Document Type : Original Research Paper


1 Department of Mining Engineering, Isfahan University of Technology, Isfahan 8415683111, Iran

2 Department of Mining Engineering, Isfahan University of Technology, Isfahan 8415683111, Iran.

3 Department of Mining Engineering, Lorestan University, Lorestan, Iran.



Diamond wire cutting is a common method to extract dimension stones, which depends on various factors, including the mechanical and physical properties of the stone, cutting specifications, and operational characteristics. Specific energy, production rate, efficiency, and wear of diamond beads are some of the criteria that influence economic and environmental optimization of diamond wire cutting operations. In this study, the specific energy of the diamond wire cutting process was measured for 11 samples of Granite stones. By analyzing the impact of parameters such as stone density, porosity, and cutting rate on energy consumption, a linear regression model was developed with a correlation coefficient (R2) of 0.944 to predict specific energy for different types of stones. Statistical analyses, including ANOVA, have confirmed that the model accurately predicts specific energy values. Data from three new stone samples were used to validate the model, and their predicted energy values were compared with actual values. The model presented achieved an R2 value of 0.827, demonstrating its high accuracy. The results indicate that energy consumption in dimension stone cutting operation can be accurately predicted and characterized indirectly using high precision stone properties and operational parameters. This method can accurately and indirectly monitor energy consumption and cutting machine performance during the dimension stone cutting operation and can be used to optimize economic and environmental aspects of this process.


Main Subjects