[1]. Chanda, E.C.K. (1990). An application of integer programming and simulation to production planning for a stratiform ore body. Mining Science and Technology. 11(2): 165-172.
[2]. Wooller, R. (1992). Production scheduling system. Transactions of the Institution of Mining and Metallurgy. Section A, 101: 47-554.
[3]. Pourrahimian, Y., & Askari-Nasab, H. (2013). A multi-step approach for block cave production scheduling optimization. International Journal of Mining Science and Technology. 23(5): 739-750.
[4]. Chowdu, A., Nesbitt, P., Brickey, A., & Newman, A.M. (2022). Operations research in underground mine planning: a review. INFORMS Journal on Applied Analytics. 52(2):109-132.
[5]. Shami-Qalandari, M., Rahmanpour, M., & Mirabedi, S.M.M., (2022). Determining a resilient stope boundary for underground mass mining projects. Rudarsko-geološko-naftni zbornik. 37(5): 103-116.
[6]. Sotoudeh, F., Ataei, M., Kakaie, R., & Pourrahimian, Y. (2020). Application of sequential gaussian conditional simulation to underground mine design under grade uncertainty. Journal of Mining and Environment (JME). 11(3): 695-709.
[7]. Nehring, M., Topal, E., Kizil, M., & Knights, P. (2012). Integrated short- and medium-term underground mine production scheduling. Journal of the South African Institute of Mining and Metallurgy. 112: 359-372.
[8]. Jawed, M. (1993). Optimal production planning in underground coal mines through goal programming: A case study from an Indian mine. In: Elbrond, J., & Tang, X. (Eds.). Proceedings of the 24th International APCOM Symposium, CIM, Montreal. 44–50.
[9]. Newman, A.M., Rubio, E., Caro, R., Weintraub, A., & Eurek, K. (2010). A review of operations research in mine planning. Interfaces. 40: 222- 245.
[10]. Trout, L.P. (1995). Underground mine production scheduling using mixed integer programming. In: Proceedings of the 25th International APCOM Symposium. 395- 400.
[11] Nehring, M. (2006). Stope sequencing and optimization in underground hard rock mining. Bachelor thesis. The University of Queensland. Brisbane.
[12]. Little, J., Knights, P., & Topal, E. (2013). Integrated optimization of underground mine design and scheduling. Journal of the Southern African Institute of Mining and Metallurgy. 113: 775-785.
[13]. O’Sullivan, D., & Newman, A. (2015). Optimization-based heuristics for underground mine scheduling. European Journal of Operational Research. 241: 248-259.
[14]. Terblanche, S., & Bley, A. (2015). An improved formulation of the underground mine scheduling optimisation problem when considering selective mining. ORiON. 31: 1-16.
[15]. Huang, S., Li, G., Ben-Awuah, M., Afum, B.O., & Hu, N., (2020). A robust mixed integer linear programming framework for underground cut-and-fill mining production scheduling. International Journal of Mining, Reclamation and Environment. 34(6): 397-414.
[16]. Foroughi, S., Khademi, J., Monjezi, M., & Nehring, M., (2019). Simultaneous optimization of stope layout and production scheduling in sublevel stoping method. Iranian Journal of Mining Engineering- IRJME. 14(43): 81-90.
[17]. Shenavar, M., Ataee-pour, M., & Rahmanpour, M. (2020). A new mathematical model for production scheduling in sub-level caving mining. Journal of Mining and Environment (JME). 11(3): 765-778.
[18]. Sari, Y.A., & Kumral, M. (2021). Clustering-based iterative approach to stope layout optimization for sublevel stoping. Journal of the Southern African Institute of Mining and Metallurgy. 121(3): 97–106.
[19]. Kumral, M., & Sari, Y.A., (2020). Underground mine planning for stope-based methods. In: AIP Conf. Proceedings of the 2nd International Conference on Earth Science, Mineral, and Energy.
[20]. Topal, E., (2008). Early start and late start algorithms to improve the solution time for long-term underground mine production scheduling. The Journal of the Southern African Institute of Mining and Metallurgy. 108: 99-107.
[21]. Rahmanpour, M., Osanloo, M., & Mirabedi, S.M.M. (2022). Estimating mining time-span to improve the solution time in long-term production planning. International Journal of Mining & Geo-Engineering. 56(2): 159-165.
[22]. Morin, M., Bamber, A. & Scoble, M. (2004). Systems analysis and simulation of narrow-vein mining method with underground preconcentration. In: Proceedings Second International Symposium on Narrow-Vein Deposits. Westmount, Canada. 359-369.
[23]. Mohseni, M., Ataei, M. & KhalooKakaie, R. (2018). A new classification system for evaluation and prediction of unplanned dilution in cut-and-fill stoping method. Journal of Mining and Environment. 9(4): 873-892.
[24]. Manriquez, F., Perez, J., & Morales, N. (2020). A simulation–optimization framework for short-term underground mine production scheduling. Optimization and Engineering. 21(3): 939–971.
[25]. Brickey, A.J., Chowdu, A., Newman, A., Goycoolea, M., & Godard, R. (2021). Barrick’s Turquoise Ridge gold mine optimizes underground production scheduling operations. INFORMS J. Appl. Analytics. 51(2): 106–118.
[26]. Nehring, M., & Topal, E. (2007). Production schedule optimisation in underground hard rock mining using mixed integer programming. In: Project Evaluation Conference. 19-20 June. Melbourne, Victoria. The Australasian Institute of Mining and Metallurgy. 169–175.
[27]. Nehring, M., Topal, E., & Knights, P. (2010). Dynamic short-term production scheduling and machine allocation in underground mining using mathematical programming. Min. Technol. 119: 212–220
[28]. Ogunmodede, O., Lamas, P., Brickey, A., Bogin, J.G., & Newman, A. (2022). Underground production scheduling with ventilation and refrigeration considerations. Optimization and Engineering. 23: 1677–1705.
[29]. Campeau, L.P., & Gamache, M. (2020). Short-term planning optimization model for underground mines. Computers & Operations Research. 115: 104642.
[30] Campeau, L.P., Gamache, M., & Martinelli, R. (2022). Integrated optimization of short- and medium-term planning in underground mines. International Journal of Mining, Reclamation and Environment. 36(4): 235-253.
[31]. Stephan, G. (2011). Cut-and-fill Mining. Chapter 13.5. In: Darling, P. (Ed.) SME mining engineering handbook, 3rd edition. Society of Mining, Metallurgy, and Exploration Inc. (SME). 1365-1373
[32]. Swan, G., & Brummer, R.K. (2001). Backfill design for deep, underhand drift-and-fill mining. In: Minefill 2001: Proceedings of the 7th International Symposium on Mining with Backfill. USA, 359-368.
[33]. Dawson, L., Yumlu, M., & English, M. (2008). Drift and fill - the high value, high recovery mining system. Narrow Vein Mining Conference, Ballarat, Vic, 14 - 15 October. 187-194
[34]. Neves, J., Araujo, C. & Soares, A. (2021). Uncertainty integration in dynamic mining reserves. Mathematical Geosciences. 53: 737-755.
[35]. Spearing, A.S., Ma, L. & Ma, C.A. (2022). Mine design, planning and sustainable exploitation in the digital age. CRC Press. 262-263.
[36]. Peng, C., Liu, Y., Zhu, M., Hou, K., Liu, X., Li, G., Yin, Y. & Liu, Z. (2023). Mechanical response and failure characteristics of granite under unloading conditions and its engineering application. Periodica Polytechnica Civil Engineering. 67(2): 505-517.
[37]. Ran, J.J. (2019). Safe mining practices under wide spans in underground non-caving mines–Case studies. International Journal of Mining Science and Technology. 29(4): 535-540.
[38]. Hu, Y., Han, B., Zhang, B. & Li, K. (2023). Force analysis and strength determination of the cemented paste backfill roof in underhand drift cut-and-fill stopping. Applied Sciences. 13(2): 855, 1-17.
[39]. Keita, A.M.T., Jahanbakhshzadeh, A. & Li, L. (2022). Numerical analysis of the failure mechanisms of sill mats made of cemented backfill. International Journal of Geotechnical Engineering. 16(7): 802-814.
[40]. Goodwin, G.C., Seron, M.M., Middleton, R.H., Zhang, M., Hennessy, B.F., Stone, P.M., & Menabde, M. (2006). Receding horizon control applied to optimal mine planning. Automatica. 42(8): 1337-1342.