Document Type : Original Research Paper

Authors

1 Department of Mining and Metallurgical Engineering, Yazd University, Yazd, Iran

2 Department of Mining, Petroleum & Geophysics Engineering, Shahrood University of Technology, Shahrood, Iran

10.22044/jme.2024.13754.2548

Abstract

The stability analysis of chain pillars is crucial, especially as coal extraction rates increase, making it essential to reduce the size of these pillars. Therefore, a new method for estimating the load on chain pillars holds significant importance. This research introduces a novel solution for estimating side abutment load and analyzing the stability of chain pillars using the dynamic mode of the Coulmann Graphical (CG) method. The solution is implemented using Visual Studio software and is named Coulmann Chain Pillar Stability Analysis (CCPSA). The CG method is widely recognized in civil engineering as a highly efficient technique for determining soil side abutment pressure in both static and dynamic conditions. This method involves calculating the top-rupture wedge of chain pillars using the CG method. The CCPSA software functions share significant similarities with those of the Analysis Longwall Pillar Stability (ALPS) method. However, the main point of departure between the proposed method and the ALPS empirical method lies in their respective approaches to calculating side abutment load on chain pillars and evaluating subsidence conditions. The effectiveness of this method has been validated using a database of chain pillars from various mines worldwide and has been compared with the ALPS method. The results of the comparison demonstrate that the CCPSA is highly effective in evaluating chain pillar stability. This underscores the potential of the CG method and CCPSA software in providing valuable insights for assessing and ensuring the stability of chain pillars in mining operations.

Keywords

Main Subjects

[1]. Martin, C. D., & Maybee, W. G. (2000). The strength of hard-rock pillars. International Journal of Rock Mechanics and Mining Sciences37(8), 1239-1246.
[2]. Mohan, G. M., Sheorey, P. R., & Kushwaha, A. (2001). Numerical estimation of pillar strength in coal mines. International Journal of Rock Mechanics and Mining Sciences38(8), 1185-1192.
[3]. Badr, S. A. (2004). Numerical analysis of coal yield pillars at deep longwall mines. 2000-2009-Mines Theses & Dissertations.
[4]. Wilson, A. H. (1972). An hypothesis concerning pillar stability. The Mining Engineer131(1), 409-417.
[5]. Hsiung, S. M., & Peng, S. S. (1985). Chain pillar design for US longwall panels. Mining Science and Technology2(4), 279-305.
[6]. Rezaei, M. (2019). Forecasting the stress concentration coefficient around the mined panel using soft computing methodology. Engineering with Computers35(2), 451-466.
[7]. Majdi, A., & Rezaei, M. (2013, June). Application of artificial neural networks for predicting the height of destressed zone above the mined panel in longwall coal mining. In ARMA US Rock Mechanics/Geomechanics Symposium (pp. ARMA-2013). ARMA.
[8]. Rezaei, M. (2018). Long-term stability analysis of goaf area in longwall mining using minimum potential energy theory. Journal of Mining and Environment9(1), 169-182.
[9]. Rezaei, M., Hossaini, M. F., & Majdi, A. (2015). Determination of longwall mining-induced stress using the strain energy method. Rock Mechanics and Rock Engineering48, 2421-2433.
[10]. Mark, C., & Bieniawski, Z. T. (1986, June). An empirical method for the design of chain pillars for longwall mining. In ARMA US Rock Mechanics/Geomechanics Symposium (pp. ARMA-86). ARMA.
[11]. Whittaker, B., & Frith, R. C. (1987). Aspects of chain pillar design in relation to longwall mining. In Proceedings of the Sixth International Conference on Ground Control in Mining. Morgantown, WV: West Virginia University (pp. 172-182).
[12]. Molinda, G. M., Mark, C., & Debasis, D. (2001). Using the coal mine roof rating (CMRR) to assess roof stability in US coal mines.
[13]. Yang, R., Zhu, Y., Li, Y., Li, W., & Lin, H. (2020). Coal pillar size design and surrounding rock control techniques in deep longwall entry. Arabian Journal of Geosciences13, 1-14.
[14]. Ghosh, N., Agrawal, H., Singh, S. K., & Banerjee, G. (2020). Optimum chain pillar design at the deepest multi-seam longwall workings in India. Mining, Metallurgy & Exploration37, 651-664.
[15]. Yu, B., Zhang, Z., Kuang, T., & Liu, J. (2016). Stress changes and deformation monitoring of longwall coal pillars located in weak ground. Rock Mechanics and Rock Engineering49, 3293-3305.
[16]. Xu, Q., Bai, J. B., Yan, S., Wang, R., & Wu, S. (2021). Numerical study on soft coal pillar stability in an island longwall panel. Advances in Civil Engineering2021, 1-13.
[17]. Sasaoka, T., Takamoto, H., Shimada, H., Oya, J., Hamanaka, A., & Matsui, K. (2015). Surface subsidence due to underground mining operation under weak geological condition in Indonesia. Journal of Rock Mechanics and Geotechnical Engineering7(3), 337-344.
[18]. Matsui, K., Shimada, H., Furukawa, H., Kramadibrata, S., & Anwar, H. Z. (2003, June). Ground control problems and roadheader drivage at Ombilin coal mine, Indonesia. In Proceeding of the 18th International Mining Congress and Exhibition of Turkey-IMCET (pp. 99-104).
[19]. Hashikawa, H., Mao, P., Sasaoka, T., Hamanaka, A., Shimada, H., Batsaikhan, U., & Oya, J. (2022). Numerical simulation on pillar design for longwall mining under weak immediate roof and floor strata in indonesia. Sustainability14(24), 16508.
[20]. Oraee, K., Hosseini, N., & Gholinejad, M. (2010). Optimization of Chain Pillars Design in Longwall Mining Method. In 29th International Conference on Ground Control in Mining. Dept. of Mining Engineering, College of Engineering and Mineral Resources, West Virginia University.
[21]. Najafi, M., Jalali, S. M., Sereshki, F., & Yarahmadi, B. A. (2016). Probabilistic analysis of stability of chain pillars in Tabas coal mine in Iran using Monte Carlo simulation.
[22]. Zhu, Z., & Li, D. (2022). Stability assessment of long gateroad pillar in ultra-thick coal seam: an extensive field and numerical study. Geomechanics and Geophysics for Geo-Energy and Geo-Resources8(5), 147.
[23]. Zhang, K., Wu, F., & Yue, X. (2022). Study on Reasonable Chain Pillar Size in a Thick Coal Seam. Geofluids2022.
[24]. Reed, G., Mctyer, K., & Frith, R. (2017). An assessment of coal pillar system stability criteria based on a mechanistic evaluation of the interaction between coal pillars and the overburden. International Journal of Mining Science and Technology27(1), 9-15.
[25]. Song, G., & Yang, S. (2018). Probability and reliability analysis of pillar stability in South Africa. International Journal of Mining Science and Technology28(4), 715-719.
[26]. Sun, Q., Zhang, J., Ju, F., Li, L., & Zhao, X. (2015). Research and application of schemes for constructing concrete pillars in large section finishing cut in backfill coal mining. International Journal of Mining Science and Technology25(6), 915-920.
[27]. Xi-Gui, Z. H. E. N. G., Zhi-Gang, Y. A. O., & Nong, Z. (2012). Stress distribution of coal pillar with gob-side entry driving in the process of excavation & mining. Journal of Mining and Safety Engineering29(4), 459.
[28]. Najafi, M., Jalali, S. E., Bafghi, A. Y., & Sereshki, F. (2011). Prediction of the confidence interval for stability analysis of chain pillars in coal mines. Safety science49(5), 651-657.
[29]. Tanguturi, K., & Balusu, R. (2015). Fundamental understanding of goaf gas displacement in longwall goaf. Journal of mining and environment6(2), 191-203.
[30]. Mohammadi, H., EBRAHIMI, F. M., Jalalifar, H., Ahmadi, A. R., & Javaheri, A. (2016). Extension of excavation damaged zone due to longwall working effect.
[31]. Mohammadi, S., Ataei, M., Khaloo Kakaie, R., & Mirzaghorbanali, A. (2018). Prediction of the main caving span in longwall mining using fuzzy MCDM technique and statistical method. Journal of Mining and Environment9(3), 717-726.
[32]. Mohammadi, H., & Darbani, H. (2018). A three dimensional geometrical model for calculation of induced stresses surrounding longwall working. Journal of Mining and Environment9(3), 727-740.
[33]. Ardehjani, E. A., Ataei, M., & Rafiee, R. (2020). Estimation of first and periodic roof weighting effect interval in mechanized longwall mining using numerical modeling. International Journal of Geomechanics20(2), 04019164.
[34]. Zhao, H. C., An, H. J., & Gao, M. S. (2018). Deformation mechanism and optimum design for large cross-sectional longwall installation roadway under compound roof. Journal of Mining and Environment9(3), 771-784.
[35]. Aghababaei, S., Jalalifar, H., & Hosseini, A. (2021). Applying a Technical-Economic Approach to Calculate a Suitable Panel Width for Longwall Mining Method. Journal of Mining and Environment12(1), 113-126.
[36]. Darvishi, A., Ataei, M., & Rafiee, R. (2020). Investigating the effect of simultaneous extraction of two longwall panels on a maingate gateroad stability using numerical modeling. International Journal of Rock Mechanics and Mining Sciences126, 104172.
[37].  Ardehjani, E. A., Rafiee, R., & Ataei, M. (2021). The effect of the seam slopes on the strata behavior in the longwall coal mines using numerical modeling.
[38].  Rasouli, H., Shahriar, K., & Madani, H. (2021). A New Case-based Reasoning Method for Prediction of Fractured Height of Longwall Panels. Journal of Mining and Environment12(4), 1103-1121.
[39].  Mohammadi, S., Ataei, M., Kakaie, R., & Mirzaghorbanali, A. (2019). A New Roof Strata Cavability Index (RSCi) for longwall mining incorporating new rating system. Geotechnical and Geological Engineering37, 3619-3636.
[40].  Mohammadi, S., Ataei, M., Kakaie, R., Mirzaghorbanali, A., & Aziz, N. (2021). A probabilistic model to determine main caving span by evaluating cavability of immediate roof strata in longwall mining. Geotechnical and Geological Engineering39, 2221-2237.
[41]. Nehrii, S. H., Nehrii, T. O., Zolotarova, O. V., Glyva, V. A., Surzhenko, A. M., Tykhenko, O. M., & Burdeina, N. (2022). Determining Priority of Risk Factors in Technological Zones of Longwalls. Journal of Mining and Environment13(3), 751-765.
[42]. Mohammadi, S., Ataei, M., & Kakaie, R. (2018). Assessment of the importance of parameters affecting roof strata cavability in mechanized longwall mining. Geotechnical and Geological Engineering36, 2667-2682.
[43]. Ansari, E., Rafiee, R., & Ataei, M. (2024). Investigating Effect of Induced Stresses due to Coal Panel Extraction on Next Panel Strata behavior during Mechanized Longwall Mining: a Case Study. Journal of Mining and Environment15(1), 381-399.
[44]. Das, B. M. (2011). Principles of geotechnical engineering/Braja M. Das, Cengage Learning, Stamford, CT.
[45]. Mark, C. (1999). Empirical methods for coal pillar design. In Proceedings of the Second International Workshop on Coal Pillar Mechanics and Design (pp. 145-154).
[46]. Mark, C. (1987). Analysis of longwall pillar stability. The Pennsylvania State University.
[47]. Franks, C. A. M., & Geddes, J. D. (1986). Subsidence on steep slopes due to longwall mining. International Journal of Mining and Geological Engineering4, 291-301.
[48]. Mark, C., Chase, F. E., & Campoli, A. A. (1995). Analysis of retreat mining pillar stability (No. CONF-950811-). West Virginia Univ., Morgantown, WV (United States).
[49]. Strauss, D. (2019). Getting Started with Visual Studio 2019: Learning and Implementing New Features. Apress.
[50]. Peng, S. (2019). Longwall mining. CRC Press.
[51]. Colwell, M., Frith, R., & Mark, C. (1999). Analysis of longwall tailgate serviceability (ALTS): a chain pillar design methodology for Australian conditions. In Proceedings of the second international workshop on coal pillar mechanics and design (pp. 33-48).