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 The present paper gives out data-driven method with airborne magnetic data, 
airborne radiometric data, and geochemistry data. The purpose of this study is to create 
a mineral potential model of the Shahr-e-Babak studied area. The studied area is located 
in the south-eastern of Iran. The various evidential layers include airborne magnetic 
data, airborne radiometric data (potassium and thorium), lineament density map, cu 
geochemistry signature, and multi-variate geochemistry signature (PC1). High 
magnetic anomalies, lineament structures, and alteration zones (K/Th) were derived 
from airborne geophysics data. Geochemistry signatures (Cu and PC1) were derived 
from stream sediment data. The principal Component Analysis (PCA) as an 
unsupervised machine learning method and five evidential layers were used to produce 
a porphyry prospectivity model. As a result of this combination, mineral prospectivity 
model was produced. Then a plot of cumulative percent of the studied area versus pca 
prospectivity value was used to discrete high potential areas. Then to evaluate the 
ability of this MPM, the location of known cu indications was used. The results confirm 
an acceptable outcome for porphyry prospectivity modeling. Based on this model high-
potential areas are located in south southwestern and eastern parts of the studied area. 
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1. Introduction 

Mineral prospectivity modeling (MPM) or 
mineral prospectivity mapping helps to prioritize 
exploration areas based on a particular type of 
mineralization [1]. MPM helps to discover deposits 
that are located beneath covered rocks. The MPM 
method is a branch of computer science that is 
based on geospatial data, especially geophysics and 
geochemistry data [2]. The combination of geo-
physical and geochemical data can facilitate 
mineral exploration. Recently, geological 
structures consisting of porphyry intrusion, 
lineaments structure, and alteration zones have 
been discovered by airborne geophysics data. The 
magnetic method is a significant tool in detecting 
geological formations (such as contact, lineaments, 
and bodies) [3]. Igneous rocks especially sub-
volcanic rocks like granodiorite and diorite have 
been shown a basic role in mineralization. A high 
magnetic anomaly can be related to these bodies. 

On the other hand, lineament structures like faults 
are suitable conduits for conducting hydrothermal 
solutions and mineralization. Lineament structure 
can be extracted by airborne magnetic data and 
directional derivative. The tilt angle method is a 
basic tool for extracting lineament structures [4]. 
Similarly, airborne radiometric data can detect 
radioelements (potassium, thorium, and uranium) 
in surface structures. The radiometric signature of 
different geological units and alteration zones 
change due to variations in radioelement 
concentration [5]. Potassium-thorium ratio (K/Th) 
concentration can identify alteration zones because 
K radioelemet is more mobile than thorium, 
especially in alteration zones, so increase in K 
concentration can distinguish these zones [6].  

Interpretation of stream sediment samples can 
reveal the signature of mineralization. The 
signature of multi-element anomalous is an 
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essential problem in interpreting geochemistry 
data. Multi-variate analysis is a useful tool for this 
aim because multi-element anomalous should be 
evaluated [7].   

PCA is an unsupervised machine learning 
method that transforms multivariate data into 
nondependent components. The ranking of these 
components is based on their variances. This 
method is widely used in geosciences [8, 9, 10, 11]. 

The aim of this paper is to mineral prospectivity 
area related to cu porphyry mineralization in the 
Shahr-e-Babak studied area in southern Iran. To 
achieve this purpose, geospatial data and an 
unsupervised machine learning method are used. 
Thus linement structures, bodies, and alteration 
were extracted by airborne radiometric and 
magnetic data. Geochemistry data is used to reveal 
anomalous related to porphyry mineralization. 
These evidential layers are combined with an 
unsupervised machine learning method to 
prioritize the high potential area of cu porphyry 
mineralization. 

2. Geological Setting and Mineralization 

The studied area lies between latitude 55 to 55 30 
N and 30 to 30 30 E, and is located in the Kerman 
Province. Figure 1 shows the location of the 
studied area. The major part of the studied area is 
covered with Eocene andesitic rocks and Eocene 
volcano-sedimentary units. In the central, eastern, 
and northern western parts of the studied area, 

cretaceous stocks of meta-volcanic rocks are 
outcropped [12].The existence of huge Eocence 
volcanic rocks, especially andesite rocks, is a clear 
property of the studied area. These volcanic rocks 
are hosted mineralization and alteration in the 
studied area. Middle Eocene to Miocene stocks 
with diorite to granodiorite composition were 
intruded in the studied area. These stocks caused 
porphyry mineralization in the Shahr-e-Babak 
studied area. Widespread alteration zones were 
created around these stocks. The plutonium 
complex of the studied area was completed in the 
Upper Miocene. The northern eastern part of the 
studied area is covered with young alluvial. Flysch 
unit covers the studied area in the north. Old 
alluvium covers south western part of the studied 
area. Volcanic rocks with andesite to basalt 
composition outcrop in the studied area in north 
northwest. Also volcanic rocks with sandstone and 
limestone are covered east. The pyroclastic unit is 
widespread in the central part of the Shahr-e-Babak 
studied area.  

Shar-e-Babak has of high potential for porphyry 
mineralization in the copper metallogenic belt in 
the Kerman Province. The studied area is a part of 
the Urumieh-Dokhtar magmatic zone. The 
Urumieh-Dokhtar magmatic zone has the richest 
potential for porphyry mineralization in Iran. 
More, the 200 indeces of cu outcrops were 
discovered in this zone. The geology map of Shahr-
e-Babak studied area is shown in Figure 2.  

 
Figure 1. A: Geographical location of the Shahrbabak area. B: The location of the range in the structural zones 

of Iran . 
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Figure 2. Geological map of Shahrbabak area taken from Shahrbabak 1:100000 geological map . 

3. Materials and Method 
3.1. Geochemistry data 

Porphyry mineralization can be identified by the 
stream sediments method. In several areas, the 
stream sediments method has led to identifying 
high potential areas for porphyry mineralization 
[13, 14, 15]. The appropriate geochemical 
assemblage consists of Cu-Au – Mo – Ag – Sb – 
As – Pb, and Zn. Stream sediment samples were 
surveyed by the Geological Society of Iran (GSI). 
A dataset of 604 samples was surveyed. These 
samples were analyzed for Cu, Pb, Zn, Sb, Ni, Co, 
Cr, and  B. The QQ plot and histogram were drawn 
to survey normalized condition and outlier data. 
The outlier data were replaced by the Dorfell 
method. Then the logarithmic method was used to 
normalize data. Cu anomaly map was drawn out as 
an evidential layer in porphyry prospectivity. A 
typical method in pattern recognition in 
geochemistry data consists of discriminant 
analysis, cluster analysis (kmeans, cmeans, 
hierarchical cluster analysis…), and factor 
analysis. In this paper, factor analysis was used to 
extract the element assemblage of porphyry 
mineralization in the Shahr-e-Babak studied area. 
Based on the result from factor analysis, the 
mineral assemblage in Shahr-e-Babak studied area 
consists of Cu – Pb - Zn in PC 1. Thus the resulting 
map was used as an evidential layer in porphyry 
prospectivity in the studied area.  

3.2. Geophysics data 

The airborne geophysics data in the Shahr-e-
Babak studied area consists of aeromagnetic data 
and radiometric data. The radiometric data include 
uranium, thorium, and potassium. This data was 
surveyed by the Atomic Energy Organization of 
Iran. This data was obtained at a flight spacing of 
about 500 m and an altitude of about 120 m. To 
pre-process data, the reduction to pole filter (RTP) 
was applied to the total magnetic intensity map. 
The RTP filter aligns better magnetic anomalies 
with geological structures [16]. The high magnetic 
anomaly (porphyry intrusion) was extracted 
visually (Figure 3a). Then the proximity to the 
layer was created from high magnetic anomalies.  

To extract magnetic lineaments, different 
methods can be used. Most of these methods are 
based on directional derivatives. The tilt angle 
method [17] was used to extract magnetic 
lineaments. The initial concept of this method is 
based on horizontal and vertical derivatives of total 
magnetic intensity [18]. Then the heat map of 
lineaments was created.  Figure 3e shows high- 
magnetic anomaly and heatmap of magnetic 
lineaments.  

The aeroradiometric data can be applied to 
geological interpretation and detection of alteration 
areas [5, 19]. To extract the alteration zone, the 
ratio of K/Th was applied because the increase in 
potassium and decrease in thorium is an indication 



Jahantigh and Ramazi Journal of Mining & Environment, Vol. 15, No. 4, 2024 

 

1480 

of ore deposits [5, 6]. High K/Th areas were 
extracted from the K/Th anomaly map based on 
mean plus standard deviation (3d). In the next step, 

the proximity to the layer was created from high 
K/Th areas.  

 

  

  

 
Figure 3. Evidential layer of Shahr-e-Babak studied area (a) Cu geochemical signature (b) PC1 geochemical 

signature (c) High magnetic anomalies (d) High K/Th anomalies (e) Line density. 
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3.3. Methods 

In this section, we describe methods for mineral 
prospectivity with airborne geophysics and 
geochemistry data. In the first step, all data was 
transformed to the raster file. Then this raster file 
should be standardized to input to the machine 

learning method. To standardize geospatial data, 
logistic transformation was used. In the next step, 
the PCA method was used to predict porphyry 
mineralization modeling with airborne geophysics 
and geochemistry data. Figure 4 describes the main 
step of this research work. 

 
Figure 4. The flow chart of methodology shows different steps to produce MPM for cu porphyry mineralization. 

3.3.1. Logestic transformation 

The values of different layers of evidence vary 
significantly in magnitude. As a result, they cannot 
be compared or overlayed to create a mineral 
potential map. In this paper, the logistic function 
was employed to transform discrete data of various 
magnitudes into continuous values ranging from 0 
to 1. Yousefi, M. and Carranza, E. [20] introduced 
an improved approach utilizing logical functions to 
optimize the method.   Through a data-driven 
approach, the parameters can be computed, 
ensuring that the resulting value consistently falls 
within the range of 0 to 1. 

To produce evidential layer five geospatial data 
(high magnetic anomaly, linear structures, high 
ratio of K/Th, cu signature, and pc1 multivariate 
signature) in the Shahr-e-Babak studied area. We 
used geochemical and airborne geophysics data 
Because these data originated from different 
sources; maximum and minimum all of these data 
are different. Logistic transformation can be used 
to transform these data in the same space([0 1]). To 
apply this transformation, the following Equation 
was used [21]: 

= ாܨ
1

1 + ݁ି௦(௫ି௜) (1) 

X is the original value of geospatial data, and 
 ா is the logistic transformation of these data. s andܨ
i are the slope and inflection points of this 

transformation. In this step, all evidential layers 
were fuzzified with this transformation.  

According to the proposed method [20], the 
appropriate values for the slope (s) and turning 
point (i) of the logistic function are obtained from 
the solution of two equations and two unknowns 
presented below. In these formulas, EV and FEV are 
evidential layer values and fuzzy scores of 
evidential layers. The results in I and S are 
presented in Table 1. The fuzzified maps with 
logistic function are presented in Figure 5.  

F୉୴୫ୟ୶ =
1

1 + eିୱ(୉୚୫ୟ୶ି୧) (2) 

F୉୴୫୧୬ =
1

1 + eିୱ(୉୚୫୧୬ି୧) (3) 

s =
9.2

F୉୴୫ୟ୶ − F୉୴୫୧୬ 
 (4) 

i =
F୉୴୫ୟ୶ + F୉୴୫୧୬ 

2
 (5) 

Table 1. Calculated logistic function parameters for 
evidential layers. 

Evidential layer s i 
Cu 0.245 198.7950 
PC1 0.76 6.03 
High mag 0.0075 6087.5 
K/Th 0.0058 7930.5 
Line density 2.23 2.055 
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Figure 5. Logistic transformation of evidential layers (a) cu geochemical signature (b) PC1 geochemical signature 

(c) High magnetic anomalies (d) High K/Th anomalies (e) Line density. 

3.3.2. Principal component analysis 

Principal component analysis (PCA) is an 
unsupervised machine learning method. PCA can 
assumed as fitting a p-dimensional ellipsoid to the 
data. Each axis of p dimensional is considered a 
principal component. If the axis of this ellipsoid is 
small, then the variance of this axis is small too. To 
calculate the dimensions of this ellipse, its center 
of all datasets must be found. This center is 
calculated from subtracting of mean of the 
variable's observed values from each of those 
values. Principal component analysis (PCA) is one 
of the best multivariate data analyses. PCA is a 
general multivariate technique that applies 

sophisticated mathematical principles to reduce 
correlated variables to a small size which is called 
principal components (PCS).  The PCA method was 
multivariate data analysis originally, but it was 
applied in a wide range of other applications [21]. 
The total variance of variables is calculated in PCA 
and PCS as the optimal amount is calculated for a 
major part of the variance [22].  

The major purpose of PCA consists of six parts 
1. Calculate the most important feature of the 

dataset 

2. Reduce the size of the dataset by retaining these 
features 
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3. Simplify the description of this dataset. 

4. Interpretation and analyzing the structure of 
variables 

5. Reducing the dimension of data without any 
missing information 

6. This method is applied in data compression.  

It was seen that already variables can be 
normalized within statistical transformation with 
different methods. In the PCA method, dataset 
should be normalized or standardized [23]. 

The fuzzified transformation was used to 
standardize input data. The flowchart of this study 
is shown in Figure 4. 

4. Results and Discussion 
4.1. Model prediction and mineral mapping 

Principal component analysis is an unsupervised 
machine learning method. This mathematical 
method uncovered a relationship between 
exploratory data and a reduced amount of data. 
PCA is a statistical process that transforms 
correlated features into linear uncorrelated features 
with orthogonal transformation with decreased 
variation. The linear transformation assumes the 
component will explain all of the variance in each 
variable [24] have noted that an advantage of using 
PCs over a prior or user-defined group of elements 
as variables for investigation is that they represent 
linear combinations of elements that are likely 
controlled by mineral stoichiometry. This linear 
transformation may present a more logical 
representation of the geological evidential layer 
and mineralization (Table 1). The pc1 was 
calculated more than 66% over data variability. 
Principal component analysis is a technique for 
feature extraction. So it combines input variables 
in a certain way. We can then remove the least 
important variables, while still keeping the most 
valuable parts of all variables. Each of the new 
variables after PCA are all independent from each 
other. This is an advantage because the 
assumptions of the linear model require that our 
independent variables remain independent of each 
other.  This event shows the high impact of 
geochemistry signatures in mineral prospectivity 

modelling in Shahr-e-Babak studied area. The low 
impact of magnetic anomalies is due to alteration 
and demagnetization in the mineralization host 
rock.   

 The method surveys the interrelation between 
datasets. The main goal of PCA is to decrease the 
dimension of the dataset, while preserving the 
pattern of these data. This process is done without 
any knowledge of these data. Available exploratory 
data related to cu mineralization consist of 
geochemical data: cu and pc1; geophysics data: 
high magnetic anomalies, K/Th anomaly, and line 
structure resulting from magnetic data. All of these 
data were transformed into a raster file with a 100 
× 100 pixel size. For pre-processing of these data, 
Arcgis 10.8.1 and Oasis montaj 8.4 were used, and 
MATLAB software was used for data integration. 
The geophysics data interpretations were done in 
the Geosoft software consisting reduction to pole 
of total magnetic intensity map, extracting of 
magnetic lineament structures, and airborne 
radiometric process. The proximity to and 
continuous dataset of evidential layers were 
produced in ARCGIS software and data 
integriation (PCA method) was done in the 
MATLAB environment. The component matrix of 
this data integration is shown in Table 2. The pc1 
and cu geochemistry anomaly shows the greatest 
impact in the prospective model. The lowest impact 
belongs to the high magnetic anomaly. 
Mineralization in the studied area caused 
demagnetization in the host rock of porphyry 
mineralization in the Shahr-e-Babak studied area. 
Mafic volcanic rocks consisting andesite and 
andesite basalt reflect high magnetic anomaly in 
total magnetic intensity map. But in Shahr-e-Babak 
studied area, especially in north west of this area, 
these rock units reflect low to moderate magnetic 
anomaly because cu occurences are located around 
high magnetic anomaly, this evidential layer reflect 
positive role in mineral prospectivity modelling. 
The MPM model is shown in Figure 6. All selected 
evidential layers are useful tool in dentification of 
mineralization potential area. Therefore, their 
integration provides good results in identifying 
these areas. 
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Table 2. Total variance explained. 
Component Initial eigenvalues Extraction sums of squared loadings 

Total % of variance Cumulative, % Total % of variance Cumulative % 
1 2.220 44.400 44.400 2.220 44.400 44.400 
2 0.992 19.841 64.241    
3 0.903 18.070 82.311    
4 0.611 12.216 94.527    
5 0.274 5.473 100.000    

 
Figure 6. Favorability/Predictive map for cu porphyry mineralization over the Shahr-e-Babak studied area. 

Table 2. Component matrix. 
 Component 

1 
PC1 0.811 
Cu 0.849 
K/Th 0.597 
High_Mag 0.297 
Line_Density 0.631 

 
4.2. Model evaluation  

For evaluation resulting from the PCA 
prospectivity model, a variation classified of 
prospectivity value versus cumulative percent area 
was drawn out [25, 26]  (Figure 7). Using this plot, 

the breaking point to the discrete high potential 
area was distinguished. Based on the resulting map, 
most of the cu indications are located in high-
potential areas. The resulting map shows high-
potential areas located in the northwestern and 
eastern parts of the studied area. Low potential 
areas occupy the southern and northeastern parts of 
the studied area. Based on this map, high-potential 
areas are appropriate for further exploration 
(Figure 8). The mineral potential model with PCA 
method was compared with fuzzy-gamma method 
(Figure 9). The operation of PCA method is better 
than fuzzy-gamma method.  
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Figure 7. The plot of cumulative percent of studied area versus fuzzy AHP prospectivity value. 

 
Figure 8. The prospectivity map model shows different potential areas were distinguished by the plot in Figure 7. 
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Figure 9. The prospectivity map model with fuzzy-gamma method. 

5. Conclusions 

In this paper, airborne geophysics including 
aeromagnetic data and aeroraiometric data were 
used to extract geological structures. The high 
magnetic anomaly was extracted from airborne 
magnetic data and it was related to geological body 
formation. Lineament structures were extracted 
from airborne magnetic data and with the tilt angle 
method. Linear structures conduct mineralizing 
solutions to the surface. These solutions create 
alteration zones and mineralization in the host 
rocks. In this study, alteration zones were extracted 
with airborne radiometric data. The ratio of K/Th 
was used to extract the alteration zone. Potassium 
radioelement is more mobile than thorium. Thus 
K/Th shows concentration in the alteration zone. 
Geo-chemistry data was used as porphyry 
mineralization signatures. Multi-variate 
geochemistry data was used to reveal these 
signatures. Five evidential layers consisting of high 
magnetic anomaly, density map of linear 
structures, alteration zone, cu geo-chemistry 
signature, and multivariate geochemistry signature 
were produced. These evidential layers can govern 
the mineral prospectivity of porphyry 
mineralization in the Shahr-e-Babak studied area. 
PCA method was used for data integration in this 
study. The following conclusions were obtained: 

1. All of the evidential layers are located in PC1 
because of all of these evidential layers are 
effective in porphyry mineralization 
prospectivity in the Shahr-e-Babak studied area. 

2. Cu signature and multi-element geochemistry 
signature show the greatest effect in MPM in the 
Shahr-e-Babak studied area. 

3. High magnetic anomalies reflect the lowest 
effect in porphyry mineralization prospectivity 
because of alteratimon zones caused 
demagnetization in the host rock of cu 
mineralization.  

4. High-potential areas are located in the 
northwestern and eastern parts of the studied 
area. These areas can be appropriate for further 
exploration in the future.  

5. Airborne geophysics and geochemistry data can 
play an essential role in MPM. 
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  چکیده:

مدل   جادیمطالعه ا  نیدهد. هدف از ا  یارائه م  یمیژئوش يهوابرد و داده ها  يومتریراد يهوابرد، داده ها  یس ـیمغناط  يبر داده را با داده ها  یمقاله حاضـر روش مبتن
 ــ   يها شــواهد مختلف شــامل داده يهاهیواقع شــده اســت. لا رانیا یمنطقه مورد مطالعه در جنوب شــرق  منطقه مورد مطالعه شــهربابک اســت.  یمعدن لیپتانس
 ــ  يومتریراد  يهاهوا، داده  یس ــیمغناط  اســت. )PC1(  رهیچند متغ  یمیژئوش ــ  آنومالیمس و    یمیژئوش ــ  آنومالی  ،هاخطواره ی)، نقشــه چگالمیو تور  میهوابرد (پتاس

رسوب  يهااز داده یمیژئوشآنوملالی   هوابرد به دسـت آمدند.  کیزیژئوف  ياز داده ها )K/Th(ی  و مناطق دگرسـان  ،یخط  يبالا، سـاختارها  یس ـیمغناط  يها  يناهنجار
  پتانســیلمدل   کی  دیتول  يبرا  شــاهد  هیبدون نظارت و پنج لا  ینیماش ــ  يریادگیروش  کیبه عنوان  یمؤلفه اصــل  لیو تحل هیاســتخراج شــد. تجز انیجراي آبراهه

مقادیر مدل تولید شده منطقه مورد مطالعه در مقابل    یاز درصد تجمع  يشد. سپس نمودار  دیتول  یمعدن  پتانسیلمدل    ب،یترک نیا جهیدر نت استفاده شد.  يریپورف
در تشـــخیص نواحی پرپتانســـیل اســـتفاده گردید. که نتایج قابل قبولب را براي توانایی مدل در تولید شـــد. این نمودار براي ارزیابی توانایی مدل   PCA به روش

منطقه مورد   یو شــرق یجنوب غرب،جنوب   يهابالا در بخش لیمدل، مناطق با پتانسـ ـ نی. بر اســاس ابینی نواحی امیدبخش مس پورفیري ایجاد می کند.  پیش
  مطالعه قرار دارند.

  ي.ریهوابرد، شهربابک، پورف يومتریراد ،ی هوابردسیمغناط ،یاصل يمؤلفه ها لیو تحل هیتجز کلمات کلیدي:

 

 

 

 


