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 Groundwater inflow is a critical subject within the domains of hydrology, hydraulic 
engineering, hydrogeology, rock engineering, and related disciplines. Tunnels 
excavated below the groundwater table, in particular, face the inherent risk of 
groundwater seepage during both the excavation process and subsequent operational 
phases. Groundwater inflows, often perceived as rare geological hazards, can induce 
instability in the surrounding rock formations, leading to severe consequences such as 
injuries, fatalities, and substantial financial expenditures. The primary objective of 
this research is to explore the application of machine learning techniques to identify 
the most accurate method of forecasting tunnel water seepage. The prediction of 
water loss into the tunnel during the forecasting phase employed a tree equation 
based on gene expression programming (GEP). These results were compared with 
those obtained from a hybrid model comprising particle swarm optimization (PSO) 
and artificial neural networks (ANN). The Whale Optimization Algorithm (WOA) 
was selected and developed during the optimization phase. Upon contrasting the 
aforementioned methods, the Whale Optimization Algorithm demonstrated superior 
performance, precisely forecasting the volume of water lost into the tunnel with a 
correlation coefficient of 0.99. This underscores the effectiveness of advanced 
optimization techniques in enhancing the accuracy of groundwater inflow predictions 
and mitigating potential risks associated with tunneling activities. 
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1. Introduction 

Hydrology, geotechnical engineering, structural 
geology, rock engineering, and other related 
disciplines all pay close attention to the entry of 
groundwater into tunnels [1]. Tunnels frequently 
experience groundwater input both during and 
after construction, especially those built below the 
water table [2]. These unpredictably occurring 
geological hazards have the potential to 
destabilize the nearby rocks and result in serious 
harm, including injuries, fatalities, and high 
financial consequences [3][4]. Groundwater 
conditions are crucial factors to be taken into 
consideration during both the construction and 
operation of tunnels. [5].  

Accurate groundwater flow prediction and 
evaluation are crucial given the possible dangers 

and difficulties involved with groundwater input 
[6]. Many scholars have tried utilizing a number 
of techniques to precisely anticipate groundwater 
flow into tunnels despite the persistent difficulties 
[7]. However, a thorough review of these 
strategies has not yet been done, leaving potential 
for more study in this important field [8]. The 
movement of groundwater into rock tunnels has 
been the subject of several research [9]. There are 
really several methods to accomplish this. 
Analytical (including semi-analytical), 
experimental, and numerical methods are a few 
examples of this technique [10].  

However, there are a number of potential 
reasons why it may be challenging to estimate 
groundwater flow into tunnels accurately [11]. 
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This is due to the complexity and variety of rock 
masses, which make it challenging to pinpoint 
their essential characteristics. Assumptions are 
often used to downplay important elements and 
rock environment features when selecting the 
optimal strategy or tactics for a given scenario, 
which is not always easy. Choosing the optimal 
strategy or tactics for a given scenario is not 
always simple [12]. Seepage studies have 
investigated how groundwater flows into 
subterranean constructions. Because of a lack of 
information, it has been impossible to compare 
and analyze all available techniques for keeping 
track of groundwater inputs in tunnels [13]. This 
study provides a comprehensive overview of 
recent research advancements aimed at addressing 
the challenges associated with the inflexibility of 
mechanized drilling, particularly with Tunnel 
Boring Machines (TBMs), in response to sudden 
changes in geological conditions. Consequently, it 
offers a concise summary of the latest research 
developments in this domain. The primary 
objective of the study is to explore various 
machine-learning algorithms capable of 
estimating the volume of water infiltrating tunnels 
during drilling and blasting activities . 

In the domains of hydrology, geotechnical 
engineering, structural geology, rock engineering, 
and related fields, the infiltration of subterranean 
water into tunnels remains a significant concern, 
attracting considerable attention [14]. 
Groundwater flow poses a recurring challenge 
during tunnel construction and subsequent phases, 
particularly in the case of tunnels situated below 
the water table [15]. These unforeseeable 
geological risks give rise to floods that 
compromise the integrity of subterranean rock 
structures, resulting in severe consequences such 
as fatalities, injuries, and substantial economic 
losses [9]. Consequently, precise forecasting and 
assessment of groundwater flow into tunnels 
become imperative . Despite the persistent 
challenges associated with such predictions, 
numerous scholars have endeavored to address 
this issue using diverse methodologies [16]. 
However, a comprehensive examination of these 
varied strategies is notably lacking. The literature 

review underscores a multitude of investigations 
conducted over recent decades concerning the 
phenomenon of groundwater flow through rock 
tunnels [17]. Several approaches have been 
employed for this purpose, including analytical 
(including semi-analytical), experimental, and 
numerical methods. Nevertheless, accurate 
estimation of groundwater flow into tunnels 
proves to be a formidable task due to a multitude 
of potential factors [18]. The intricacies and 
diverse nature of rock masses present a 
formidable challenge in precisely determining 
their fundamental characteristics [19]. 
Consequently, assumptions are frequently 
employed to mitigate the complexity of essential 
elements and actual environmental features within 
the rock strata. Selecting the optimal strategy or 
tactics for a given scenario is a non-trivial task 
[20]. The focus of this research is to investigate 
the ingress of subterranean water into tunnels 
excavated within a rock environment. However, 
due to a lack of comprehensive information, a 
thorough comparison and analysis of all available 
techniques for monitoring groundwater inputs in 
tunnels have been elusive [21]. 

Various experts have delved into the dynamics 
of subsurface water flow into underground 
constructions, employing a spectrum of 
techniques to forecast water seepage into tunnels. 
For instance, Jiang et al. [22] applied the 
Conformal Mapping Technique to compute the 
seepage in deep circular tunnels with grout. 
Maleki et al. [23] utilized the stochastic 
discontinuous technique to investigate the 
uncertainty associated with groundwater influx 
into subterranean excavations, accounting for 
geological, hydraulic, and tunnel-related factors. 
Ying et al. [7] employed a numerical model in the 
COMSOL program to validate the semi-analytical 
solution for predicting ground seepage into 
tunnels, meticulously considering factors such as 
tunnel burial depth, lining thickness, and lining 
permeability.  

Some studies conducted in the field of 
predicting groundwater seepage into tunnels in 
recent years are given in the table 1. 
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Table 1. Some studies conducted in the field of predicting groundwater seepage into tunnels in recent years 
Reference methods Specificity and Applicability Remarks 

[24]–[26] Discrete Fracture 
Network (DFN) 

Real porous media. Large fractures sparsely 
distributed. Fractures permeability greater 
than that of rock mass. Simulate groundwater 
movements in the fractures. 

Variable spatial distribution of groundwater 
flows in the media is considered. Complex 
modeling. Limited as hydraulic aperture of 
fractures not fully reached. 

[24] 
Equivalent 

Continuous Model 
(ECM) 

Equivalent Porous media, seepage flow 
through fractured rock. Darcy flow 

Very limited due to the non-consideration of 
the real properties of the media. 

[27] Finite Element 
Method (FEM) 

Modeling groundwater inflows into tunnels. 
Continuous media 

Variable geotechnical and hydrogeological 
conditions 

[5] Boundary Element 
Method (BEM) 

Analysis and Description of groundwater 
flow. Isotropic and anisotropic Porous Media. 
Darcy flow. 

The dimensionality of the studied problem is 
reduced. Domain problem is changed to 
boundary problem. 

[28] Distinct Element 
Method (DEM) 

Simulation of stress-flow coupling. Hydro 
mechanical properties of discontinuous rocks 
can be derived by equivalence. 

Good representation of fractures in 3D. 
Direct treatment of the non-linearity behavior 
of materials. 

[13][29], 
[30] 

FLAC 2D / FLAC 
3D 

Simulation of groundwater inflows or 
bursting in subsurface tunnels or mine in 
homogeneous media. Darcy’s flow regime is 
adopted. 

Hydro mechanical properties of tunnels 
surrounding rocks are required. FLAC can be 
used alone, or coupled to mechanical 
modeling for interactions of fluid-media. 

[14], [29], 
[30] MODFLOW 

Prediction of groundwater inflows into 
shallow and deep Tunnels. 
Porous media. Laminar flow 

Hydraulic conductivity, Hydraulic head, and 
others relevant hydrogeological data are 
needed. 

[18] 

Conduit Flow 
Process (CFP) and 

adapted 
MODFLOW 

Simulation of groundwater inflows into 
Conveyance Tunnels in heterogeneous media. 
Laminar and Turbulent flow. 

Tunnel diameter, Reynolds Number, 
Permeability, Sinuosity as requirements for 
the CFB 

[31] 
Rock Failure 

Process Analysis 
code (RFPA), 2D 

Prediction of groundwater outburst in 
underground mine. Heterogeneous media and 
fractured zones. Darcy flow adopted 

Geological and hydrogeological features of 
the areas are required for the analysis. RFPA 
is based on Finite Element Method (FEM). 

[27] SEEP/W 

Simulation of groundwater inflow into 
tunnels in saturated and unsaturated zones. 
Confined or unconfined aquifers. Flow 
regime can be Steady or Transient. 

Hydraulic Conductivity and Volumetric 
Water Content are required. 

[32] 
Universal Distinct 

Element Code 
(UDEC), 2D 

Computation of groundwater inflows rate in 
discontinuous media. Laminar flow 

Hydraulic head, tunnel radius and joint 
spacing are required for optimum accuracy. 

[2], [33] COMSOL 
Multiphysics 

Computation of groundwater inflow into 
tunnels and mines in both saturated and 
unsaturated discontinuous media. Darcy flow 

Hydro mechanical properties of surrounding 
rocks are required. 

 
As stipulated earlier, diverse approaches have 

been employed for the anticipation of water 
seepage occurrences within tunnel structures. In 
light of the escalating utilization of machine 
learning methodologies and their applicability in 
forecasting various parameters, there exists a 

discernible need for the exploration and 
implementation of novel prediction and 
optimization techniques specifically tailored for 
forecasting water seepage in tunnels . A number of 
studies conducted in the field of predicting water 
seepage in tunnels are given in the table 2 . 
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Table 2. Some studies conducted in the field of predicting water seepage in tunnels using machine learning in the 
last few years . 

Ref Remarks Capabilities and Applicability Machine Learning methods 

[34] 

No need to consider the relationship 
between hydrogeological features and 
water discharge rate. Large amounts of 
statistical data are required to obtain 
accurate results. 

Groundwater inflows quantification 
into tunnels built in heterogeneous 
media, based on basic evaluation index 
and the associated criteria. Maximum 
Performance of inflows R2= 0.9956 

Gaussian Process Regression (GPR) 

[34] 
Relevant hydrogeological properties of 
the concerned media and the depth of 
tunnels are required. 

Prediction of groundwater inflows into 
tunnels built in karst and faults zones. 
Maximum Performance of inflows: R2 
= 0.9767 

Support Vector Machine (SVM) 

[35] 
Classification of RMR-based 
groundwater inflow image datasets 
based, and associated segmentations. 

Prediction of groundwater inflow 
information in rock tunnels face. Convolutional Neural Network (CNN) 

[36] 
Hydrogeological factors and 
engineering factors could be combined 
for the prediction. 

Prediction of groundwater inrush risk 
in karst tunnels using relevant factors BP Neural Network 

[34] 
Relevant hydrogeological properties of 
the media and tunnels depth are 
necessary. 

Prediction of groundwater inflows into 
tunnels. Maximum Performance of 
inflows: R2= 0.8331 

Artificial Neural Network (ANN) 

[37] 

BN used a graphical network of 
probabilistic rationale. GIS is coupled to 
BN for water inrush quantification, and 
for encroachment analysis. Relevant 
features of openings are required. 

Water inrush prediction in coal mine 
located in faults areas. The accuracy of 
the prediction is about 83.4%. 

Bayesian Network (BN) & GIS 

[38] 
Data: Tunnel depth, groundwater level, 
Rock Quality Designation, and Water 
yield property. 

Groundwater prediction in tunnels 
excavated by DB. Performance: R2= 
0.9866 

Long short-term memory (LSTM) 

[38] 
Data: Tunnel depth, groundwater level, 
Rock Quality Designation, and Water 
yield property. 

Groundwater prediction in tunnels 
excavated by Drill-and-Blast. 
Performance: R2= 0.9815 

Deep Neural Networks (DNN) 

[38] 
Data: Tunnel depth, groundwater level, 
Rock Quality Designation, and Water 
yield property. 

Groundwater prediction in tunnels 
excavated by Drill-and-Blast. 
Performance: R2= 0.7665 

K-nearest neighbors (KNN) 

[38] 
Data: Tunnel depth, groundwater level, 
Rock Quality Designation, and Water 
yield property. 

Groundwater prediction in tunnels 
executed by DB. Performance: R2= 
0.721 

Decision Trees (DT) 

[39] 
Procuration of water inflow series by 
VMD, Prediction of components by 
ORELM, Optimization by MOGWO. 

Groundwater inflows prediction into 
deep mines. Prediction Performance: 
R2= 0.9685 

Integrated model (VMD, ORELM, 
MOGWO) 

[26] 
Appropriated Rainfall data are required. 
HGWO algorithm optimizes SVR 
parameters. 

Prediction of water in rush into Karts 
Tunnels. Transport Tunnels Model 
Performance: R2= 0.99953 

Hybrid model (HGWO-SVR) 

 
In prior studies, a singular method and its hybrid 

counterparts were commonly employed, while a 
comprehensive comparison among various 
machine learning methods was often lacking. In 
this current investigation, a distinctive approach 
has been adopted, incorporating three hybrid 
neural network methods: the particle swarm 
algorithm, the gene expression algorithm method, 
and the optimization of the selected method using 
the Whale Algorithm. Notably, the Whale 
Algorithm stands out as one of the latest 
optimization techniques in recent years. This 
study effectively demonstrates the utility and 
efficiency of this algorithm in predicting water 
seepage into the tunnel. The following is a brief 
overview of the methods employed in this study . 

Particle Swarm Algorithm (PSO)[40] leverages 
the principles of swarm intelligence, where a 
population of particles collaboratively explores 
the solution space to optimize the neural network 
parameters for predicting water seepage . Gene 
Expression Algorithm Method (GEP)[41] 
involves the evolution of computer programs 
using genetic algorithms. It has been applied to 
formulate a tree equation that captures the 
underlying principles of water seepage into the 
tunnel. Introduced as one of the latest 
optimization methods, the Whale Algorithm is 
utilized in this study to fine-tune and optimize the 
selected neural network method. This algorithm 
has shown promise in enhancing the overall 
predictive accuracy for water seepage [42]. The 
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combined application of these methods represents 
a novel and comprehensive approach, showcasing 
the potential of advanced hybrid neural network 
techniques and the efficacy of the Whale 
Algorithm in the specific context of predicting 
water seepage into tunnels. 

In the present study, a repertoire of machine 
learning techniques has been harnessed, including 
the amalgamated neural network algorithm, the 
particle swarm algorithm, the gene expression 
algorithm, and the optimization facilitated by the 
innovative whale algorithm. The distinctiveness of 
this study lies in its concurrent deployment of 
multiple machine learning techniques, coupled 
with their optimization and a thorough inter-
method comparison. This multifaceted approach 
enhances the robustness and comprehensiveness 
of the predictive modeling employed in the 
investigation. 

2. Study area 

Amir Kabir tunnel has been conceived and is 
currently under implementation with the primary 

objective of conveying drinking water from Amir 
Kabir dam to Tehran. The tunnel spans an 
approximate length of 30 km, divided into two 
distinct sections. In the initial phase of 
implementing the first segment, extending from 
ET to K', two primary tunnel route options were 
considered. Ultimately, the arc route was chosen 
for various reasons, prominently influenced by 
geological considerations, particularly the need to 
circumvent the Porkan-Verdij fault. The tunnel 
route plan for the ET-K' section is visually 
represented in Figure 1, encompassing a length of 
15,980 meters and executed through the 
utilization of a full-section Tunnel boring  
machine. This study is dedicated to the scrutiny of 
the groundwater inflow in the initial segment of 
Amir Kabir tunnel, employing the SGR method in 
the context of tunnel construction and assessing 
the associated risk of underground water seepage. 
Both qualitative and quantitative aspects of 
groundwater seepage are thoroughly examined 
and discussed . 

 
Figure 1. Tunnel route plan (Section ST-K') - Total length 15980 meters 

It is possible to forecast that the studied region 
would encounter tectonic issues caused by 
inverted fault activity because of its geostructural 
location in the central Alborz zone. The area that 
has been studied geologically stretches from the 

heights east of Karaj to the highlands west of the 
Olympic Village and north of the railroad town 
(west of Tehran). The exact location of the tunnel 
is shown in Figure 2. 
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Figure 2. Location (a) and geological section (b) of Amir Kabir tunnel path [43] 

Based on the investigations conducted in the 
geological visits of the region and the information 
obtained from the geotechnical operations 
(exploratory guesses and laboratory tests), 
regardless of the sediments and quaternary 
deposits, there are a total of 8 lithological types in 
the route. Amir Kabir tunnel can be identified and 
separated from each other from 1.3 to 1.14 

kilometers [43] . These lithological types are 
introduced in Table 3. The boundary of these 
lithological types only in some cases coincides 
with the boundary of the stratigraphic units and in 
most cases the geotechnical characteristics of the 
units have been the factor of separation of 
lithological types. 
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Table 3. Lithological types identified in the tunnel route 

Stability Category / Description Groundwater 
conditions 

Lithological 
species Row 

Fairly strong, thick layered, fairly crushed, stable Moist to wet Gta2 1 
Fairly strong, thick layered, fairly crushed, stable Moist to wet Gta3 2 
Strong, thick layering, stable Moist to wet Gta4 3 
Weak to somewhat strong, thin to slightly thick layers, 
crushed Flow locally Sts1 4 

Strong, thick layering, stable Moist to wet Sts2 5 
Crushed, thin to medium layers, weak to moderately strong Moist Tsh 6 
Very weak, faulted and crushed rocks, unstable Flow Cz 7 

 
3. Materials and methods 

The workflow for predicting water seepage into 
the tunnel is delineated in the accompanying 
figure. The initial phase involves the collection of 
data pertinent to Amir Kabir tunnel, followed by a 
comprehensive analysis of the gathered 
information. In the prediction stage, the principles 
governing seepage into the tunnel are computed 
using a tree equation formulated through gene 
expression programming (GEP). The ensuing 
results are then juxtaposed with the outcomes 
derived from a hybrid artificial neural network 
(ANN) augmented with particle swarm 

optimization (PSO). Moving on to the 
optimization phase, the Whale Optimization 
Algorithm (WOA) is both chosen and developed 
to enhance the efficiency of the modeling process.  

3.1. Data set 

The collected data related to Amir Kabir tunnel 
included 448 data, 4 parameters were considered 
as the input parameter and the input flow to the 
tunnel as the output parameter of the tunnel . In 
Table 4, the variables used to predict water loss 
into and out of Amir Kabir tunnel are presented. 

Table 4. Estimating variables for water loss into and out of Amir Kabir tunnel 
max Min Unit Parameters Type 

23.450 0.500 Keq(Lu) Equivalent Permeability 

Model input 
parameters 

535.000 55.000 (m) Head of water above 
tunnel 

2.350 2.350 (m) R tunnel 
660.000 65.000 (m) Overburden 

0.023 0.008 (lit/s) Q Model output 
parameter 

 
Figure 3 shows correlation analysis and data 

matrix. 
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Figure 3. (a) Correlation analysis and (b) data matrix 

3.2. Methods 
3.2.1 Artificial Neural Network (ANN) 

Donald Hebb initially established the idea of 
neural networks in the 1950s by presenting a 
straightforward learning process [44]. He 
developed this technique by researching how 
learning affects human brain neurons [45]. Each 
ANN neuron receives information from the 

preceding neuron through its dendrites [46], 
which are then processed before being sent by the 
axons to the subsequent section, or neuron. All 
neurons are connected in a layered architecture, 
where the mapping between inputs and outputs is 
conducted using the following formula[45], [47]: 
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1 0max(0, . ) 1 , .
max(0, . )

i i i i

L

h W h b for i L and h x
y V h

    


 (1) 

Where L is the number of layers, matrices W1; . 
. . WL; V and vector b1; . . . bL are model 
parameters learned from the dataset. 

Through synapses, chemical signaling occurs 
between cells. The behavior of a computer neuron 
used in neural networks, given a sigmoid 
activation function, is akin to that of a real neuron 
with inputs and outputs [48] [49]. Each of an 
ANN's layers, which might be two or more, has a 
number of neurons [50]. The weights of a network 
are correlated with the strength of linkages 
between layers [47]. Each neuron's associated 
weights linearly alter the input vectors, which 
serve as the arguments for the nonlinear activation 

function (transfer function) of each neuron. In 
neural networks, back-propagation (BP) and 
multilayer pre-propagation (MLPP) are the two 
major techniques [3], [51], [53]. The weights are 
updated using this approach to ensure that the loss 
functions produce the least amount of mistake 
(loss) possible. To meet the termination criteria, 
this training procedure is performed numerous 
times [54]. The term BP refers to the circumstance 
in which the gradient for nonlinear multilayer 
networks (the networks used to solve the bulk of 
engineering problems) is calculated[55]. The 
sigmoid transfer function accepts the input values 
and displays them as a 0–1 interval regardless of 
the starting input interval [56]. Figure 4 shows the 
overview of the ANN network used in this study. 

 
Figure 4. ANN that used in this study 

3.2.2. Particle Swarm Optimization (PSO) 
Based on the ANN 

Particle swarm optimization (PSO), a method 
for optimum continuous problems, was first 
proposed by Kennedy and Eberhart [57]  . PSO is a 
nonlinear method that draws its inspiration from 
social systems like schools of fish [58]. In 
actuality, PSO is dependent on the quantity of 
randomly created particles [59]. Another phase in 
the iterative process of PSO is the search for an 
optimal value goal. At this point, the particles 
modify their location in response to their own and 
other particles' experiences [60], [61]. In order to 

reach the ideal position, each particle follows its 
personal best position (PBEST) as well as the 
collective best position (GBEST) among other 
particles [62], [63]. Each particle tends to move 
toward its PBEST as well as GBEST throughout 
the training process, based on a new velocity term 
and the distance between its best positions 
throughout the learning phase [64], [65]. Each 
particle's new position in the subsequent iteration 
is influenced by the new velocity value [59], [66]. 
The position-update formula for particles used in 
this paper is [67]: 

 

௜ܸ
௧ାଵ = ݓ ௜ܸ

௧ + ଵܿݎଵ(݌௕௘௦௧,௜௧ − ௜ܺ
௧ + ܿଶݎଶ(݃௕௘௦௧,௜௧ − ௜ܺ

௧) ௜ܺ
௧ାଵ = ௜ܺ

௧ + ௜ܸ
௧ାଵ (2) 
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Where 1t
iV   and t

iV  represents the velocity of 

particle i at iteration t and t þ 1; 1t
iX   and t

iX  
represent positions of particle i; w, c1 and c2 are 
the inertia parameter, the cognitive influence 
parameter and the social influence parameter; r1 

and r2 are random values between 0 and 1; ,
t
best ip  

and ,
t
best ig  represent the best position of a particle. 

 The PSO-ANN model's prediction process is 
depicted in Figure 5 [68], [69]. 

 
Figure 5. Flow chart of PSO-ANN’s model [68], [69] 

3.2.3 Gene expression programming algorithm 
(GEP) 

Gene expression programming algorithm refers 
to one of the state-of-the-art methods developed in 
the field of artificial intelligence [70]. It is 
actually a more developed version of GA and GP 
[71]. GEP, which is made up of many 
components, offers appropriate answers for 
various issues  [72]. The expression tree utilized in 
this method, which employs two primary 
chromosomes, demonstrates its ability to 
overcome the constraints of the preceding two 
(GA and GP) [45], [50]. In GEP, encodings are 
frequently represented by strings that were written 
in the Karva programming language can behave in 
an alien-like manner [73]. It is intriguing that 
GEP's models, which build connections between 
dependent and independent components, may be 
represented by mathematical equations. In the 
field of engineering, the creation of models that 
can generate equations is essential and 
valuable[74]. Such techniques are effective 
alternatives to ANN models for problem-solving 
[75]. The experts in this sector have been 
prompted by these problems to improve these 

techniques. Numerous mathematical operations, 
such as, +,-, sin, etc., are expressed and applied to 
variables in GP [76]. In order to analyze the issue, 
they can be combined to form a mathematical set. 
Each gene on chromosomes with many genes 
depicts a sub-ET with a head and a tail [77]. Such 
symbolic chromosomes ought to be represented as 
variously sized and shaped trees, or "expression 
trees" [54]. These points are examined in light of 
the models' control mechanisms and the degree of 
compatibility between them [78]. There are 
several varieties of these functions, and each type 
may be specified using various standards. The 
root mean square error (RMSE), mean absolute 
error (MAE), and root relative square error 
(RRSE) are some of these functions [79]. The best 
chromosomes chosen by the roulette wheel 
approach for the first process are put into the next 
structure in the event that the termination 
requirement is not satisfied (i.e., achieving the 
maximum repetition or adequate fitness value) 
[80]. Then, according to the ratio of the existing 
chromosomes, the three most important genetic 
operators—mutation, transfer (RIS, IS, and gene 
transfer), and reconstruction (one point, two 
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points, and gene reconstruction)—are employed 
[77]. What does GP stand for? Thus, the 
remaining chromosomes are replaced with new 
ones, and this process continues until all of the 

conditions for termination have been met. Figure 
6 depicts the flowchart for the gene expression 
programming strategy. 

 
Figure 6. Flowchart of gene expression programming algorithm [77] 

3.2.4 Whale optimization algorithm (WOA) 
Based on the GEP 

The whale optimization algorithm, a ground-
breaking stochastic optimization method, was 
developed in 2016 by Mirjalili and Lewis [81]. 
The two main phases of humpback whales' 
hunting behavior (exploration and exploitation) 
were the inspiration for this algorithm [82]. When 
they locate their meal, humpback whales hunt for 
tiny schools of fish and then dive 10 to 15 meters 
below the surface to force the fish to the top [46], 

[83]. In order to concentrate the fish and surround 
them, the whales release a large number of spiral 
air bubbles, which imprison the fish and prevent 
them from swimming [84]. The whale commander 
finally sends out a signal to start the attack [85]. 
The term "bubble web feeding behavior" refers to 
their cunning method of detecting and pursuing 
prey. Humpback whale behavior during the design 
process is depicted in Figure 7 and the trend view 
of the whale optimization method is shown in 
Figure 8. 
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Figure 7. Humpback whale activity during WOA design [85] 

 
Figure 8. An illustration of the whale optimization technique [84] 

The mathematical representation of WOA is 
established using this approach as follows : 

a) The method of shrinking encirclement: 

The whale uses the following equations to 
update its location as it circles the prey during the 
hunting mechanism in order to hunt its target [46] . 

*. ( ) ( )D C X g X g 
  

 (3) 

*( 1) ( )X g X g A D  
  

 (4) 

Where the distance between the humpback 
whale and its prey is represented by D


, X


 

denotes the position vector, and *X


 indicates the 
position vector of the optimal solution obtained 

until the iteration time. In each iteration, if there is 
a recovery solution, *X


 should be updated. The 

vectors A* and C* are calculated as follows : 

2A ar a 
  

 (5) 

2C r
 

 (6) 

Where a* decreases linearly from 2 to 0, and r* 
is a random vector in the range [0, 1]. 

b) Helical update position:  

The WOA conducts a spiral equation between 
the prey location and the sperm whales’ position 
to replicate the latter in their spiral motion as the 
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whales’ spiral toward the target prey to update 
their position. The following is the spiral equation 
in mathematics: 

*
2( 1) . .Cos(2 ) ( )blX g D e l X g  

  
 (7) 

Where D2 is the distance that separates the 
whale as well as its prey, which is first determined 
using the following equation: where b stands for a 
constant that characterizes the form of the 
logarithmic spiral, l is an integer randomly 
selected from the range [1, 1], and 

* ( ) ( )D X g X g 
  

 (8) 

WOA starts by producing an initial set of search 
agents at random, just like other evolutionary 
algorithms. The algorithm employs the probability 
coefficient (p) to decide between the long-distance 
and logarithmic pathways under the assumption 
that the likelihood of the contraction and helix 
mechanisms are equal during the optimization 
phase. The following is how this idea is 
quantitatively modeled [84]: 

 

*

*
2

( ) . 0.5
( 1)

. .Cos(2 ) ( ) 0.5bl

X g A D P
X g

D e l X g P

      
    

 
 

   (9) 

 
Instead of depending on the best search agent X 

found so far, WOA changes the search agent's 
location at random if the random value of A is 
larger than 1. The following equations are used to 
mathematically represent this strategy, which is 
used to guarantee a worldwide search [84]: 

. randD C X X 
  

 (10) 

( 1) .randX g X A D  
  

 (11) 

In this study, the weight and bias coefficients of 
the hidden layer are optimized during the training 
of the GEP network using the whale method. 

4. Results 

Out of the 448 data utilized in the modeling, 
336 data (75% of the total) were used for training, 
while the remaining 112 data (25% of the total) 
were provided for testing and assessing the 
modeling. The chosen percentages of the data 
were in the opposite direction of the best guess 
based on the methodologies chosen for estimating 
the water flow into the tunnel. Randomly selected 
data from all data in order to better estimate the 
ability in supervised learning created the best 
value for the lowest possible value of modeling 
error, which was determined after preparing and 
comparing 1100 models of algorithms, because 
choosing the right number for model learning, 
especially in Prediction algorithms can be unique 
for each study, which may change according to 
the parameters and the purpose of modeling [86]. 

4.1. Hybrid Neural Network-Particle Swarm 
Algorithm (ANN-PSO) model 

Engineering challenges that are both linear and 
nonlinear can be solved with ANN. The hybrid 
particle swarm approach is applied with the neural 
network model in this study. The neural network 
models are presented in this part so that the new 
GEP models may be contrasted with the findings 
of the neural network models. 75% of the entire 
data, or 336 examples, were sent to the training 
part to be used in the model creation process, and 
25% were given to the testing area in order to 
create the necessary networks. RMSE is often 
regarded as a crucial design factor for artificial 
neural networks. It is regarded as the main 
requirement for network training process 
termination. The values collected from the system 
(network) and the measured values may be used to 
calculate the RMSE value. It should be noted that 
the best fit model is found when RMSE = 0. 
Additionally, the value of the R determination 
coefficient was applied. It was in charge of 
figuring out the relationship between the expected 
value and the measured value. R is at its optimum 
when it equals 1. The present study's prediction 
models were assessed using two metrics: Rand 
RMSE. The model performed best when the 
number of neurons was fixed at 8, and the 
iteration value was set at 250. When BP is 
considered as a local learning process, the ANN 
optimum search approach could come up with a 
poor result. In order to improve the performance 
of ANN, biases and weights may be modified 
using PSO. There is occasionally a high likelihood 
of convergence when taking into account the local 
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minimum of the ANN. PSO, however, is able to 
locate the global minimum. PSO-ANN therefore 
benefits from the search features of its 
methodology. PSO looks for global minima in the 
search space, and ANN utilizes them to discover 
the greatest performance with the least amount of 
system error. The efficiency of PSO-ANN may be 
influenced by a small number of factors, including 
swarm size, inertia weight, and coefficient speed. 
The inertial weight in this investigation is set at 1 
utilized in the PSO-ANN model after being 
chosen. To build PSO-ANN models, many C1 and 
C2 combinations were taken into consideration 
through parametric study. While C1 = C2 = 2 was 
identified as the optimal model based on the 

lowest system error. As a result, the variables are 
listed in the PSO system as the best C1 and C2. 
Different values of SS from 50 to 400 with an 
incremental step of 50 and a total of 500 iterations 
were taken into consideration to identify the 
swarm size (SS) and the maximum number of 
iterations (IMax). Eight PSO-ANN models were 
therefore created in order to forecast water leaks. 
On the other hand, from iteration 1 to iteration 
400, RMSE values of SS steadily declined. The 
findings of the RMSE remain constant after 400 
iterations. Figure 9 shows the optimal ANN 
architecture. Figure 10 shows the performance of 
PSO-ANN model. 

 
Figure 9. Optimum ANN architecture 
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Figure 10. Performance of PSO-ANN model 

4.2. Algorithm of gene expression 

The water seepage into the tunnel is predicted 
using the GeneXpro Tools v5 program. Table 5 
contains a list of the factors taken into account for 

prediction in the gene expression algorithm. The 
gene expression tree technique is depicted in 
Figure 11 as a simple way to explain gene 
expression modeling using programming. 

Table 5. Variables considered in gene expression programming modeling 
Variable Number 

Population size for training 336.000 
Population size for the test 112.000 
Complexity before simplification 77.000 
Complexity after simplification 28.000 
Gene transfer rate 0.040 
Inversion ratio 0.040 
IS Transfer rate 0.040 
RIS transfer rate 0.040 
Combination rate of genes 0.300 
Single point compound rate 0.002 
Two-point compound rate 0.002 
Gene size 30.000 
Head size 8.000 
Tail size 20.000 
Connector function Avg 
Mutation rate 0.001 
Chromosome length 35.000 
Number of genes 14.000 
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Figure 11. Expression tree of gene expression algorithm 
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In this stage, the GEP prediction models are 
implemented once the PSO-ANN network's 
findings have been obtained with the goal of 
creating an equation to forecast water loss into the 
tunnel. It will be discussed what the values are 
and how to use them to run GEP models and 
display the connections quantitatively. The 
following steps were taken to apply GEP in this 
study: 

1. The fitness coefficient was chosen as a gauge for 
each chromosome's fitness occurrence in the 
first stage. A frequent fit function employed in 
the GEP modeling method is RMSE. 
Nevertheless, many modes may be employed to 
more thoroughly analyze the models' 
performance, depending on the characteristics 
of the situation. As a result, the following 
criteria were used to assess each chromosome's 
fitness: 

2. The allocation of two crucial components, the set 
of terminals (T) and functions (F), to the 
structure of chromosomes, which resulted in a 
combination of them, was the second stage. The 
terminal set is thought of as the independent 
variables, and the function set is often specified 
with reference to the crux of the issue. 
Trigonometry and mathematical operations are 
applied as follows in this study: 

' 1 1000
1

RMSE
RMSE

 


 (12) 

 , , ,.,Sin,Cos, Tan, tanh,F Arc sqrt     (13) 

3. The third stage introduced and applied GEP 
structural parameters to the system. For each 
chromosome, the parameter of the number of 

genes for the designated ET components was 
added. Trial and error is the most effective 
method for obtaining optimal values for GEP 
structural parameters. The analytical method 
began by raising the values of the 
aforementioned GEP parameters, after which 
the GEP model's accuracy of prediction was 
assessed. To forecast the compressive strength 
of composite columns, several GEP models with 
various parameter settings have been developed 
and put into practice. Finally, after repeatedly 
repeating these procedures, the number values 
discovered for this part are 40, 5, and 3 
accordingly. 

4. The pace of genetic operators was chosen in the 
fourth phase. At this point, given the values 
recommended by earlier researchers, a few more 
GEP models were built through the process of 
trial and error. Table 3 displays the parameters 
of the GEP's obtained values. The relational 
functions of addition (+), subtraction (-), 
division (/), and multiplication (*) are only a 
few examples. R and RMSE were used as 
performance to assess how well GEP models 
predicted outcomes. In this part, a number of 
GEP model parameters were investigated to 
ascertain their effect on the models' 
performance. This allows for the comparison 
and performance assessment of several 
mathematical formulae for the prediction of 
uniaxial compressive strength in composite 
columns. Based on the R values, model number 
4 was ultimately chosen as the best model. 

In Table 6, various error criteria in the 
performance of the gene expression algorithm are 
compared. Figure 12 shows the performance of 
GEP for estimating Q of Amir Kabir tunnel. 

Table 6. Comparison of different error criteria in the performance of gene expression algorithm 
Description Training Testing 

Fitness 1.72 1.55 
MSE 170.680 155.860 
RMSE 11.640 12.410 
MAE 10.390 11.420 
RSE 4.56 4.77 
RRSE 0.27 0.37 
Correlation coefficient 0.96 0.96 
R-square 0.98 0.97 
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Figure 12. GEP performance for estimating Q of Amir Kabir tunnel 

4.3. Whale Optimization Algorithm (WOA) 
based on GEP 

The whale optimization algorithm (WOA) is 
created in this part to improve the predictions of 
tunnel water seepage. Utilizing the chosen 
functions, the WOA algorithm was tested. As you 
can see, the algorithm's written code does a good 
job at identifying the minimum. For optimization, 
a selective prediction model (GEP-based tree) was 
applied. In reality, the WOA approach takes the 
GEP equation into account as a cost function. 
Different models of the WOA algorithm (with 
various parameters) were created, and each model 
was implemented by varying the optimization 

algorithm's parameters. The WOA algorithm's 
best parameters were discovered through a series 
of analyses. Table 7 lists the ideal conditions for 
the WOA algorithm's performance in order to 
solve this issue optimally. The table contains the 
proposed parameters. Different design patterns 
may be used in various situations to get the best 
results. WOA may therefore improve model 
inputs to provide the greatest results with the least 
amount of error. WOA may therefore be presented 
as a powerful optimization technique for 
predicting water leaks. Figure 13 shows the 
performance of WOA-GEP to estimate Q of Amir 
Kabir tunnel. 

Table 7. Variables considered in whale algorithm modeling 
b L A Maximum number of repetitions Count of search personnel Variable 
1 [-1,+1] linearly decreased from 5 to 0 70 150 Number 
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Figure 13. WOA-GEP performance for estimating Q of Amir Kabir tunnel 

The ideal values of the input parameters are 
displayed in Table 8. As can be observed, this 
algorithm's written code has a good performance 

at identifying the minimum. As a result, it may be 
used with the research settings discovered in the 
preceding section. 

Table 8. Optimum values of input parameters 
Optimal value Initial value Parameter 

4.540 4.560 Equivalent Permeability  
250.810 251.810 Head of water above tunnel 

2.350 2.350 R tunnel 
320.450 320.650 Overburden 

0.011 0.012 Q 
 
5. Discussion 

In this part, the methods used in this study have 
been compared and statistically the superiority of 
the methods has been determined. After 
completing the modeling, the correlation 
coefficient of all eight models was estimated and 

compared with each other. According to Figure 
14, the gene expression optimization algorithm by 
the whale algorithm has a better match in training 
and evaluation in order to predict water seepage 
into the tunnel. 

 



Jahanmiri et al. Journal of Mining & Environment, Vol. 15, No. 4, 2024 

 

1428 

 
Figure 14. Comparison of the R2 index resulting from the comparison of the models of the selected 

algorithms in train state a) GEP b) WOA-GEP c) ANN-PSO 

Comparing the outcomes with one another and 
with the actual data serves as the foundation for 
rating the performance of the models in this study. 
In this respect, five statistical indicators—the root 
mean square error [87], the mean absolute value 
of the error   [88],  the variance of the error   [89], 
and the mean square error  [90] are used to 
compare the outcomes from the models that have 
been provided (Eq. 14 to Eq.17). And R2 
standards were looked upon. 

22 ( )
 ir ipX X

RMSE
n

 


 
(14) 
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In the aforementioned equations, n stands for 
Xir and Xip, or the actual and expected values, 

respectively, as well as the total number of 
observations during the forecast period. Each 
model's error requirements are modest, which 
suggests that the values they forecast are more 
similar to actual values [53].  Additionally, the 
following newly developed engineering index, the 
α10-index, has been utilized to assess the 
dependability of the enlarged AI models: 

1010 ma index
M

   (18) 

Where M is the number of datasets and m10 is 
the number of samples having measured or 
anticipated values for rates (range between 0.9 
and 1.1). It is vital to note that a perfect prediction 
model requires an α10-index with a value of one. 
Table 9 compares the statistical indices of the 
models that were given. According to this table, it 
can be concluded that the optimization expression 
model of the whale algorithm makes accurate 
predictions about water seepage into the tunnel 
and may be a useful tool for predicting the water 
flow into the tunnel.  
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Table 9. Calculation of the overall error created in the methods 
Method WOA-GEP GEP ANN-PSO 

RMSE Train 1.710 11.640 6.510 
RMSE Test 1.820 12.410 7.320 
MAE Train 0.002 10.390 3.670 
MAE Test 0.003 11.420 4.554 
VAF Train 99.210 92.560 92.520 
VAF Test 99.110 91.860 91.550 
MSE Train 6.650 170.680 73.790 
MSE Test 6.620 155.860 72.880 
a10-index Train 1.000 0.863 0.891 
a10-index Test 1.000 0.850 0.870 
R2 Train 0.990 0.981 0.963 
R2 Test 0.981 0.972 0.952 

 
6. Sensitivity analysis 

Multivariate sensitivity analysis considers the 
impact of different variables in the modeling 
process and encompasses a wide range of data 
through Monte Carlo simulation [91]. To begin, a 
uniform distribution is fitted to each input variable 
of the model individually. For instance, in this 
study, separate estimations of groundwater 
seepage into tunnels are performed for each 
variable. Subsequently, random numbers are 
generated using Monte Carlo simulation, utilizing 
the fitted distributions and the available data for 
each variable [92]. In the next step, the influence 
of each variable is assessed by calculating the 
objective function, which is the sum of squared 
errors between the observed values and the 
modeled values[93]: 

2
0, ,

0
( )

k

h h c h
i

f x x i


     (10) 

Here, fh represents the value of the objective 
function, x0, h represents the observed value from 
modeling, and xc,h(i) represents the actual value at 
time h at random value i. By evaluating the 
objective function, the sensitivity analysis impact 
factor is calculated: 

0,

h
h

h

f
x

   (11) 

After calculating the impact variable ( h ), the 
factors determining whether the factors are 
independent or dependent ( ) are calculated [91]: 

. max

0

FCi

h
h

 


   (12) 

Once the relation index in Equation 12 is 
calculated, it is possible to assess the influence of 
each variable in the modeling process. This results 
in three possible situations: 

Insensitive variable: 1   

Sensitive variable: 1 100   

Critical variable: 100   

Table 10 presents the results of the multivariate 
sensitivity analysis conducted in this research.  

As can be seen, the head of water above tunnel 
parameter has a critical effect on modeling. The 
rest of the parameters are also sensitive 
parameters based on multi-parameter sensitivity 
analysis calculations. 

Table 10. Results of multivariate sensitivity analysis 
Parameters Sensitivity value variable status 

Equivalent Permeability 87 sensitive 
Head of water above tunnel 114 Critical 
R tunnel 54 sensitive 
Overburden 98 sensitive 

 
7. Validation 

In 2012, Farhadian et al. [94] modeled 
groundwater seepage into Amirkabir tunnel using 

analytical methods. To validate the models 
created in this study, the results of the modeling 
were compared with the output of Farhadian et al. 
The figure 15 shows the results of comparing the 
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models. As can be seen, the results obtained from 
the selected model in the present study are 
consistent with the results obtained from 

Farhadian's analytical method, and this shows the 
effectiveness of the model compared to analytical 
models. 

 
Figure 15. Comparing the results of the modeling done in the present study with the analytical method of 

Farhadian et al 

8. Conclusions 

In recent years, the engineering community has 
placed a heightened emphasis on the precise 
forecasting of groundwater inflow, especially in 
applications critical to environmental impact 
assessment and the design of tunnel seepage 
systems. Despite the availability of various 
analytical equations in the technological 
background addressing this concern, many of 
these equations were developed under 
oversimplified assumptions, notably assuming a 
homogeneous aquifer. This oversimplification is 
at odds with the intricate and fragmented structure 
of rock masses typically encountered in tunnel 
environments, resulting in an inadequate 
representation of real-world occurrences. 

To overcome these limitations and enhance the 
anticipation of water seepage into Amir kabir 
tunnel, this study employed two hybrid 
approaches: the neural network-particle swarm 
algorithm, gene expression algorithm, and 
optimization of the selected method using the 
whale algorithm. The primary objective was to 
extend and compare machine learning methods to 
offer more robust insights. Upon thorough 
comparison, it became evident that the whale 
optimization algorithm, exhibiting correlation 
coefficient values of 0.99 for the training set and 

0.98 for the test set, demonstrated remarkable 
accuracy in forecasting the extent of water 
seepage into the tunnel. This underscores the 
efficacy of advanced optimization techniques in 
enhancing the precision of groundwater inflow 
predictions in complex geological settings. 
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  چکیده:

ها  یمهندس  ، يدروژئولوژیه  ک،ی درول ی ه  یمهندس  ،ي درولوژیه  يهادر حوزه   یموضوع مهم  ینیرزمیآب ز  انیجر   يحفار  يهامرتبط است. تونل   يسنگ و رشته 
که  ینیرزمیز آب انیمواجه هستند. جر  يبعد یاتی و مراحل عمل يحفار ندیدر طول فرآ ینیرزمینشت آب ز یبا خطر ذات ژه،یبه و ،ینیرزمیسطح آب ز ریشده در ز

، تلفات و  خساراتمانند  يدیاطراف شود و منجر به عواقب شد یسنگ يدر سازندها یثباتی باعث ب تواندی م شود،ی م ینادر تلق یشناسنیاغلب به عنوان خطرات زم
توجه شود. هدف اصل  یمال  يهانه یهز پ  نیترق یدق  ییشناسا  يبرا  نی ماش  يریادگی  يهاک ی کاربرد تکن  یبررس  قیتحق  نیا  یقابل  نشت آب تونل   ینیبش یروش 

با   GEPنتایج حاصل از  استفاده کرد.   (GEP) ژن  انیب  يزیربر برنامه   یمبتن  یمعادله درخت   کیاز    ،ینیبش یاتلاف آب به داخل تونل در مرحله پ  ینیبش یاست. پ
 نهنگ  يسازنهیبه  تمیشد. الگور  سهیمقا (ANN) یمصنوع   یعصب  يهاشبکهو   (PSO) ازدحام ذرات  يسازنه یشامل به  یبیمدل ترک  کیآمده از  دستبه  ج ینتا

(WOA)   حجم آب    قاًیرا نشان داد و دق  يفوق، عملکرد برتر  يهاروش   در مقایسه بانهنگ    يسازنهیبه  تمیانتخاب و توسعه داده شد. الگور  يسازنه یدر مرحله به
آب    انیجر  ینیبش یدقت پ  شیدر افزا  شرفتهیپ  يسازنهیبه  يهاک ی تکن  یثربخشامر بر ا  نیکرد. ا  ینیبش یپ  0/ 99  یهمبستگ  بیاز دست رفته در تونل را با ضر

  .کندی م  دیتاک یزنتونل  يهات یو کاهش خطرات بالقوه مرتبط با فعال  ینیرزمیز

  ي.فراابتکار يهاتمیالگور ،يسازنهیبه ،ینیرزمیز يهاتونل، آب  آب به نشت کلمات کلیدي:

 

 

 

 


