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Fuzzy c-means (FCM) is an unsupervised machine learning algorithm. This method
assists in integrating airborne geophysics data and extracting automatic geological
map. This paper tries to combine airborne geophysics data consisting of
aeromagnetic, potassium, and thorium layers to classify the lithological map of the
Shahr-e-Babak area, a world-class porphyry area in the south of Iran. The resulting
clusters with FCM show appropriate coincidence with the geological map of the study
area. The clusters are adapted with high magnetic anomalies corresponding to the
mafic volcanic rocks and the clusters with high radiometric signature associated with
igneous rocks. The cluster is associated with low magnetic anomaly and low
radioelements concentration representing sedimentary rocks. some clusters are
associated with two or more lithological formations due to similar signatures of
geophysics properties. The fuzzy score membership in all clusters is above 0.71
indicating a high correlation between geological signatures and multigeophysical
data. This study shows geophysical signatures analyzed with the machine learning
method can reveal geological units.

1. Introduction

Geophysical

surveys  include

magnetic, minerals in regions with appropriate geological

radiometric, gravimetric, etc. Surveying several
airborne geophysics methods at the same time
supplies big data and precision information from
the study area. Today geoscientists try to extract
appropriate information from complex geological
information. To achieve this goal, applying
machine learning methods are useful tools.
Geophysics data is usually interpreted separately.
This paper tries to integrate geophysical data with
cluster analysis and with machine learning
methods. Before machine learning methods,
knowledge-driven methods like WOFE, AHP,
VIKOR, etc. were widely used to integrate data,
perform geological mapping and identify high
potential areas for more exploration [1,2]. These
methods are mainly known as knowledge-based
methods. Knowledge-based approaches are
employed in the initial phases of exploring
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characteristics but limited past exploration history
[3]. Tt is typical to combine the findings from
various techniques within a linked structure to
identify the most promising targets for future
research initiatives [4]. These methods need to
prepare a thematic map and the integrated layer
should contain known deposit points. These
knowledge-driven methods especially the WOFE
method are not appropriate for small areas [1].
Also, these methods contain high uncertainty about
3D geological modeling [5]. ML methods, also
known as machine learning approaches, have been
developed and enhanced since the 1980s [6]. In
recent years unsupervised machine learning
methods like fuzzy means, K-means, DBSCAN,
etc. have been widely used to integrate geoscience
data and clarify nonlinear relation between
geological structures and geophysics data [7,8].
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Supervised machine learning methods require
known indices to train models especially when
there is big data from the study area. However, in
unsupervised machine learning methods like the
FCM method, there is no need for known indices to
train the model. These methods extract clusters
based on similarities [9]. In crisp clustering
unsupervised machine learning methods, such as
the K-means method, each data point is related to
the closest cluster center without any hesitation.
However, in fuzzy c-means method, each data was
allowed to have a degree of fuzzy membership with
respect to other clusters. The fuzzy membership
score reflects the degree of membership of each
data point belonging to a certain cluster. Different
studies were done with crisp machine learning
methods to integrate geophysical data to extract
high favorability areas and geological units. In
recent decades, the FCM method has been
transformed into a popular method for quantitative
evaluation of identified clusters [10,11]. Similar to
crisp methods, the FCM method is widely used to
integrate geophysical data for the automatic
identification of geological units and mineral

exploration.
There are four primary categories of ML
algorithms: supervised, unsupervised, semi-

supervised, and reinforcement learning [12]. In this
paper, the unsupervide machine learning method
(i.e. FCM) has been applied to integrated airborne
magnetic and airborne radiometric data to predict
geological mapping in southeastern Iran, Shahr-e-
Babak study area. In the first step, feature
engineering has been performed on airborne
geophysics data to provide input for unsupervised
machine learning method. The number of cluster
has been determined with Calinski- Harbaz and
Davis-Bouldin methods. The geological cluster
map (pseudo geological map) was created with the
FCM method. In the final step, the fuzzy
membership for each input layer was calculated to
evaluate the relation between each input data and
the pseudo geological map.

2. Geology of Study area

Shahr-e-Babak is located in southern Iran. This
area is part of the Urumia-Dokhtar magmatic Arc
(UDMA). This area is known as the Central Iranian
Volcanic Belt [13]. The studied area is located in
the Alpine-Himalayan mountain range, a region
that is formed due to the Neotethyan Ocean closing
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between Arabia and Eurasia. The UDMA is known
as one of the most significant regions in the world
for copper deposits. It holds three large and ten
medium-sized porphyry copper, molybdenum, and
gold deposits with a combined copper reserve of
over 40 million tons. The major geological units in
Tertiary time in the Shahr-e-Babak study area
include granodiorite, diorite, tonalite, and
monzonite belonging to Miocene-Oligocene time
and in the shape of dyke and stocks. These igneous
rocks intruded into the Eocene Razak, Oligocene
Hezar, and Bahar Aseman volcano- sedimentary
volcanic complex. The geological units mentioned
above were covered with Mosahem stratovolcano
volcanic and sub-volcanic rocks [14]. The oldest
geological unit in the study area is flysch
sedimentary rocks in the eastern part of the study
area. The youngest geological units are quaternary
units consisting of quaternary alluvial and gravel
fans surrounding the volcanic belt. Figure 1 shows
the location of the Shahr-e-Babak study area and
Figure 2 shows the geological map of the study
area.

3. Data and methodology

To predict the geology map of the study area,
we used airborne magnetic and radiometric data.
The flow chart of the FCM method to create a
geology map is shown in Figure 3. The Atomic
Energy Organization of Iran (AEOI) obtained this
dataset in 1977 and 1978. Magnetic data were
collected from flight lines spaced 500 m apart and
at an altitude of 120 m. These airborne geophysics
data were surveyed north-south oriented lines
spaced 1 km apart. The airborne magnetic data
were corrected with an International Geomagnetic
Reference Field (IGRF) and earth magnetic field
was removed and magnetic anomalies were
obtained. Also, to separate regional and residual
anomalies, an upward continuation filter was done
to obtain long-wavelength magnetic anomalies.
The regional and residual components contain
different anomalies originating from different
depths and different magnetization. The long
wavelength anomalies were subtracted from
magnetic anomalies to calculate residual magnetic
anomalies. Figure 4 shows the grid of airborne
geophysics data consisting of (a) airborne magnetic
data (b) potassium concentration and (c) thorium
concentration.
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Figure 1. a) Geographical location of the Shahr-e-Babak area. b) The location of the studied area in the
structural zones of Iran.
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Figure 4. Airborne geophysics data of Shahr-e-Babak study area (a) magnetic data (b) potassium (c) thorium.

4. Fuzzy C-means
clustering algorithms

(FCM) unsupervised

FCM is an unsupervised machine learning
method which extracts clusters and structures in
groups and between groups, and divides data into
two or more clusters. This method is widely applied
in pattern recognition. In the FCM, method the
following function should be minimized [15].

N C
m 2
Jm =ZZ“U ||xi—xj||

i=1 j=1

m is a real number and it should be greater than
2. u;; is the degree of membership of x; in cluster
j; x; is the d-dimensional measured data; ¢; is the
d-dimensional center of the cluster and ||*|| is any
norm stating the similarity between measured data
and center of the groups. Fuzzy c-means will
calculate through iteration optimization of the
above function. During this optimization. u;jand ¢;
parameters will be updated with the following
equations:
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1
ul-j= 2
(=l N
Zie=1 ||xi_Ck||
_ {V=1u}’}.xl-
- ﬁlu?}

This iteration will stop when

_ (k+1) (k)
maxl-j = {|uij — ul.j
Where ¢ is a termination criterion between 0

and 1 and k are the iteration steps.

5. Feature Engineering

To achieve the best performance of machine
learning performance, the input data should be
prepared appropriately. This preparing of input data
is feature engineering [16]. Feature engineering
consists of transforming data to a suitable form to
prepare input for machine learning algorithms. It is
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necessary to pre-process raw data before pttting
input in machine learning algorithms. This pre-
processed operation will be done with imputation,
binning, outlier handling, filtering, log
transformation, scaling, etc [7]. This operation is
caused by better performance for machine learning
algorithms. In recent research, the FCM
unsupervised machine learning method was used to
integrate airborne geophysics data consisting of
aeromagnetic data and radiometric data (Uranium,
Thorium, and Potassium layers) to predict the
geological map of Shahr-e-Babak study area. The
FCM method operated based on Euclidean distance
and clusters tend to show spherical shape. The
abnormal data with skewness and high kurtosis
caused inappropriate results. As a result of the
above description, the input data should be
transformed to normal data without any longtail
and skewness. Airborne geophysics datasets are
shown in Figure 4. Different feature engineer
methods were used on these datasets. Feature
engineering of airborne magnetic data is
complicated because airborne magnetic data
contain a dipolar nature and this dipolar anomaly
belongs to the same source. The step-by-step
feature engineering of airborne magnetic data is
shown in Figure 5. In the first step,vertical
derivative filter was applied to airborne magnetic
data (Figure 5a). This filter removes long
wavelength anomalies, enhances the edge
anomalies, and sharpens shallow source anomalies.
The distribution of the first vertical derivative of
magnetic intensity shows a more dense
distribution. The absolute value of the first vertical
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derivative data decreases the dipolar nature of
magnetic data (Figure 5b). The visual surveying of
the resulting map confirms all magnetic anomalies
are still located in the correct position. The
distribution of result data is abnormal too. The
logarithmic transformation was applied to the
absolute value of the first vertical derivative data.
In the final step lowpass filter was applied to
decrease noise (Figure 5c). The distribution of
lowpass filter data is normal. For airborne
radiometric data, the moving box type convolution
filter was applied to remove stochastic noises. The
feature engineered of airborne geophysics data is
presented in Figure 6. For further evaluating the
normal distribution of feature engineering of
airborne geophysics data, the cross-plot of raw data
shows outlier data and long-shape form but the
cross-plot of feature engineer data shows round
scatter pattern (Figure 7). Some outlier data in
Figure 7a and in Figure 7b can be seen as
normalized and well-rounded data. This well-
rounded scatter pattern is an appropriate shape for
input in the FCM machine learning method. Then
the feature engineered data were integrated with
the FCM method. The feature engineer of airborne
magnetic data, thorium, and potassium layers was
selected for the input in the machine learning
method. Because uranium is a mobile
radioelement, it was removed from this data
integration. Also, the histogram of feature
engineered of airborne geophysics data is presented
in Figure 8. These histograms confirm the normal
distribution of feature engineered data.
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6. The optimal number of clusters

To operate FCM unsupervised machine learning
method on airborne geophysics data, the number of
clusters should be determined. There is no fixed
method to determine the number of clusters. The
best method is running the FCM algorithm with
different numbers of clusters and identifying the
great number of clusters with a given criterion.
Different methods were proposed to select an
optimal number of clusters such as the Silhouette
score [9], the Calinski-Harabasz [17] score, the
Elbow method [18] and the DBI method [19].
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In this study, two methods were applied to
determine an optimal number of clusters. Figure 9
shows WCSS values obtained with Calinski-
Harabasz (Figure 9a) and Davis and Bouldin
method (Figure 9b). The curves of these two
methods confirm the optimal cluster for the FCM
machine learning method is six. It can be
mentioned that the determination of optimal
clusters depends on the method used for clustering
and the expert's experience (Duan et al., 2022,
2023). The 2D cross-plot method was used to show
number clusters with Calinski-Harabasz and Davis
and Bouldin methods (Figure 10).
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7. Results and Discussion

The histogram distributions of feature engineer
of aeromagnetic data and aero radiometric data are
normal distribution and the range of feature
engineer of magnetic data is -2.5 to 0.1. The range
of feature engineered of potassium is between 4.2
to 15.5 and the range of thorium is between 1.9 to
12.3 (Figure 8). The cross-plot of feature
engineered magnetic data and potassium is shown
in Figure 10.

The relative feature engineered values are more
important to discrete geological units than absolute
values. So, the higher feature engineered values
belong to the higher magnetic, potassium, and
thorium values. And lower feature engineered
values belong to the lower magnetic, potassium,
and thorium values.

Figure 11 shows the geological map resulting
from the FCM machine learning method. Table 1
shows the correlation between geological units
with each of the resulting clusters by using a
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predicted geology map with FCM. Cluster 1 shows
intermediate, higher, and higher magnetic, thorium,
and potassium anomalies respectively. Cluster 2
represents the highest magnetic anomaly and
higher thorium and potassium anomalies. Cluster 3
can be attributed to the highest magnetic anomaly
and intermediate thorium and potassium
anomalies. Cluster 4 demonstrates intermediate
magnetic anomalies and the highest thorium and
potassium anomalies. Also, cluster 5 represents the
lowest magnetic anomalies and intermediate
thorium and potassium anomalies, and Cluster 6
represents the intermediate, lowest, and lowest
magnetic, thorium, and potassium anomalies
respectively. Based on this integration, some
surface and near-surface information can be
gathered. Radioelements data help to gather
surface information and airborne magnetic
anomalies help to earn near-surface structures thatt
are covered with sedimentary rocks.
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Table 1. Geological correlation between FCM clusters and airborne multi-geophysical data.

Cluster Magnetic Thorium Potassium Geological units
Cluster 1  Intermediate Highest Highest Trachy andesite, Trachy Basalt, Granodiorite, Phenoandesite
Cluster 2 Highest higher higher Trachy andesite, Trachy Basalt, Pyroclastic
Cluster 3 Highest Intermediate Intermediate Red tuff and tuffaceous sediments, Trachy andesite
Cluster 4  Intermediate Highest Highest Trachy andesite, Dacite, Granodiorite
Cluster 5 Lowest Intermediate Intermediate  Pyroclastic, Quaternary units
Cluster 6 Lowest Lowest Lowest Conglomerate, Alluvium, Flysch
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Figure 11. Predicted geology map with unsupervised machine learning method.

To clarify the correlation of each geology unit and Pyroclastic geology units. Cluster 3 is
with the related cluster, the geology map was associated with Red tuff and tuffaceous sediments,
overlayed with the cluster map resulting from the and Trachy andesite. Cluster 4 is attributed to the
FCM method (Figure 12 and Table 1). Cluster 1 Trachy andesite, Dacite, and Granodiorite. Cluster
shows a correlation with Trachy andesite, Trachy 5 shows Pyroclastic, Quaternary units and Cluster
Basalt, Granodiorite, and Phenoandesite units. 6 represents Conglomerate, Alluvium, and Flysch

Cluster 2 is attributed to the Flysh, conglomerate, units.
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Six clusters resulting from the FCM method
show an appropriate correlation with the geological
map. So, multi-geophysical integration with the
FCM method can be a useful tool for predicting
geology maps. To quantify each cluster and
determine the relation between geological units and
resulting clusters, the fuzzy score method was
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used. A fuzzy score of each cluster is presented in
Figure 12. All fuzzy memberships are higher than
0.72. This parameter shows an appropriate
correlation between geological units and the
resulting clusters with the FCM machine learning
method.
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Figure 13. Fuzzy score of each cluster ( Cluster 1-6).

8. Conclusions

In the recent research, the unsupervised
machine learning method (FCM) has been used to
predict geological units in the Shahr-e-Babak area
in southeastern Iran. To reach this aim, airborne
multigeophysical data consisting of aeromagnetic,
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potassium, and thorium concentration have been

used. The following results have been obtained.

» Six clusters have resulted with fuzzy c-means
machine learning method.

» The fuzzy scores of all clusters are higher than
0.72. This event shows an appropriate
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correlation between geological units and
airborne multi geophysical data.

» With attention to the predicted geology map,
there are good correlation between the geology
map and resulted clusters. However, there are
inconsistencies in some areas.

» In multi-geophysical data integration with
machine learning methods, the role of
preprocessing data is very important.

» The results of the FCM method provide a
suitable perspective for preparing a geological
map.

» Based on FCM and airborne geophysics data
surface and near-surface structures can be
enhanced.
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