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 In this study, several soft computing analyses are performed to build some 
predictive models to estimate the uniaxial compressive strength (UCS) of the 
pyroclastic rocks from central Anatolia, Turkey. For this purpose, a series of 
laboratory studies are conducted to reveal physico-mechanical rock properties 
such as dry density (ρd), effective porosity (ne), pulse wave velocity (Vp), and 
UCS. In soft computing analyses, ρd, ne, and Vp are adopted as the input 
parameters since they are practical and cost-effective non-destructive rock 
properties. As a result of the soft computing analyses based on the 
classification and regression trees (CART), multiple adaptive regression spline 
(MARS), adaptive neuro-fuzzy inference system (ANFIS), artificial neural 
networks (ANN), and gene expression programming (GEP), five robust 
predictive models are proposed in this study. The performance of the proposed 
predictive models is evaluated by some statistical indicators, and it is found 
that the correlation of determination (R2) value for the models varies between 
0.82 – 0.88. Based on these statistical indicators, the proposed predictive 
models can be reliably used to estimate the UCS of the pyroclastic rocks. 
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1. Introduction 

Physico-mechanical rock properties are 
significant inputs to evaluate the stability of 
surface and underground rock structures. For 
example, uniaxial compressive strength (UCS) 
is one of the most critical input parameters in 
rock engineering projects. Due to its 
applicability in rock engineering, it has been 
adopted in rock failure criteria such as Mohr-
Coulomb and Hoek-Brown [1, 2]. It is also a 
significant input in most rock mass 
classification systems such as RMR, Q, SMR, 
and RMI [3–6]. However, preparing rock 
samples and running experiments are costly and 
time-consuming in some situations [7, 8]. More 
profoundly, it can be difficult to obtain high-
quality core or cubical rock samples from 
certain types of rocks that are weak, highly 
fractured, thinly bedded, foliated or have a 
block-in-matrix (BIM) structure [9, 10]. 

In these cases, the researchers have 
postulated various predictive models to estimate 
the UCS of rocks. In the literature, many 
empirical formulas are used to predict the UCS 
of rocks. However, most of them are based on 
simple or multiple regression analyses. 
Regression-based predictive models often fail 
to capture gaps and uncertainties in the dataset 
despite being an easy and practical way to 
estimate any mechanical rock property. Due to 
this reason, most regression models are site-
specific and valid only for a particular area of 
interest [11]. 

On the other hand, artificial intelligence 
methods such as adaptive neuro-fuzzy inference 
systems (ANFIS), artificial neural networks 
(ANN), multivariate adaptive regression splines 
(MARS), support vector machine (SVR), and 
gene expression programming (GEP) are 
relatively more sensitive to large datasets, and 
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provide better results than the classical 
regression analyses [12, 13]. For over a decade, 
the implementation of soft computing methods 
for predicting the UCS of rocks has gained 

popularity due to the above statement. Based on 
numerous soft computing methods, several 
predictive models to estimate the UCS of 
different rock types are listed in Table 1.  

Table 1. Some predictive models to estimate the UCS of rocks based on different soft computing methods. 
Input parameters Method Rock type R2 n Reference 

Vp, wa, ρd, ρs LGP, MEP, GEP Limestone 0.60 – 0.88 106 [14] 

ρd, SHV, ne, Vp, Id4 ANN Travertine 
Limestone 0.61 – 0.90 54 [15] 

Vp, ρd, ne ANN Sandstone 0.96 133 [16] 

SHV, ρd, ne ANN 

Limestone 
Sandstone 
Dolomite 
Granite 
Gabbro 

0.96 93 [17] 

ne, Id4, Vp ANN Limestone 
Marl 0.86 55 [18] 

Vp, SHV, SHRV ANN 
Marble 

Limestone 
Travertine 

0.82 – 0.96 37 [19] 

Vp, ρd, ne GEP Limestone 
Dolomite 0.76 72 [20] 

Vp, BTS, PLS, BPI ANN 
ANFIS 

Granite 
Granodiorite 0.40 – 0.69 75 [21] 

BTS, PLS, Vp PSO-ANN 
Sandstone 
Limestone 

Schist 
0.83 – 0.97 160 [22] 

BPI, PLS, SHV, Vp ANFIS, FIS, ANN Granite, Schist, 
sandstone 0.92 – 0.98 44 [23] 

ρd, Vp, SHV, PLS PSO-ANN Limestone 
Granite 0.98 66 [24] 

Vp, ρd, ne ANN Limestone 0.95 105 [25] 

SHV with different 
applications 

SVR 
ABC 

ANFIS-SCM 

Basalt 
Metabasalt 0.72 – 0.84 47 [26] 

Vp, ne, ρd ANFIS Limestone 
Sandstone 0.66 – 0.91 45 [27] 

Vp, ne, PLS, SHV RF Travertine 0.93 30 [28] 

SHV, Vp LSSVM 
Limestone 

Marble 
Dolomite 

0.78 90 [29] 

ne, Id4, 
LSSVM 
MPRM 
ELM 

Andesite 
Tuff 

Basalt 
Dacite 

0.90 – 0.96 47 [30] 

ne, ρd, ρs, Vp, SHV EPR-MOGA Limestone 0.85 – 0.93 104 [31] 
Explanations: ne: Effective porosity, ρd: Dry density, ρs: Saturated density, Vp: Pulse wave velocity,  
SHV: Schmidt hammer value, BPI: Block punch index, wa: Water absorption by weight, SHRV: Shore hardness value, PLS: Point load 
strength, Id4: Slake durability index after four-cycle, BTS: Brazilian tensile strength, EPR-MOGA: Advanced evolutionary polynomial 
regression analysis, ANFIS: Adaptive neuro-fuzzy inference system, FIS: Fuzzy inference system, ANN: Artificial neural networks, 
LGP: Linear genetic programming, MEP: Multi expression programming, GEP: Gene expression programming,  
PSO-ANN: Particle swarm optimization-based artificial neural networks, SVR: Support vector machine, ABC: artificial bee colony 
algorithm, ANFIS-SCM: Adaptive neuro-fuzzy inference system-subtractive clustering method, LSSVM: Least square support vector 
machine, MPMR: Minimax probability machine regression, ELM: Extreme Learning Machine, RF: Random forest. 

 
As seen in Table 1, different soft computing 

methods with varying input combinations are 
used to estimate the UCS for different rocks. 
Herein, numerous rock properties such as 
effective porosity (ne), dry density (ρd), point 
load strength (PLS), and pulse wave velocity 
(Vp) are adopted as the input parameters. 

Nevertheless, apart from a few studies [14, 
21, 26, 30], the performances of different soft 
computing methods in estimating the UCS of 
rocks have not been compared in a detailed 
manner. In addition to the contributions to the 
applicability of soft computing methods in rock 
engineering, the present study introduces 
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several predictive models to estimate the UCS 
of pyroclastic rocks from central Anatolia – 
Turkey based on five widely used soft 
computing methods (i.e. ANFIS, ANN, GEP, 
multivariate adaptive regression splines 
(MARS), and CART decision trees).  

For this purpose, detailed laboratory studies 
were conducted to build a comprehensive 
database to implement the above-mentioned 
methods. During laboratory studies, non-
destructive rock properties such as dry density 
(ρd), effective porosity (ne), and pulse wave 
velocity (Vp) were determined for each rock 
sample. Since these rock properties are 
routinely measured in many rock engineering 
projects, it is possible to claim that there is 
considerable potential for building some 
predictive models by using these cost-effective 
testing methods. In addition, when considering 
the relative suitability of pyroclastic rocks for 
different applications such as earthwork, 
decorative and masonry purposes, predictive 
models based on soft computing techniques can 

be a deterministic and holistic approach to 
selecting proper rock types for special 
engineering applications. In this way, 
international readers find some critical notes on 
implementing some soft computing methods for 
evaluating the UCS of pyroclastic rocks. 

2. Materials and methods 

To perform the experimental studies, 
representative rock blocks were obtained from 
several locations in central Anatolia, Turkey. In 
other words, a total of 131 rock blocks were 
collected during field sampling. The sampling 
locations are given in Figure 1. Firstly, the size 
of the rock blocks was reduced by using an 
industrial rock saw, and then cubical rock 
samples (70 x 70 x 70 cm) were prepared for 
each rock block (Figure 2a, 2b). Using these 
cubical rock samples, ρd, ne, Vp, and UCS values 
were determined individually. The laboratory 
studies were performed under oven-dried 
conditions. 

 
Figure 1. Sampling location map. 

3. Laboratory Studies 
3.1. Determination of physical and acoustic 
properties 

The physical properties consist of ρd and ne 
in this study. These properties were determined 
by considering the standard of TS EN 1936 
[32]. Each test was performed at least five 

times, and average values are considered in soft 
computing analyses. Under atmospheric 
conditions, the ne was determined by saturating 
the cubical samples in a water tank for 24 hours 
(Figure 2c). After the saturation, the saturated 
weight (Ws) of the sample was measured using 
a precise balance (Figure 2d). Then the samples 
were placed in a drying oven at 105 ± 2 °C for 
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another 24 hours. Following the drying process 
of the rock samples, the dry weight (Wd) of the 
sample was also measured. Finally, the ρd and ne 
values were calculated using Equation 1 and 2, 
respectively. 

d
d

W
V

   (1) 


 100s d

e
W W

n
V

 (2) 

where Wd is the dry weight of the sample, Ws 
is the saturated weight of the sample, and V is 
the total volume of the dry sample. 

 
Figure 2. Laboratory studies a) Preparation of the cubical rock samples b) Some of the prepared rock 

samples c) Saturation of the rock samples under atmospheric conditions d) Weighing the rock samples e) 
Pulse wave velocity measurement f) UCS test. 

A standard Pundit plus testing apparatus was 
used to measure the pulse wave velocity (Vp) 
(Figure 2e). The Vp and UCS tests were 
performed by following the procedures 
suggested by the International Society of Rock 
Mechanics [33]. The frequency of the probes 
during the pulse wave measurement was about 
54 kHz, and 20 measurements were conducted 
from different cross-sections. The average pulse 
wave velocity was recorded for each sample. In 
the last part of the laboratory studies, the UCS 
tests were performed using a stiff loading 
machine (Figure 2f) whose stress rate was 
within the limits of 0.5 – 1.0 MPa/s [33]. 

 
 
 

4. Soft Computing Methods 
4.1. Classification and regression tree 
(CART) algorithms 

Decision trees are characterized by a series 
of questions that divide the learning sample into 
smaller and smaller parts [34]. A regression tree 
is similar to a classification tree, except that the 
dependent variable takes ordered values, and a 
regression model is fitted to each node, giving 
some outputs [35].  

For several decades, the CART methodology 
has been utilized across various mining 
engineering disciplines [36–38]. In this study, 
several CART analyses were performed using 
the input parameters of ρd, ne, and Vp. 
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4.2. Multivariate adaptive regression spline 
(MARS) 

The MARS method proposed by Friedman 
[39] is a hybrid linear model used for 
nonparametric regression. This methodology 
has mainly been adopted for prediction and 
optimization problems [40–46]. There are two 
essential components in a typical MARS model. 
Two passes are involved in this process: the 
forward pass and the backward pass. In MARS 
models, constant terms called basis functions 
(BFs) initiate the forward pass. In the backward 
pass, the BFs are connected to linear regression 
models. The MARS analyses were performed 
using the R software, and a feasible predictive 
model is proposed based on the MARS 
methodology.  

4.3. Adaptive neuro-fuzzy inference system 
(ANFIS) 

The researchers have used ANFIS to develop 
predictive models for most geoengineering 
problems [21, 47–50]. The ANFIS uses a hybrid 
learning process to estimate premise and 
consequent parameters [51]. In most ANFIS 
models, the Sugeno fuzzy reasoning algorithm 
is used based on various membership functions 
and if-then rules. Several ANFIS models were 
developed in the MATLAB environment for 
this study. 

4.4. Artificial neural networks (ANN) 

ANN can analyze the data and save the 
experience-based knowledge for future 
predictions [52–54]. This algorithm can be used 
in various social and applied sciences. Although 
artificial neural networks (ANNs) can reveal 
input-output relationships, they are primarily 
black-box models, which limits their broader 
usage [55]. In this study, various ANN analyses 
were conducted using the toolbox (nntool) in 
the MATLAB environment. The present study 
introduced a novel predictive model based on 
the ANN methodology. The model was 
formulated using specific mathematical 
equations derived from the weights and biases 
in the ANN model. 

 
 
 
 

4.5. Gene expression programming (GEP) 

Using an evolutionary approach, the GEP 
algorithm generates an explicit mathematical 
formula for the relationship between dependent 
and independent variables. The GEP was first 
developed by Ferreira [56], and has gained 
popularity among the researchers in different 
geoengineering disciplines [57–60]. The main 
goal of GEP is to develop empirical formulas 
using specific sub-expression trees (Sub-ETs). 
The algorithm tries to estimate the dependent 
variable by combining the Sub-ETs with some 
numerical operators (addition, multiplication, 
etc.). In this study, GEP analyses were 
performed using GeneXpro tools (v. 5) 
software. After attempting various numbers of 
chromosomes, head sizes, and numerical 
operators, a GEP-based predictive model was 
developed. 

5. Results and Discussion 

Based on the laboratory studies, the 
descriptive statistics of the rock properties are 
given in Figure 3. Accordingly, it was found that 
the UCS of pyroclastic rocks varied between 
3.14 and 83.39 MPa. In this regard, the 
pyroclastic rocks were defined from very low to 
medium strength, according to Deere and Miller 
[61]. Soft computing analyses were performed 
using the specified database.  

5.1. Proposed CART model 

CART decision trees are based on if-then 
rules, and are easy to understand when dealing 
with modest datasets. However, it doesn't seem 
very easy for larger datasets due to repeated 
outputs and larger standard deviations in the 
dataset. Several computational algorithms are 
used to perform CART analyses. In this study, 
CART analyses were performed using the 
Salford predictive modeler (v. 8) software. 
During the analyses, the ensemble method was 
assigned to bagging, and the number of trees 
and nodes was 10 and 24, respectively.  

There were no restrictions, constraints or 
penalties in the dataset. Based on this 
information, the simplified CART decision tree 
to estimate the UCS of rocks is given in Figure 
4. The ρd, Vp, and ne were effectively used 
during the CART analyses. For specific 
conditions, UCS values can be easily estimated 
by implementing decision three in Figure 4. 
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Figure 3. Histograms and descriptive statistics of the laboratory test results. 

 
Figure 4. Illustration of a simplified CART decision tree (node: 22). 
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5.2. Proposed MARS model 

Various MARS analyses were conducted 
using the software R. Before performing the 
analyses, the dataset was randomly divided into 
training (70/100) and testing (30/100) parts. 

Maximum BFs and interactions were assigned 
to 10 and 2, respectively. Based on these 
configurations, the proposed MARS model is 
given by Eq 3. The BFs are also listed in Table 
2. 

 

25.21 54.32 1 26.85 3 6.78 4 16.41 5 3.04 8UCS BF BF BF BF BF       (3) 

 

Table 2. BFs for the proposed MARS model. 

 1 max 0; 1.37dBF    

 3 max 0; 4.98pBF V   

 4 max 0;4.98 pBF V   

 5 max 0; 3.47 1pBF V BF    

 8 max 12.97 1eBF n BF    

 
5.3. Proposed ANFIS model 

ANFIS analyses were performed in the 
MATLAB environment. The error metric during 
the analyses was root means square error 
(RMSE). The ANFIS model was developed 
using eight Gaussian membership functions that 
represented each input parameter (ρd, ne, Vp). 
Depending upon these membership functions, 
eight if-then rules activated the ANFIS model. 
The ANFIS analysis was carried out until the 

minimum RMSE values were achieved. Some 
illustrations of the proposed ANFIS model in 
the MATLAB environment are given in Figure 
5. 

5.4. Proposed ANN model 

In this study, neural network toolbox 
(nntool) was used to perform various ANN 
analyses in the MATLAB environment. A novel 
ANN-based predictive model was presented 
using precise mathematical formulas derived 
from the weights and biases. Before performing 
ANN analyses, the dataset was normalized 
between ‒1 and 1 to overcome overfitting 
problems. Based on many ANN analyses with 
different architectures, the best ANN 
architecture was found to be 3–8–1 in this study. 

Namely, there were three inputs (ρd, ne, Vp), 
eight hidden layers, and one output (UCS). 
Based on this ANN architecture, the UCS can 
be estimated by using the following equations: 

 
8

1
37.681tanh 6.5027 42.668i

i
UCS A



 
   

 
  (4) 

 1 9.763tanh 1.4459 7.4547 0.56841 7.1724n n n
d e pA n V     (5) 

 2 0.12835 tanh 11.6869 12.1313 13.3238 2.068n n n
d e pA n V       (6) 

 3 2.19 tanh 2.8138 1.0284 0.12619 1.8146n n n
d e pA n V      (7) 

 4 5.1288 tanh 4.7725 7.1211 1.4178 6.4978n n n
d e pA n V     (8) 

 5 5.3601tanh 0.09958 0.37379 0.38504 0.14732n n n
d e pA n V       (9) 

 6 1.3518 tanh 5.8291 0.54172 3.7685 6.9331n n n
d e pA n V       (10) 

 7 1.5735tanh 0.61871 1.6029 1.2735 0.18185n n n
d e pA n V     (11) 

 8 0.05804 tanh 3.11 14.6143 4.0258 1.219n n n
d e pA n V       (12) 
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Figure 5. ANFIS outputs a) Input parameters b) Training process c) ANFIS model structure  

d) Rule viewer. 
 
Normalization functions: 

1.6667 2.8667n
n d    (13) 

0.0522 1.2321n
e en n   (14) 

0.4107 1.6489n
p pV V   (15) 

5.6. Proposed GEP model 

Numerous GEP applications were performed 
to build a predictive model for the assessment 
of UCS. For this purpose, the GeneXproTools 
software was used to implement various GEP 
models. The configuration of the developed 
model is listed in Table 3. The Sub-ETs of the 

proposed GEP model are given in Figure 6. The 
mathematical expressions of the Sub-ETs are 
also provided by Equations 16 – 18. 
Consequently, the UCS of pyroclastic rocks can 
be estimated using Equation 19. 

Table 3. Configuration of the proposed GEP 
model. 

Number of 
chromosomes 

30 

Head size 7 
Number of genes  3 
Linking function  Addition 
Fitness function RMSE 
Numerical operators +, –, x, Ln, Avg2, Min2. 
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Figure 6. Sub-ETs of the proposed GEP model. 

 1
8.112 2.64 2.052

2
d

d px V 



      (16) 

 2 9.54 8.59d dx      (17) 

   3 min 3.76, 5.36d p dx V       (18) 

3

1
1.16 0.153i

i
UCS x



   (19) 

 

5.7. Evaluation of proposed models 

The scatter plots of the proposed models are 
given in Figure 7. Accordingly, the prediction 
models have correlation of determination (R2) 
values ranging from 0.821 to 0.878. In addition, 
the RMSE values were found to be between 
5.78 – 7.03 MPa. When considering the R2 and 
RMSE values, it can be claimed that the models 
based on CART, ANFIS, and ANN 
methodologies have a better prediction 
performance than the ones found on MARS and 
GEP. Nevertheless, these models seem to have 
no superiority over one another.  

 
Figure 7. Scatter plots of the proposed models a) CART b) MARS c) ANFIS d) ANN e) GEP. 
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The input parameters (ρd, ne and Vp) used in 
this study were also adopted by different 
researchers [16, 20, 25, 27], and robust 
predictive models were obtained by using them 
effectively.  

However, when considering the physico-
mechanical rock properties, pyroclastic rocks 
exhibit considerable heterogeneity in the 
dataset. The heterogeneity in pyroclastic rocks 
can easily be observed when considering the 
variations in the ne values in Figure 7. In most 
cases, pyroclastic rocks bearing micro-fissures 
tend to have higher ne values [63–65]. 
Eventually, the pyroclastic rocks have inherent 
micro-fissures due to a rapid cooling regime 
during their solidification. Apart from the 
presence of micro-fissures, silicified rock 
surfaces also impact the ne for pyroclastic rocks 
[66]. These two phenomena (micro-fissures and 
silicified surfaces) are commonly observed 
in/on the rock blocks obtained. For these 
reasons, the dataset handled in this study can be 
declared complicated.  

The present study also includes sensitivity 
analyses to investigate the effectiveness of the 
input parameters used in the proposed models. 
In this study, the cosine amplitude method 
(CAM) was adopted to assess the sensitivity 
degree of each input parameter. The correlation 
degree (rij) for the sensitivity analyses was 
calculated using Equation 20. 

1

2 2

1 1

n

i i
i

n n

i i
i i

x y
rij

x y



 







 
 (20) 

where xi is the input parameter, yi is the 
estimated output, and n is the number of 
samples (n = 131 in this study). 

It is important to note that as the value of rij 
increases, the impact of the related input 
parameter becomes greater. Based on the 
sensitivity analysis results (Table 4), rij values 
were found to be between 0.69 and 0.96. In this 
regard, the most important input parameters for 
the proposed models are ρd and Vp. These 
parameters are easy to determine in the 
laboratory, and thus they can be reliably used to 
estimate the UCS of pyroclastic rocks. 
However, due to the heterogeneity of the 
pyroclastic rocks, additional parameters such as 
mineralogical features and packing density 
would be beneficial to improve the proposed 

models. It is recommended to include such 
variables in future studies. 

Table 4. Sensitivity analyses results. 

Methodology 
Input parameter 

ρd ne Vp 
CART 0.94 0.74 0.95 
MARS 0.92 0.72 0.96 
ANFIS 0.93 0.72 0.95 
ANN 0.90 0.69 0.85 
GEP 0.90 ‒ 0.88 

6. Conclusions 

In this study, a series of laboratory studies 
are conducted to reveal common physico-
mechanical properties (ρd, ne, Vp, and UCS) of 
pyroclastic rocks from central Anatolia, Turkey. 
Based on the laboratory test results including 
131 datasets, several soft computing analyses 
are performed to build some predictive models 
used to estimate the UCS of the rocks. 
Accordingly, five different predictive models 
are proposed. The performance of the proposed 
predictive models is revealed by two important 
statistical indicators (i.e. R2 and RMSE), and it 
is found that the R2 values are approximately 
between 0.82 and 0.88, indicating their relative 
success. When comparing the performance of 
the models, the models based on CART, ANFIS, 
and ANN provide better results than the ones 
based on MARS and GEP.  Therefore, these 
three models can be reliably used to estimate the 
UCS of the pyroclastic rocks. In addition, 
sensitivity analysis results indicate that the ρd 
and Vp become prominent in assessing the UCS 
of the rocks for all models.  

The present study is believed to show the 
applicability of some soft computing algorithms 
for evaluating the UCS of pyroclastic rocks. 
Another critical finding obtained from the 
present study is that the performance of soft 
computing methods relies on the quality of the 
dataset and its deviation. The presence of 
heterogeneity in the pyroclastic rocks 
delimitates the success of the soft computing 
tools to some extent. When trying to improve 
the proposed predictive models, it would be 
beneficial to use additional input parameters 
such as mineralogical features and packing 
density in future studies. Last but not least, the 
proposed predictive models can be considered 
when comparing the initial performance of the 
pyroclastic rocks based on the UCS. In this 
manner, the proposed methods should be 
evaluated together to obtain a holistic approach 
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to the quality of pyroclastic rocks for different 
engineering applications. 
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  چکیده:

از  يآذرآوار يها) ســنگUCS(  يتک محور  يمقاومت فشــار  نیتخم  يبرا  ینیبشیپ  يهامدل یســاخت برخ ينرم برا  یمحاســبات  لیتحل نیمطالعه، چند  نیدر ا
ودیانجام م  هیترک  ،يمرکز  یآناتول گاهیمطالعات آزما  يسـر کیمنظور،   نیا ي. براشـ کار کردن خواص ف يبرا  یشـ ک    یچگالسـنگ مانند    یکیو مکان  یکیزیآشـ خشـ

)ρd) تخلخل موثر ،(ne) ســرعت موج پالس ،(Vp  و (UCS  نرم،    یمحاســبات  يهالی. در تحلشــودیانجام مρd  ،ne   وVp اســتفاده   يورود  يعنوان پارامترهابه
وند،یم نگ غ   يهایژگیآنها و  رایز  شـ تند. در نتبهو مقرون یعمل  رمخربیسـ رفه هسـ بات  يهالیتحل  جهیصـ اس در  یمحاسـ   ونیو رگرس ـ  يبندطبقه يهاختنرم بر اسـ
)CARTچندگانه (  یقیتطب  ونی)، خطوط رگرس ـMARSتمی)، س ـ ب  سـ تنتاج عصـ بکهANFIS( یقیتطب  يفاز  یاسـ ب يها)، شـ نوع  یعصـ   يز یر) و برنامهANN(  یمصـ
  شـودیم  یابیارز يآمار  يهاشـاخص یختوسـط بر شـدهینیبشیپ  يهاشـده اسـت. عملکرد مدل شـنهادیمطالعه پ  نیدر ا  يقو ینیب شی)، پنج مدل پ (GEP)ژن   انیب

ــخص م ــودیو مش ــتگ ش ــاس ا  ریمتغ  0.88 -  0.82 نیها بمدل  يبرا)  2R(  نییمقدار تع  یکه همبس ــت. بر اس ــاخص ها نیاس   ین یب شیپ  يمدل ها ،يآمار  يش
 مورد استفاده قرار داد. يآذرآوار يهاسنگ UCS نیتخم يتوان به طور قابل اعتماد برایرا م يشنهادیپ

  .سنگ، محاسبات نرم یژگیو ،يتک محور يمقاومت فشار ،يآذرآوار يهاسنگ کلمات کلیدي:

 

 

 

 


