithms. Hence, this 
analysis attempts to apply these techniques to the 
data and compare their performance metrics and 
choose the best method for prediction. In order to 
validate the models, the entire data is divided in to 
two parts viz., training data and testing data. For 
80-20 ratio, over 192 observations came under 
training data with 48 cases for test data. 

Decision tree involves dividing the dataset 
based on relationships between explanatory and 
outcome/response variable, i.e. the tree building 
starts by finding the variable / feature for the best 
split. Finding such variable is done by criterions 
like Entropy, Information Gain, Gini Index, Chi 
square test etc. (which are purely mathematical 
concepts). 

Random forest generates the result, which is 
the average value/result/prediction of several 
decision trees and these decision trees are formed 
by taking different training and test data samples 
each time randomly. For example, training and 
test datasets, which form the decision tree, need 
not be same for the rest of the decision trees. In 
this method, only few independent variables (most 
probably important variables) are considered for 
analysis.  

Bagging works same as random forest, but the 
major difference is that it considers all the 
independent variables for finding the ultimate 
solution. 

Performance: For continuous variables, there 
are 3 performance metrics viz., Mean Square 
Error (MSE), Root Mean Square Error (RMSE), 
and co-efficient of determination (R2), which can 
be useful for knowing the best model for the 
particular dataset. The performance metrics of test 
data are compared for different models in order to 
find the best model among the three. 
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3. Results and Discussion 

The details of mine configuration like 
combined coal and overburden, area contributing 

to pollution, quarry depth, overburden dump 
height, and distance of transportation (lead 
distance) for 10 years from 2012-22 is given in 
Figure 6. 

 
Figure 6. Details of mine parameters during dust monitoring. 

The combined coal production and overburden 
removal ranged from 8,390 t per day to 1,48,682 t 
per day. The net effective area contributing to 
pollution was reduced from 340.03 Ha to 121.83 
Ha. The depth of the quarry was ranging from 
182m to 235m, whereas the height of the 
overburden dump was ranging from 70m to 
80m.Similarly, the distance of transportation 
reduced from 5.0 km to 0.2 km due to back-filling 
operations. 

Figure 7 shows the meteorological data viz., 
predominant wind direction, average humidity, 

average wind speed, average temperature, and 
average rainfall from the year 2012-22. 

The daily average temperature varied from 
17.20 to 45.80C, predominant wind direction from 
1 to 360 degrees, humidity from 25.4% to 99%, 
rainfall from 0 to 74.2mm, and average wind 
speed from 0 to 31.8m/s. 

The plot of PM10 and PM2.5 in the core and 
buffer zones are given in Figure 8 and Figure 9, 
respectively, for the last 10 years from 2012-22. 
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Figure 7. Fortnightly meteorological data from 2012-22. 

 
Figure 8. PM10 values in the core and buffer zones. 
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Figure 9. PM2.5 values in the core and buffer zones. 

The daily average PM10 in the CHP varied 
from 95 to 275 ug/m3, BWS from 57 to 266 
ug/m3, B3 from 40 to 98 ug/m3, B1 from 43 to 108 
ug/m3, B4 from 40 to 97 ug/m3, and B2 from 40 to 
128 ug/m3. 

The daily average PM2.5 in the CHP varied 
from 29.4 to 85.6 ug/m3, BWS from 37.1 to 75.5 
ug/m3, B3 from 16.1 to 71.4 ug/m3, B1 from 18.9 
to 76.9 ug/m3, B4 from 16.1 to 60 ug/m3, and B2 
from 17.3 to 58.3 ug/m3. 

3.1. Performance of machine learning 
techniques at different locations 

The fortnightly coal production and 
overburden removal from the mine from 2012-22 

and the corresponding configuration of the mine 
parameters with the meteorological conditions 
have been considered for analysis. Among the 
total data analyzed, 80% of the data is used for 
training, and the rest 20% is used for validation at 
different locations. 

The following tables (Tables 3 to 8) show the 
performance of the machine learning techniques 
for the PM10response variable in the core and 
buffer zones of the mine. 

Table 3. Performance at CHP (PM10). 

 Bagging Random forest Decision tree 
Train Test Train Test Train Test 

Mean square error 1.9486 4.262 11.6161 188.7941 0.8307 21.6497 
Root mean square error 1.3959 18.169 3.4082 13.7402 0.9114 4.6529 

R2 (in %) 99.73 98.32 98.4 82.5 99.89 97.99 

Table 4. Performance at BWS (PM10). 
 Bagging  Random forest Decision tree 

Train Test Train Test Train Test 
Mean square error 2.8952 0.5918 13.4509 50.1785 0.4761 2.1153 
Root mean square error 1.7015 0.7692 3.6675 7.0836 0.6902 1.4544 
R2 (in %) 99.7 99.93 98.6 93.93 99.95 99.74 
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Table 5. Performance at B1 (PM10). 
 Bagging Random forest Decision tree 

Train Test Train Test Train Test 
Mean square error 0.0402 0.1168 1.146 2.602 0.077 0.2609 
Root mean square error 0.2006 0.341 1.0707 1.613 0.2787 0.5108 
R2 (in %) 99.98 99.95 99.43 98.85 99.96 99.98 

Table 6. Performance at B2 (PM10). 

 Bagging Random forest Decision tree 
Train Test Train Test Train Test 

Mean square error 0.0427 0.1079 1.265 7.8659 0 0.5208 
Root mean square error 0.2067 0.3285 1.125 2.8046 0 0.721 
R2 (in %) 99.97 99.94 99.2 95.9 100 99.73 

Table 7. Performance at B3 (PM10). 

 Bagging Random forest Decision tree 
Train Test Train Test Train Test 

Mean square error 0.0513 0.6459 1.405 32.35 0 0.5417 
Root mean square error 0.2264 0.836 1.204 5.688 0 0.7359 
R2 (in %) 99.97 99.73 99.26 86.68 100 99.78 

Table 8. Performance at B4 (PM10). 

 Bagging Random forest Decision tree 
Train Test Train Test Train Test 

Mean square error 1.3891 1.5996 3.0836 37.2282 0.0591 3.5843 
Root mean square error 1.1785 1.264 1.7560 6.1014 0.2430 1.8932 
R2 (in %) 99.23 99.35 98.29 84.95 99.97 98.55 

 

As per performance metrics, bagging technique 
shows the highest accuracy of 98.32% and 
99.93% for predicting new data in the core zone 
stations at CHP and BWS, respectively.  

However, bagging shows the highest accuracy 
of 99.94% and 99.35% at two locations B2 and 
B4 in buffer zone. In case of other two locations, 
bagging and decision tree have shown same level 

of accuracy, i.e. at B1 (99.95% and 99.98%) and 
B3 (99.73% and 99.78%). Hence, any of the 
methods can be used for future predictions. The 
following tables (Tables9 to 14) show the 
performance of the machine learning techniques 
for the PM2.5 response variable in the core and 
buffer zones of the mine. 

Table 9. Performance at CHP (PM2.5). 

 Bagging Random forest Decision tree 
Train Test Train Test Train Test 

Mean square error 0.1538 0.736 1.1173 7.3087 0 0.5613 
Root mean square error 0.3921 0.8578 1.057 2.7034 0.005 0.7492 
R2 (in %) 99.82 99.15 98.71 91.55 100 99.35 

Table 10. Performance at BWS (PM2.5). 

 Bagging Random forest Decision tree 
Train Test Train Test Train Test 

Mean square error 0.0229 0.0694 1.6432 5.4896 0.0001 0.088 
Root mean square error 0.1508 0.2633 1.2818 2.3429 0.0114 0.2979 
R2 (in %) 99.96 99.87 97.44 89.74 100 99.83 
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Table 11. Performance at B1 (PM2.5). 

 Bagging Random forest Decision tree 
Train Test Train Test Train Test 

Mean square error 0.0388 7.3324 0.6151 12.9164 0.0454 5.4726 
Root mean square error 0.1970 2.7078 0.78 3.5939 0.2130 2.339 

R2 (in %) 99.96 94.87 0.9931 90.97 99.95 96.17 

Table 12. Performance at B2 (PM2.5). 

 Bagging Random forest Decision tree 
Train Test Train Test Train Test 

Mean square error 0.6074 2.074 0.0383 0.281 0.0575 0.3206 
Root mean square error 0.7793 1.4401 0.1957 0.079 0.2396 0.5662 
R2 (in %) 99.32 97.83 99.96 99.92 99.94 99.66 

Table 13. Performance at B3 (PM2.5). 

 Bagging Random forest Decision tree 
Train Test Train Test Train Test 

Mean square error 0.0337 4.6675 0.7005 17.884 0.1054 4.2253 
Root mean square error 0.1835 2.16 0.8369 4.228 0.324 2.055 
R2 (in %) 99.97 96.81 99.38 87.78 99.91 97.11 

Table 14. Performance at B4 (PM2.5). 

 Bagging Random forest Decision tree 
Train Test Train Test Train Test 

Mean square error 0.0905 0.7425 0.4801 3.6092 0.0129 0.1354 
Root mean square error 0.3007 0.5514 0.6910 1.8997 0.1130 0.3679 

R2 (in %) 99.9 99.43 99.45 96.29 99.99 99.86 
 

Bagging and decision tree accuracies are very 
close to each other in the core zone locations, 
CHP (99.15%, 99.35%) and BWS (99.87%, 
99.83%). Hence, any of the methods can be used 
for future predictions. In case of buffer zone, 
decision tree has shown higher level of accuracy 
at all the locations, B1 (96.17), B2 (99.66), B3 
(97.11), and B4 (99.86). 

3.2. Parameters influencing response 

From the performance metrics, the significant 
parameters, which are responsible for dust 
dispersion, have to be known in the order of 
preference for each location. Recursive Feature 
Elimination (RFE) technique is used to know the 
rank order of the independent variables in terms of 
importance. RFE is a valuable technique in 
machine learning for optimizing model 

performance, reducing over-fitting and enhancing 
interpretability by selecting the most important 
features, while discarding less relevant ones. From 
the best fit algorithm identified for each location, 
the parameters/features have been eliminated one 
after the other thus determining the performance 
of each parameter. This accuracy has been 
compared with the actual accuracy, and thus 
ranking has been given based on the difference in 
accuracies. If the difference is less, the 
significance of the parameter is more and vice-
versa. Thus, lead distance played a significant 
role, whereas the rainfall played the minimum role 
in dust concentrations at different locations. 

The rankings based on the influence of 
different parameters for PM10 and PM2.5are given 
in Tables15 and 16, respectively. 
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Table 15. Ranking of parameters with respect to PM10. 
Parameter CHP BWS B1 B2 B3 B4 

Lead distance (m) 1 1 3 1 3 3 
Max. dump height (m) 2 2 1 2 4 1 
Area contributing to pollution (ha) 3 3 2 4 2 2 
Silt content in OB (%) 6 4 4 3 1 4 
Max. quarry depth (m) 4 5 5 5 5 5 
Moisture content in OB (%) 7 6 6 9 6 6 
Avg. temp. (0C) 5 9 7 10 10 7 
Production (Coal+OB) (t) 11 8 10 7 8 8 
Avg. wind speed (m/s) 9 7 9 11 7 10 
Avg. humidity (%) 10 10 8 8 9 9 
Predominant wind dir. (0) 8 11 11 6 11 11 
Avg. rainfall (mm) 12 12 12 12 12 12 

Table 16. Ranking of parameters with respect to PM2.5. 
Parameter CHP BWS B1 B2 B3 B4 

Lead distance (m) 2 1 3 2 5 2 
Max. dump height (m) 1 2 4 5 1 3 
Area contributing to pollution (ha) 6 4 1 4 4 4 
Max. quarry depth (m) 11 10 2 3 1 1 
Silt content in OB (%) 10 8 5 1 3 5 
Avg. temp. (0C) 5 3 7 7 11 7 
Production (Coal+OB) (t) 3 5 6 6 9 11 
Avg. humidity (%) 4 6 9 9 7 10 
Avg. wind speed (m/s) 8 7 8 11 10 6 
Moisture content in OB (%) 7 11 11 8 6 8 
Predominant wind dir. (0) 9 9 10 10 12 12 
Avg. rainfall (mm) 12 12 12 12 8 9 

 

50% of the Total Suspended Particulates is 
emitted during the transportation of material over 
unpaved roads in the mine and studies also 
concluded that the largest emission source for 
TSP is transportation over unpaved roads [18]. 
This result agrees that material handling and wind 
erosion are the other two main source of TSP [6]. 
The present study also revealed that transportation 
and dump height are playing a major role. Other 
studies have considered either single parameter 
like depth of the mine or only meteorological 
parameters, whereas the present study has 
considered the mining parameters as well as 
meteorological parameters for analysis and 
integrated both the parameters in assessing the 
concentration of particulate matter at varying 
levels of mining operations. 

4. Conclusions 

Opencast mining plays a lead role in supply of 
large quantities of coal to thermal power plants in 
India. However, opencast mining results in higher 
degree of air pollution when compared to 
underground mining. At this juncture, ascertaining 
pollution levels at different locations in the 
opencast mines and surrounding residential areas 
is of paramount importance for implementing 
necessary mitigation measures. Machine learning 

model generates predictions based on real time 
data and recommend actions to optimize 
operations and control measures. Earlier studies 
using machine learning techniques have mainly 
dealt with the predictions based on meteorological 
data and its impact on particulate matter. In 
contrast, the present study involves integration of 
mining parameters in to the model, which are 
dynamic in nature, in order to achieve more 
realistic predictions. 

In the present study, in case of PM10, bagging 
has shown the highest accuracy for predicting new 
data in the core zone stations. However, bagging 
has shown the highest accuracy at two locations in 
the buffer zone, while at the other two locations, 
bagging and decision tree have exhibited similar 
levels of accuracy. 

In case of PM2.5, the accuracies of bagging and 
decision tree are closely aligned in the core zone 
locations, while decision tree has shown high 
level of accuracy at all the locations in the buffer 
zone. 

The study also involved usage of recursive 
feature elimination algorithm to investigate 
significant parameters contributing to dust 
pollution in different locations in and around the 
opencast coal mine. The different parameters 
pertaining to mining, meteorological, and 
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particulate matter taken once in a fortnight at the 
core and buffer zones of the mine for a period of 
10 years are considered. Analysis has been done 
based on various machine learning techniques and 
ranking for each feature has been given based on 
the significance of contribution to pollution at that 
particular location. 

The key factors contributing to particulate 
concentrations have been established through the 
model are summarized below: 

1. The CHP, BWS, and B2 are affected by PM10, 
primarily due to the lead distance followed by 
dump height as these three locations are near to 
the opencast mine and due to predominant wind 
direction, whereas, B4 and B1 being on the 
upwind side has lesser impact due to their 
presence in up wind direction and hence dump 
height and silt content played a prominent role. 

2. With regard to PM2.5, CHP, B3, and BWS are 
affected due to dump height as CHP is located 
within the mine area, and B3 is located in 
downwind direction. BWS is affected due to 
lead distance as it is lying adjacent to the haul 
road. 

3. In case of PM10, lead distance is playing a 
significant role in contributing to dust pollution 
followed by dump height, effective area 
contributing to pollution, silt content, quarry 
depth. It is also evident that rainfall is 
contributing to the least. 

4. In case of PM2.5 also, lead distance is playing a 
major role in contributing to pollution followed 
by dump height followed by effective area 
contributing to pollution, etc. In this case also, 
rainfall has the least ranking. 

The model can be regularly updated and 
retrained with new data to adapt to changes in 
equipment, processes, and environmental 
conditions in order to further improve the 
accuracy of predictions over time. The machine 
learning can assist mine management in 
optimizing the operations to contain the pollution 
levels within the stipulated standards thereby 
ensuring green and climate smart mining 
operations. 

Subsequent research endeavors could centre on 
employing advanced and potent algorithms like 
Cuckoo search, particle swarm optimization or 
extreme learning machine, particularly in contexts 
involving the study of multiple mines. Integrating 
additional parameters into the model could 
enhance the accuracy of predicting dust 
concentrations, facilitating regular use for 
regulatory compliance purposes. 
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  چکیده:

 ــبــه دل ژهیبه و ط،یمح يهوا تیفیمنجر به بدتر شدن ک اتیعمل نیحال، ا نیکشور دارند. با ا  کی  يانرژ  يازهاین  نیدر تام  یمعادن زغالسنگ روباز نقش مهم  لی
 ینیبشیپ يک مدل مناسب برای جادیبه ا ازیمتفاوت خواهد بود. ن  یمحل يجو طیمعدن و شرا  يذرات معلق بر اساس پارامترها  یانتشار ذرات خواهد شد. پراکندگ

اســتخراج روبــاز وجــود دارد،  لی ــغلظت گرد و غبار به دل ینیبشیپ يبرا یپراکندگ يهااز مدل يوجود دارد. اگرچه تعداد  ياغلظت ذرات معلق به صورت منطقه
 يهاکنشبرهم تیریمد ،يریپذبودن، انعطاف یرخطیغ بر داده،  یمبتن نشیاز نظر ب  یسنت  يسازمدل  يهاکیرا نسبت به تکن  يمتعدد  يایمزا  ینیماش  يریادگی
معــدن و  يبا در نظر گــرفتن پارامترهــا نیماش يریادگی يهاکیذرات با استفاده از تکن  یپراکندگ  یابیارز  ي. براکندیارائه م  رهیو غ   يناهنجار  صیتشخ  ده،یچیپ

از معادن زغالسنگ روبــاز در جنــوب  یکیو ذرات معلق مربوط به  ،یهواشناس طیشراکار معدن،  يشامل پارامترها یخیتار يهاساخته شده است. داده  یهواشناس
 ــتجز میو درخــت تصــم یجنگل تصــادف ،يبندمانند بسته نیماش يریادگیمختلف  يهاکیها با استفاده از تکنمطالعه استفاده شده است. داده  نیا  يهند برا و  هی

کنند. مشخص شده  دایپ کیسه تکن نیمدل برازش را در ب نیتا بهتر شوندیم  سهیمختلف مقا  يهامدل  يبرا نآزمو  يهاعملکرد داده  يارهایشده است. مع  لیتحل
 ي. ادغام پارامترهادهدیارائه م يدقت بهتر میدرخت تصم کیتکن، PM2.5 يدارد و برا يدقت بهتر يسازسهیک کیاز مواقع تکن  ياری، بسPM10  ياست که برا

تر کمک کــرده قیدق يهاینیبشیبه پ نیماش يریادگی يهاکیذرات معلق در توسعه مدل با استفاده از تکن یخیتار يو داده ها یاسهواشن طیمعدن با شرا  يکار
 است.

  .نیماش يریادگی ،یپراکندگ، PM10 ،PM2.5معدن زغال سنگ باز،  کلمات کلیدي:

 

 

 

 


