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 The primary objective of this research was to apply machine learning techniques to 
predict the production of an open pit mine in Peru. Four advanced techniques were 
employed: Random Forest (RF), Extreme Gradient Boosting (XGBoost), K-Nearest 
Neighbors (KNN), and Bayesian Regression (RB). The methodology included the 
collection of 90 datasets over a three-month period, encompassing variables such as 
operational delays, operating hours, equipment utilization, the number of dump trucks 
used, and daily production. The data were allocated 70% for training and 30% for 
testing. The models were evaluated using metrics such as Root Mean Square Error 
(RMSE), Mean Absolute Percentage Error (MAPE), Variance Accounted For (VAF), 
and the Coefficient of Determination (R2). The results indicated that the Bayesian 
Regression model was the most effective in predicting production in the open pit 
mine. The RMSE, MAPE, VAF, and R2 for the models were 3686.60, 3581.82, 
4576.61, and 3352.87; 12.65, 11.09, 15.31, and 11.90; 36.82, 40.72, 1.85, and 47.32; 
0.37, 0.41, 0.41, and 0.47 for RF, XGBoost, KNN, and RB, respectively. This 
research highlights the efficacy of machine learning techniques in predicting mine 
production and recommends adjusting each model's parameters to further enhance 
outcomes, significantly contributing to strategic and operational management in the 
mining industry. 
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1. Introduction 

Mining operations involve the continuous 
extraction and transport of significant volumes of 
material, using high-capacity equipment. Loading 
and haulage accounts for a substantial portion, 
approximately 50%, of the total operating costs in 
open pit mines [1]. Therefore, it is crucial that the 
truck loading and haulage system operates 
efficiently to optimize production and minimize 
energy consumption, thereby achieving mine 
performance targets [2] [3]. Production efficiency 
and throughput can vary significantly between 
mines [4] [5], depending on various factors such as 
the nature and planning of production processes, 
ore quality in the ore body, equipment availability 
and reliability, as well as challenges related to mine 

process design [6]. It is important to note that the 
performance of mining equipment is closely linked 
to its utilization, availability, and rated capacity [7] 
[8] [9]. 

Humans have the ability to learn from their daily 
experience thanks to their faculty of thought; for 
example, they can acquire knowledge through 
education or by reflecting on their thoughts and 
memories. In contrast, computers learn through 
algorithms, which is the foundation of machine 
learning (ML). ML employs computer algorithms 
to mimic the human learning process, allowing 
computers to identify and acquire real-world 
knowledge [10]. This, in turn, improves 
performance on specific tasks based on the newly 
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acquired knowledge. According to the definition, 
"a computer program is said to learn from 
experience E corresponding to a certain class of 
tasks T and performance measure P, if the tasks T, 
are measured by P, improve with experience E" 
[11]. Although the initial concepts of ML emerged 
in the 1950s, it was not until the 1990s that it was 
consolidated as an independent field [10]. Machine 
learning algorithms are applied in a variety of 
fields, such as computer science [12] [13], health 
[14], environment [15], medicine [16], energy [17], 
engineering [18] [19] and services [20]. 

In open pit mining, the ability to forecast 
production is essential to plan operations 
efficiently and optimize the use of available 
resources [21]. In this context, the application of 
machine learning models has proven to be an 
invaluable resource to improve the accuracy in 
these projections [22]. Several models have been 
developed for this purpose, among which Random 
Forest, XGBoost, KNN and Bayesian Regression 
stand out [23]. In research related to production 
estimation, Baek and Choi [24] conducted a study 
to predict ore production and crusher utilization in 
a subway limestone mine using a neural network 
with five hidden layers and 300 neurons in each 
hidden layer. In Baek and Choi [25], two ANN 
models were constructed for the morning and 
afternoon haulage shifts, respectively. According to 
the study, the MAPE for morning and afternoon 
was 4.78% and 5.26%, respectively, with a 
coefficient of determination of 0.99 each. In 
addition, Choi et al. [26], used machine learning 
models including ANN, Support Vector Machine 
(SVM), Random Forests (RF), Classification and 
Regression Tree (CART) and K-Nearest Neighbors 
to estimate ore production in an open pit limestone 
mine in South Korea. Among the models, the SVM 
algorithm obtained better results with the highest 
accuracy. In addition, Nartey et al. [27] applied 
four machine learning algorithms, including ANN, 
Random Forest, GBR and DT, to forecast the ore 
production in an open pit mine. The results showed 
that ANN achieved the highest accuracy, with an R2 
of 0.8003 and a MAPE of 4.23%. 

According to the literature consulted, there is a 
scarcity of applications of machine learning models 
to predict production in open pit mines, with no 
records of such applications in the Peruvian 
context. This lack makes it difficult to identify the 
most effective strategy to forecast mine production 
using machine learning algorithms. Therefore, the 
main objective of this study is to apply four 
different machine learning models to predict 
production in open pit mines. The methods 

evaluated include Random Forest (RF), XGBoost, 
KNN and Bayesian Regression. The various 
models were evaluated and compared using metrics 
such as coefficient of determination (R2), mean 
absolute percentage error (MAPE), variance 
accounted for (VAF), root mean square error 
(RMSE) and correlation coefficient (R). This 
article is intended to serve as a guide for future 
research on the use of machine learning in mining 
production modeling and prediction. The main 
contributions of this study include the application 
of machine learning techniques for the prediction 
of open pit mining production, a novel approach in 
this field, providing valuable information for the 
optimization of mining operations. The structure of 
the article is as follows: Section 2 describes the 
methodology used in the research. Section 3 
presents the results obtained and the corresponding 
discussions are carried out. Section 4 details the 
conclusions reached in the study and, finally, a list 
of bibliographical references used in the research is 
provided. 

2. Methodology 
2.1. Description of the mine 

The mine under study is located near 
Huamachuco, in the northern highlands of the La 
Libertad region of Peru. This important gold 
deposit produces mainly gold, with copper as a by-
product, contributing substantially to regional 
mining production. Located at an altitude of 3800 
meters above sea level, the facility employs 
advanced drilling and blasting techniques to 
effectively fragment the rock mass for further 
processing. Once fragmented, the ore is 
systematically loaded into a fleet of 90 dump 
trucks, each with a capacity of 26 m³. These trucks 
are meticulously organized to operate in 
continuous day and night shifts, ensuring 
uninterrupted transport of both ore and waste rock, 
integral to the mining cycle that includes mining, 
drilling, blasting, loading, and hauling. The 
equipment portfolio is comprehensive, with state-
of-the-art hydraulic excavators, drilling rigs and 
blast hole drills, all deployed to improve the 
efficiency and productivity of mining operations. 
Total resources (measured + indicated + inferred) 
are at approximately 1080000 ounces of gold by 
2024. 

2.2. Data analysis methods 

The analysis methods employed in this research 
integrate statistical techniques with advanced 
machine learning algorithms. Initially, a 
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descriptive analysis of the data was performed, 
using summarized statistics to understand the basic 
characteristics of the operational variables. 
Subsequently, a correlation analysis was applied 
using Pearson correlation coefficients to identify 
linear relationships between the variables. This 
step was crucial for exploring how variables such 
as the number of dump trucks and excavator 
operating hours are related to daily production. For 
predictive modeling, four machine learning 
techniques were selected: Random Forest (RF), 
Extreme Gradient Boosting (XGBoost), K-Nearest 
Neighbors (KNN), and Bayesian Regression (RB). 
Each model was trained and evaluated using a 
dataset split into 70% for training and 30% for 
testing, assessing their performance through 
metrics such as Root Mean Square Error (RMSE), 
Mean Absolute Percentage Error (MAPE), 
Variability Acceptance Factor (VAF), and the 
Coefficient of Determination (R2). 

All analyses were performed using Python 
version 11.7, with Jupyter Notebook as the web-
based interactive development environment. This 
setup facilitated efficient handling and processing 
of data, enabling rigorous modeling and precise 
performance evaluation. 

2.3. Description of the database 

The database used in this analysis comprises 90 
historical data sets collected from mine X over a 
period of 90 days (equivalent to 3 months 
December 2023 to February 2024). These datasets 
include a number of parameters, namely: average 
daily truck (dump trucks), average excavator 
operating hours, average excavator operating delay 
hours, average equipment usage percentage, and 
daily production (m3 per day). Since the mine 
operates in two daily shifts, each row of data 
reflects the average values for both shifts. 

2.4. Machine learning model 
2.4.1. Random Forest (RF) 

Random Forest (RF) is an ensemble technique in 
which the results of a collection of random decision 
trees are combined to obtain an overall prediction. 
This method is applicable for both regression and 
classification of practical interest. At each internal 
node of the tree, a binary decision is made based on 
a Boolean test [28]. For example, if the attribute 
selected for splitting is ordinal, the test involves 
determining whether the attribute value is above a 
threshold. Instances for which the answer to the test 
is true (i.e., the value of the attribute is above the 
specified threshold) are assigned to one of the child 

nodes. Those with a false response (i.e., the 
attribute value is below the threshold) are assigned 
to the other child node. In this way, the training data 
are divided into separate subsets. The splitting is 
done so that, within each subset, the classes are 
better separated (in classification problems) or the 
prediction error is minimized (in regression). In 
random trees, the Boolean test of a specific internal 
node is selected as the best split resulting from 
considering only a randomly chosen subset of 
attributes [29]. The tree grows until a new split 
does not lead to purer nodes or a specified pre-
pruning criterion is met (e.g., there are too few 
instances assigned to a node, or the maximum 
depth of the tree is reached). Each tree in the forest 
is constructed from a Bootstrap sample 
independent of the data, as in bagging [30]. 

Predictions will be made at the terminal nodes 
(leaves) of the tree based on the training instances 
that have been assigned to those nodes by the 
testing sequence at the root node and subsequent 
intermediate nodes connecting the root to the 
corresponding leaf. In regression, the prediction is 
the average value of the response variable over the 
training instances assigned to that leaf. In 
classification, the final ensemble prediction is 
obtained by majority vote. In regression, the 
outcome of an ensemble of size T is the average of 
the predictions of the random trees in the ensemble. 

(ݔ)ොݕ =
1
ܶ ෍ (ݔ)ො(௧)ݕ

்

௧ୀଵ

 (1) 

The advantages of Random Forest are that it 
handles large data sets well, offering robustness 
against overfitting and providing insights into the 
importance of variables, and the disadvantages are 
that it can be computationally demanding, leading 
to longer training times, and may have difficulties 
with extrapolations outside the range of the training 
data [30]. 

2.4.2. Extreme Gradient Boosting (XGBoost) 

XGBoost is a parallel tree boosting system based 
on the gradient boosting method [31] [32]. It uses 
a model composed of a set of classification and 
regression trees (CART) [33]. Although XGBoost 
appears similar to GBDT, it has some inherent 
features that differ from GBDT, such as the second-
order Taylor expansion and the built-in 
normalization function. The XGBoost model can 
be briefly explained as follows: 

For a data set ܦ = ௜ݔ) , ௜ݔ)(௜ݕ ∈ ܴ௠ , ௜ݕ ∈ ܴ, ݅ =
1,2, … , ݊) containing ݊ instances with ݉ 
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dimensions, and a model trained with ܩ trees, the 
predictions are obtained by the following formula: 

ො௜ݕ = ෍ ,(௜ݔ)݂ ௞݂ ∈ ݅)ܨ = 1,2, … , ݊)
ீ

௞ୀଵ

 (2) 

Where ݂ is the hypothesis space, and ݂(ݔ) is a 
regression tree: ܨ = ൛݂(ݔ) = :ݍ)௤(௫)ൟݓ ܴ௠ →
{1,2, … , ܶ}, ݓ ∈  is the leaf (ݔ)ݍ ,Here .(ݔ)ݍ (்ܴ
node, and ݓ is the leaf score [34]. To construct an 
ideal model, it is necessary to minimize the 
objective function to find the optimal parameters. 
This can be divided into a loss function (ܮ) and a 
model complexity function (ߗ). 

ܮ = ෍ ௜ݕ)ܮ − ො௜)ଶݕ
௡

௜ୀଵ

 (3) 

ߗ = ܶߛ +
1
2

ߣ ෍ ௝ݓ
ଶ

்

௝ୀଵ

 (4) 

The advantage of XGBoost is that it is efficient 
and performs well on various data types, with 
regularization methods that help prevent 
overfitting. The disadvantage is its complexity can 
make hyperparameter tuning challenging and less 
intuitive to understand the relationships between 
features [33]. 

2.4.3. K-Nearest Neighbors (KNN) 

The nearest neighbor algorithm, also known as 
KNN or k-NN, is a nonparametric supervised 
learning classifier that uses proximity to perform 
classifications or predictions based on the 
clustering of a single data point [35]. The distance 
metric in nearest neighbor methods is the simple 
Euclidean distance. That is, the distance between 
two patterns (ݔଵଵ, ,ଵଶݔ … ,  ଵ௡) andݔ
,ଶଵݔ) ଶଶݔ , … ,  ଶ௡) is calculated using the followingݔ
formula: 

ܧܦ = ඨ෍ ଵ௝ݔ) − ଶ௝)ଶݔ
௡

௝ୀଵ
 (5) 

This approach considers the entire training set as 
the search space. When a test instance is presented, 
the distance between this instance and all points in 
the training set is calculated. Then, the ݇ points 
closest to the test instance are selected, where ݇ is 
a user-specified parameter. The class of the test 
instance is determined by majority voting the 
classes of the ݇ nearest neighbors. In the regression 
case, the prediction is performed by taking the 

average of the target values of the ݇ nearest 
neighbors [35]. 

The advantage of KNN is that it is simple and 
adaptive, effective in recommender systems where 
similarity between items is crucial. The 
disadvantage is that it is sensitive to data scale and 
irrelevant features, and computationally inefficient 
for large datasets [35]. 

2.4.4. Bayesian regression (RB) 

Bayesian regression, in particular, is a powerful 
approach that uses Bayes' theorem to update beliefs 
about model parameters as new data are observed. 
In Bayesian regression, the goal is to estimate the 
posterior distribution of model parameters given a 
set of observed data. This is achieved by combining 
the likelihood of the data and the prior distribution 
of the parameters using Bayes' theorem [36]. The 
posterior distribution, which represents the updated 
knowledge about the model parameters after 
observing the data, is calculated as: 

(ܦ|ߠ)ܲ =
(ߠ)ܲ (ߠ|ܦ)ܲ

(ܦ)ܲ  (6) 

Where ܲ(ߠ ∣  is the posterior distribution of (ܦ
the parameters given the data set ܲ( ܦ ∣ ߠ ) is the 
likelihood of the data given the parameter vector 
 is the prior distribution of the parameters and (ߠ)ܲ
 is the marginal likelihood of the data. In (ܦ)ܲ
Bayesian regression, the model can include a wide 
range of prior distributions for the parameters, 
allowing prior information or expert knowledge to 
be incorporated into the inference process [36]. 

The advantage of RB is that it incorporates prior 
knowledge, improving predictions in scenarios 
with uncertain data and provides uncertainty 
estimates. The disadvantage is that it depends on 
the correct choice of a priori distribution, may bias 
the results, and is computationally intensive [36]. 

2.5. Evaluation metrics 

The RMSE should be zero for a perfect model. 
The RMSE of a model prediction relative to the 
observed values is defined as the square root of the 
mean square error [37]: 

ܧܵܯܴ = ඨ
1

݊௧௦
෍(݋௜ − ௜)ଶ݌

௜

 (7) 

The Mean Absolute Percentage Error (MAPE) is 
a commonly used metric to assess the accuracy of 
a prediction model relative to the observed values. 
It is calculated as the average of the absolute value 
of the individual percentage errors between the 
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predictions (݌௜) and the observed values (݋௜), 
expressed as a percentage of the true value [38]: 

ܧܲܣܯ =
1

݊௧௦
෍ ฬ

௜݋ − ௜݌

௜݋
ฬ ݔ

௜
100 (8) 

The Variability Acceptance Factor (VAF) 
provides a measure of how much variability in the 
data is explained by the model relative to the total 
variability present in the observed data. It is 
calculated as the ratio of the sum of the squares of 
the differences between the observed values (݋௜) 
and the predicted values (݌௜) to the total sum of the 
squares of the differences between the observed 
values and their mean (݋௜ −  :ଶ [38](̅݋

ܨܣܸ = (1 −
∑ ௜݋) − ௜)ଶ݌

௜

∑ ௜݋) − ଶ(̅݋
௜

 (9) 100 ݔ

The R-Squared value (known as the coefficient 
of determination) describes how much of the 
variance between the two variables (observed and 
predicted values) describes the legal fit. This can be 
determined as [38]: 

ܴଶ =
௜݋)∑) − పഥ݋ ௜݌)( − పഥ݌ ))ଶ

௜݋)∑ − పഥ)ଶ݋ ௜݌)∑ − పഥ݌ )ଶ (8) 

3. Results and discussions 

Table 1 presents a statistical summary of the 
database, including the count, average, standard 
deviation (std), minimum, percentiles (25%, 50% 
and 75%) and maximum values for each of the 
parameters such as operational delays, operational 
hours, usage, number of dump trucks and 
production in m3/day. 

Table 1. Statistical description of the database 

(p-value) Operational 
delays (h) 

Operational 
hours (h) Usage (%) N° of dump 

trucks 
Production 

(m3/day) 
Count 90 90 90 90 90 
Mean 4.45 14.09 49.02 24.19 26253.19 
Std 1.77 2.29 8.14 4.94 5759.70 
Min 2.21 8.78 24.00 14.00 10377.29 
25% 3.38 12.85 45.00 21.00 23229.15 
50% 4.12 13.98 49.00 23.00 26430.18 
75% 4.94 15.66 54.00 27.75 29849.17 
Max 15.22 20.15 68.00 36.00 40795.63 

 
Table 2 shows the correlation matrix of the 

database, where each cell contains the Pearson 
correlation coefficient. There is a moderate positive 
correlation between the number of dump trucks and 
daily production (0.45). Likewise, a significant 
negative correlation is identified between 

equipment usage and daily production (-0.25). In 
addition, a positive correlation is observed between 
excavator operating hours and daily production 
(0.50), and a weak negative correlation between 
excavator operating delays and daily production (-
0.25). 

Table 2. Correlation matrix of the database 

 Operational 
delays (h) 

Operational 
hours (h) Usage (%) N° of dump 

trucks 
Production 

(m3/day) 
Operational delays (h) 1.00     
Operational hours (h) -0.22 1.00    
Usage (%) -0.46 0.39 1.00   
N° of dump trucks 0.18 0.38 0.16 1.00  
Production (m3/day) -0.25 0.50 0.40 0.45 1.00 

 
In the research work a rigorous partitioning of the 

data has been applied, reserving 30% of the data for 
testing and 70% for training, as shown in Table 3. 
It summarizes the statistics of the data distributed 
for training and testing of each artificial 
intelligence model, where the inputs: operating 

delays, usage (%), operating hours and number of 
dump trucks and the output is the daily production. 
It can be observed that for training the data is a total 
of 63 for each variable and for test it is 27 data of 
the total. 
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Table 3. Statistics of distributed data for training and testing 

 

Input Output 
Operational 

delays (h) Usage (%) Operational 
hours (h) N° of dump trucks Producción (m3/día) 

Train Test Train Test Train Test Train Test Train Test 
Quantity 63.00 27.00 63.00 27.00 63.00 27.00 63.00 27.00 63.00 27.00 
Mean 4.29 4.82 7.70 50.41 14.06 14.14 39.30 23.93 60273.16 26363.95 
Std 1.35 2.49 6.87 10.21 2.32 2.22 4.77 5.38 14237.67 4707.60 
10% 2.21 2.53 0.00 24.00 8.95 8.78 29.00 15.00 23867.76 12891.83 
25% 3.42 3.31 0.50 47.00 12.55 13.14 37.00 20.50 53298.33 24558.60 
50% 4.10 4.30 9.05 51.00 14.03 13.80 38.00 22.00 59420.66 27959.76 
75% 4.74 5.07 12.71 56.50 15.22 15.69 43.00 26.50 69613.64 29217.99 
Max 10.31 15.22 23.95 68.00 20.15 17.64 51.00 35.00 93829.95 33247.40 

 
Table 4 presents the hyperparameters used in the 

machine learning models. For Random Forests, 
300 estimators were used with a maximum depth 
of 30 for each tree. In addition, a minimum split of 
2 samples was used at each node and at least one 
sample was required to form a leaf. In Extreme 
Gradient Boosting, the learning rate (Eta) was set 
to 0.05 to control the learning rate, while the 

maximum tree depth was limited to 6. For KNN, 5 
nearest neighbors with uniform weights were 
considered and a Minkowski distance metric was 
used with an additional parameter of 2. For 
Bayesian regression, 500 iterations were performed 
with a convergence tolerance of 1x10-4. The 
precision and scaling parameters for the a priori 
distributions were also set to 1x10-7. 

Table 4. Hyperparameters of the machine learning models used 
Method Parameter Value Description 

Random Forests 
(RFs) 

N° de estimadores 300 Number of trees 
Max_depth 30 Maximum depth of each tree 
Min_samples_split 2 Min. samples required to split a node 
Min_samples_leaf 1 Min. samples required to be a leaf 
Max_features 'auto' Number of features to find the best split 
Bootstrap True Use of samples with replacement 
Random_state 42 Seed for randomization 
Verbose 0 Verbosity in training 
Obb_score False Use out-of-bag samples to estimate accuracy 

Extreme Gradient 
Boosting (XGBoost) 

Booster Gbtree Defines the type of base model used in the algorithm 
Eta (learning rate) 0.05 Controls learning speed 
Max_depth 6 Limits the complexity of each tree 
Min_child_weight 1 Controls tree growth 
Gamma 0.0 Regulates the creation of new leaves in the tree 
Subsample 1.0 Controls the fraction of training instances used in each tree 
Colsample_bytree 0.6 Controls the fraction of features used in each tree 
Eval_metric ‘rmse’ Defines the model evaluation metric 
Estimators 1000 Specifies the number of trees in the ensemble 
Objective Reg: squared error Defines the optimized loss function 
Random state 42 Controls the reproducibility of the results 
Scale_pos_weight 1 Used in unbalanced classification problems. 

K-Nearest Neighbors  

N_neighbors 5 Specifies the number of nearest neighbors considered. 
Weights ‘uniform’ Controls how neighbor contributions are weighted. 
Algorithm ‘auto’ Defines the method used to calculate the nearest neighbors. 
Metric ‘minkowski’ Specifies the distance measure used. 

‘p’ 2 Additional parameter to calculate the distance in the Minkowski 
algorithm. 

Bayessian Ridge (RB) 

N_iter 500 Number of iterations to perform parameter estimation. 
tol 1e-4 Tolerance for algorithm convergence. 
Alpha_1 1e-7 Precision parameter for a priori distribution of weights. 

Alpha_2 1e-7 Precision parameter for a priori distribution of error 
variance. 

Lambda_1 1e-7 Scale parameter for the a priori distribution of the weights. 

Lambda_2 1e-7 Scale parameter for the a priori distribution of the error 
variance. 

Compute_score True Indicates whether or not to calculate the score during model 
fitting. 

Fit_intercept True Indicates whether or not to fit the model intercept. 
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Hyperparameters are very important for 
prediction results. Baek and Choi [24] in their 
hyperparameters of their neural network used was 
5 hidden layers and each layer had 300 neurons. 
Likewise, Nartey [27] in his machine learning 
models (Random Forest) used a minimum sample 
Split of 1-5, number of estimators of 1-500, step 
size of 10, maximum Depth of 1-8, this performed 
in order to obtain the optimal hyperparameters, in 
the research the parameters for random forest was 
300 estimators, with a depth of 30, minimum 
samples of 2, max_features: auto and a randomness 
seed of 42. 

3.1. Test and training results of the machine 
learning models 

Figure 1 presents a comparative analysis between 
predicted and actual values obtained using the 
random forest (RF) model, separated by training 
and test data sets (unseen data). In the training data 
set, a correlation of 0.88 was obtained, which is 
consistent with the tendency of the models to learn 
specifically from the data they are trained on. 
Likewise, in the test data set a correlation of 0.63 
was achieved, indicating a considerable fit between 
the model predictions and the actual production 
quantity.  

 
Figure 1. Comparison of actual vs. predicted values using the Random Forest (RF) model 

Figure 2 shows a comparative analysis of the 
predicted results versus the actual values of the 
XGBoost model. A perfect correlation (1.00) is 

observed in the training set, indicating a high level 
of accuracy in that set. However, the accuracy of 
the test data set was 0.68. 

 
Figure 2. Comparison of actual vs. predicted values using the XGBoost model. 

Figure 3 shows the relationship between the 
values predicted by the KNN (K-Nearest 
Neighbors) model and the actual values. With a 
correlation of 0.67 in the training data set, 

indicating a high level of accuracy. A correlation of 
0.67 is obtained in the test data sets, showing a 
good ability for predictions on test data (unseen 
data). 
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Figure 3. Comparison of actual vs. predicted values using the KNN model. 

Figure 4 illustrates the predictive ability of the 
Bayesian Regression (RB) model by comparing the 
predicted values with the actual values on the 
training and test data sets. The model achieves a 

correlation of 0.60 in the training set, 0.69 in the 
test set. This demonstrates consistency in 
predicting daily production in cubic meters at the 
mining company. 

 
Figure 4. Comparison of actual vs. predicted values using the Bayessian Ridge (RB) model. 

3.2. Comparison and evaluation of the machine 
learning models. 

For comparison purposes, Figure 5 and Figure 6 
show the prediction results of the machine learning 
models on an independent test data set. In addition, 
Table 5 presents the prediction results, in which the 

proposed RB model yielded an RMSE value of 
3352.87 and an R2 of 0.47, while the Random 
Forest (RF) model yielded an RMSE of 3686.00 
and an R2 of 0.37. The XGBoost model yielded an 
RMSE of 3581.82 with an R2 of 0.41, finally the 
KNN model yielded an RMSE of 4576.61 and the 
correlation coefficient was an R2 of 0.41. 
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Figure 5. Model prediction results on a test data set. 

Table 5. Performance of Machine Learning Methods. 
Metric RF XGBoost KNN RB 

RMSE 3686.60 3581.82 4576.61 3352.87 
MAPE 12.65 11.09 15.31 11.90 
VAF 36.82 40.72 1.85 47.32 
R2 0.37 0.41 0.41 0.47 
R 0.63 0.68 0.67 0.70 

 
Baek and Choi [25] obtained a MAPE of 4.78% 

in the morning and 5.26% in the afternoon, with a 
coefficient of determination (R2) of 0.99 each. 
Likewise, Nartey [27] applied 4 machine learning 
algorithms where the results shown by ANN 
reached an R2 of 0.8003 and a MAPE of 4.23%. 
Comparing these results with those obtained in 

which the best model was Bayesian Regression 
with a MAPE of 11.90%, an R2 of 0.47 and a 
correlation of 0.70. This indicates that the 
hyperparameters of each model need to be 
improved; this is also due to the distribution of the 
information obtained from the field. 
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Figure 6. Actual production (m3/day) versus predicted production (m3/day) in the test data set for each machine 

learning model. 

The separate test data set, reserved for evaluating 
the performance of the machine learning models, 
comprised 27 data points and reflected the 
operational diversity of the mining process. As 
shown in Table 3, the test data exhibited an average 
of 4.82 hours in operational delays, an average 
utilization rate of 50.41%, and 14.14 operational 
hours, with an average of 23.93 dump trucks in 
operation. Daily production output in the test data 
averaged 26,363.95 m³/day. The standard deviation 
for production was 4,707.60 m³/day, indicating 
variability in daily volumes. Production data 
ranged from a minimum of 12,891.83 m³/day to a 
maximum of 33,247.40 m³/day, with quartiles 
positioned at 24,558.60, 27,959.76 and 29,217.99 
m³/day, respectively. These statistics underscore 
the heterogeneity of the test data and validate the 
robust predictive capabilities of the Bayesian 
Regression model, which achieved close alignment 
with actual production values. 

4. Conclusions 

This research evaluated the performance of 
machine learning algorithms: RF, XGBoost, KNN, 
and RB, for predicting daily production at an open 

pit mine in Peru. For this purpose, 90 data sets were 
utilized. Input parameters included the average 
daily number of dump trucks, the percentage of 
excavator utilization, the average daily number of 
operating hours and delays, with daily production 
serving as the output parameter. Among the 
implemented models, Bayesian regression proved 
to be the most efficient in prediction, achieving a 
Coefficient of Determination (R²) of 0.47, a Mean 
Absolute Percentage Error (MAPE) of 11.90%, and 
a Variance Accounted For (VAF) of 47.32%, 
followed by KNN, XGBoost, and finally the 
Random Forest model. The results enable the 
prediction of mine production with moderate 
accuracy using the Bayesian regression model. 
Overall, the study has demonstrated that machine 
learning techniques can be relevant for modeling 
and predicting the production of an open pit mine. 

It is essential to highlight that this study 
contributes to originality and literature by 
exploring the less common use of Bayesian 
regression in this context and addresses the risk 
level of the study area by recommending the 
inclusion of more variables such as mechanical 
availability, operational efficiencies, and cycle 
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times for future work. The use of additional 
machine learning models is also suggested to 
enhance the prediction of mine production. These 
recommendations are crucial for guiding future 
research and adapting operational strategies in the 
mining sector. 
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  چکیده:

ل تفاده از تکن قیتحق نیا یهدف اصـ رفتهیپ  کیمعدن روباز در پرو بود. چهار تکن کی  دیتول  ینیبشیپ  يبرا  نیماش ـ  يریادگی  يهاکیاسـ تفاده قرار گرفت:    شـ مورد اسـ
ــادف ــد  انیگراد تی)، تقوRF(  یجنگل تص ــا  نیکتری)، نزدXGBoost( دیش  ــK (KNN)  گانیهمس ــامل مجم نی). اRB( يزیب  ونی، و رگرس   90از    ياوعهروش ش

مورد اسـتفاده و   یکمپرس ـ  يهاونیتعداد کام  زات،یسـاعات کار، اسـتفاده از تجه  ،یاتیعمل  يرهایمانند تاخ  ییرهایدوره سـه ماهه بود که متغ  کیمجموعه داده در  
د برا  70. داده ها گرفتیروزانه را در بر م  دیتول د برا 30آموزش و   يدرصـ د. مدل يدرصـ اص داده شـ   نی انگ یم  شـهیمانند ر  ییارهایها با اسـتفاده از معآزمون اختصـ

نشـان داد که مدل   ج یشـدند. نتا یابی) ارزR2(  نییتع  بی) و ضـرVAF( يمحاسـبه شـده برا  انسی)، وارMAPEدرصـد مطلق خطا (  نیانگی)، مRMSEمربعات خطا (
 ــ ــتریب  يزیب  ونیرگرسـ اث  نیشـ از دارد.   دی ـتول ینیب  شیرا در پ ریتـ ا  مـدل يبرا  R2و   RMSE ،MAPE ،VAFدر معـدن روبـ و   4576.61،  3581.82،  3686.60هـ

ه ترت  RBو   RF  ،XGBoost ،KNN  يبرا 0.47، و  0.41،  0.41، 0.37  ;47.32و   1.85،  40.72،  36.82 ;11.90و    15.31،  11.09، 12.65بود.   3352.87 .  ب ی ـبـ
تریبهبود ب  يهر مدل را برا  يکه پارامترها  کندیم  هیو توص ـ  کندیممعدن برجسـته   دیتول  ینیبشیرا در پ  نیماش ـ  يریادگی  يهاکیتکن ییکارا قیتحق نیا  ج ینتا  شـ

 .کندیدر صنعت معدن کمک م یاتیو عمل کیاستراتژ تیریبه مد یتوجهکه به طور قابل د،یکن میتنظ
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