[1]. Ukaogo, P. O., Ewuzie, U., & Onwuka, C. V. (2020). Environmental pollution: causes, effects, and the remedies. In Microorganisms for sustainable environment and health (pp. 419-429). Elsevier.
[2]. Azizi, M., Faz, A., Zornoza, R., Martínez-Martínez, S., Shahrokh, V., & Acosta, J. A. (2022). Environmental pollution and depth distribution of metal (loid) s and rare earth elements in mine tailing. Journal of Environmental Chemical Engineering, 10(3), 107526.
[3]. Bai, Z., Wu, F., He, Y., & Han, Z. (2023). Pollution and risk assessment of heavy metals in Zuoxiguo antimony mining area, southwest China. Environmental Pollutants and Bioavailability, 35(1), 2156397.
[4]. Yu, H., & Zahidi, I. (2023). Environmental hazards posed by mine dust, and monitoring method of mine dust pollution using remote sensing technologies: An overview. Science of The Total Environment, 864, 161135.
[5]. Soe, P. S., Kyaw, W. T., Arizono, K., Ishibashi, Y., & Agusa, T. (2022). Mercury pollution from artisanal and small-scale gold mining in Myanmar and other southeast asian countries. International Journal of Environmental Research and Public Health, 19(10), 6290.
[6]. Wang, Q., Wang, B., Ma, Y., Zhang, X., Lyu, W., & Chen, M. (2022). Stabilization of heavy metals in biochar derived from plants in antimony mining area and its environmental implications. Environmental Pollution, 300, 118902.
[7]. Guo, P., Sun, F., & Han, X. (2023). Study on comprehensive evaluation of environmental pollution treatment effect in coal mine subsidence area: taking Xinglongzhuang mining area of Yanzhou energy as an example. Environmental Science and Pollution Research, 30(3), 6132-6145.
[8]. Mutafela, R. N., Dahlin, T., Marques, M., & Hogland, W. (2020). Mapping and resource recovery process from heavy metal contaminated glass waste dumps. Linnaeus Eco-Tech.
[9]. Du, C., Wang, J., & Wang, Y. (2022). Study on environmental pollution caused by dumping operation in open pit mine under different factors. Journal of Wind Engineering and Industrial Aerodynamics, 226, 105044.
[10]. Seyedrahimi-Niaraq, M., Mahdiyanfar, H., & Mokhtari, A. R. (2022). Integrating principal component analysis and U-statistics for mapping polluted areas in mining districts. Journal of Geochemical Exploration, 234, 106924.
[11]. Chen, J., Yousefi, M., Zhao, Y., Zhang, C., Zhang, S., Mao, Z., ... & Han, R. (2019). Modelling ore-forming processes through a cosine similarity measure: Improved targeting of porphyry copper deposits in the Manzhouli belt, China. Ore Geology Reviews, 107, 108-118.
[12]. Yilmaz, H., Yousefi, M., Parsa, M., Sonmez, F. N., & Maghsoodi, A. (2019). Singularity mapping of bulk leach extractable gold and− 80# stream sediment geochemical data in recognition of gold and base metal mineralization footprints in Biga Peninsula South, Turkey. Journal of African Earth Sciences, 153, 156-172.
[13]. Zuo, R. (2011). Identifying geochemical anomalies associated with Cu and Pb–Zn skarn mineralization using principal component analysis and spectrum–area fractal modeling in the Gangdese Belt, Tibet (China). Journal of Geochemical Exploration, 111(1-2), 13-22.
[14]. Afzal, P., Harati, H., Alghalandis, Y. F., & Yasrebi, A. B. (2013). Application of spectrum–area fractal model to identify of geochemical anomalies based on soil data in Kahang porphyry-type Cu deposit, Iran. Geochemistry, 73(4), 533-543.
[15]. Mahdiyanfar, H. (2021). Prediction of economic potential of deep blind mineralization by Fourier transform of a geochemical dataset. Periodico di Mineralogia, 90(1).
[16]. Shahi, H., Ghavami, R., Rouhani, A. K., Kahoo, A. R., & Haroni, H. A. (2015). Application of Fourier and wavelet approaches for identification of geochemical anomalies. Journal of African Earth Sciences, 106, 118-128.
[17]. Chen, G., & Cheng, Q. (2018). Fractal-based wavelet filter for separating geophysical or geochemical anomalies from background. Mathematical Geosciences, 50(3), 249-272.
[18]. Shokouh Saljoughi, B., & Hezarkhani, A. (2019). Identification of geochemical anomalies associated with Cu mineralization by applying spectrum-area multi-fractal and wavelet neural network methods in Shahr-e-Babak mining area, Kerman, Iran. Journal of Mining and Environment, 10(1), 49-73.
[19]. Parsa, M., Maghsoudi, A., Yousefi, M., & Sadeghi, M. (2017). Multifractal analysis of stream sediment geochemical data: Implications for hydrothermal nickel prospection in an arid terrain, eastern Iran. Journal of Geochemical Exploration, 181, 305-317.
[20]. Ouchchen, M., Boutaleb, S., Abia, E. H., El Azzab, D., Miftah, A., Dadi, B., ... & Abioui, M. (2022). Exploration targeting of copper deposits using staged factor analysis, geochemical mineralization prospectivity index, and fractal model (Western Anti-Atlas, Morocco). Ore Geology Reviews, 143, 104762.
[21]. Mahdiyanfar, H., & Seyedrahimi-Niaraq, M. (2023). Integration of Fractal and Multivariate Principal Component Models for Separating Pb-Zn Mineral Contaminated Areas. Journal of Mining and Environment, 14(3), 1019-1035.
[22]. Bazargani Golshan, M., Arian, M., Afzal, P., Daneshvar Saein, L., & Aleali, M. (2024). Outlining of High-quality Parts of Coal by Concentration–Volume Fractal Model in North Kochakali Coal Deposit, Central Iran. Journal of Mining and Environment, 15(2), 557-579.
[23]. Afzal, P., Farhadi, S., Shamseddin Meigooni, M., Boveiri Konari,M, Daneshvar Saein, L., (2022). Geochemical Anomaly Detection in the Irankuh District Using Hybrid Machine Learning Technique and Fractal Modeling. Geopersia, 12(1), 191-199.
[24]. Farhadi, S., Afzal, P., Boveiri Konari, M., Daneshvar Saein, L., Sadeghi, B., (2022). Combination of Machine Learning Algorithms with Concentration-Area Fractal Method for Soil Geochemical Anomaly Detection in Sediment-Hosted Irankuh Pb-Zn Deposit, Central Iran. Minerals 12 (6), 689.
[25]. Merry, R. J. E. (2005). Wavelet theory and applications: a literature study.
[26]. Afzal, P., Ahmadi, K., & Rahbar, K. (2017). Application of fractal-wavelet analysis for separation of geochemical anomalies. Journal of African Earth Sciences, 128, 27-36.
[27]. Pourgholam, M. M., Afzal, P., Yasrebi, A. B., Gholinejad, M., & Wetherelt, A. (2021). Detection of geochemical anomalies using a fractal-wavelet model in Ipack area, Central Iran. Journal of Geochemical Exploration, 220, 106675.
[28]. Shokouh Saljoughi, B., & Hezarkhani, A. (2019). Identification of geochemical anomalies associated with Cu mineralization by applying spectrum-area multi-fractal and wavelet neural network methods in Shahr-e-Babak mining area, Kerman, Iran. Journal of Mining and Environment, 10(1), 49-73.
[29]. Saljoughi, B. S., & Hezarkhani, A. (2020). Delineation of Alteration Zones Based on Wavelet Neural Network (WNN) and Concentration–Volume (CV) Fractal Methods in the Hypogene Zone of Porphyry Copper Deposit, Shahr-e-Babak District, SE Iran. Journal of Mining and Environment, 11(4), 1173-1190.
[30]. Pathak, R. S. (2009). The wavelet transform (Vol. 4). Springer Science & Business Media.
[31]. Shahi, H., Ghavami, R., & Rouhani, A. K. (2016). Comparison of mineralization pattern of geochemical data in spatial and position-scale domain using new DWT-PCA approach. Journal of the Geological Society of India, 88, 235-244.
[32]. Rhif, M., Ben Abbes, A., Farah, I. R., Martínez, B., & Sang, Y. (2019). Wavelet transform application for/in non-stationary time-series analysis: A review. Applied Sciences, 9(7), 1345.
[33]. Akujuobi, C. M. (2022). Wavelets and wavelet transform systems and their applications. Berlin/Heidelberg, Germany: Springer International Publishing.
[34]. Vahedi, R., B. Tokhmechi, and M. Koneshloo. (2016). Permeability upscaling in fractured reservoirs using different optimized mother wavelets at each level. Journal of Mining and Environment, 7(2), 239-250.
[35]. Tokhmechi, B., Rabiei, M., Azizi, H., & Rasouli, V. (2018). A new 2D block ordering system for wavelet-based multi-resolution up-scaling. Journal of Mining and Environment, 9(4), 817-828.
[36]. Lotfi, M., & Tokhmechi, B. (2019). Fractal-wavelet-fusion-based re-ranking of joint roughness coefficients. Journal of Mining and Environment, 10(4), 1121-1133.
[37]. Liu Y, Song Y, Fard M, Zhou L, Hou Z, Kendrick MA., (2019). Pyrite Re-Os age constraints on the Irankuh Zn-Pb deposit, Iran, and regional implications. Ore Geology Reviews, 1(104), 148-59.
[38]. Ahankoub M, Asahara Y, Tsuboi M., (2020). Petrology and geochemistry of the Lattan Mountain magmatic rocks in the Sanandaj–Sirjan Zone, west of Iran. Arabian Journal of Geosciences, 13(16), 1-3.
[39]. Karimpour, M.H. and Sadeghi, M., (2018). Dehydration of hot oceanic slab at depth 30–50 km: KEY to formation of Irankuh-Emarat PbZn MVT belt, Central Iran. Journal of Geochemical Exploration, 194, 88–103.
[40]. Hosseini-Dinani H, Aftabi A, Esmaeili A, Rabbani M., (2015). Composite soil-geochemical halos delineating carbonate-hosted zinc–lead–barium mineralization in the Irankuh district, Isfahan, west-central Iran. Journal of Geochemical Exploration. 1(156), 114-30.
[41]. Mirghaffari N., (2005). Lead concentration in some natural plant species around the Irankuh lead and zinc mine in Isfahan. Iranian J Nat Resour, 58, 635–44. (in Persian).
[42]. Geranian, H., Mokhtari, A. R., & Cohen, D. R., (2013). A comparison of fractal methods and probability plots in identifying and mapping soil metal contamination near an active mining area, Iran. Science of the total environment, 463, 845-854.
[43]. Ghazifard A, Sharief M., (2003). The study of the extent of heavy metal absorption by agricultural crops and investigating its environmental contamination around Irankuh Pb and Zn deposit. Isfahan Univ Res J, 17, 153–66. (in Persian).
[44]. Mokhtari AR, Rodsari PR, Cohen DR, Emami A, Bafghi AA, Ghegeni ZK., 2015. Metal speciation in agricultural soils adjacent to the Irankuh Pb–Zn mining area, central Iran. Journal of African Earth Sciences. 1(101), 186-93.
[45]. Johansson, E. (2005). Wavelet Theory and some of its Applications, Department of Mathematics. Lulea, Sweden, Lulea University of Technology. Licentiate: 90.
[46]. Mertins, A. (1999). Signal Analysis: Wavelets, Filter Banks, Time-Frequency Transforms and Applications. John Wiley & Sons.
[47]. Bessissi, Z., Terbeche, M., Ghezali, B. (2009). Wavelet application to the time series analysis of DORIS station coordinates. Comptes Rendus Geoscience, 341(6), 446-461.
[48]. Vetterli, M,. Kovacevic, J. (2007). Wavelets And Subband Coding, USA, New Jersey , Prentice Hall PTR, Englewood Cliffs.
[49]. Zhang, L., Bai, G., & Zhao, Y. (2012). A method for eliminating caprock thickness influence on anomaly intensities in geochemical surface survey for hydrocarbons. Mathematical Geosciences, 44, 929-944.
[50]. Van Fleet, P. J. (2019). Discrete wavelet transformations: An elementary approach with applications. John Wiley & Sons.
[51]. Seo, Y., Kim, S., Kisi, O., & Singh, V. P. (2015). Daily water level forecasting using wavelet decomposition and artificial intelligence techniques. Journal of Hydrology, 520, 224-243.
[52]. Lindfield, G., & Penny, J. (2019). Chapter 8-Analyzing Data Using Discrete Transforms. Numerical Methods (Fourth Edition), G. Lindfield and J. Penny, Eds, 383-431.
[53]. Stanković, R. S., & Falkowski, B. J. (2003). The Haar wavelet transform: its status and achievements. Computers & Electrical Engineering, 29(1), 25-44.
[54] Felja, M., Bencheqroune, A., Karim, M., & Bennis, G. (2023). The Effectiveness Daubechies Wavelet and Conventional Filters in Denoising EEG Signal. International Conference on Digital Technologies and Applications, 991-999.
[55]. Bahri, S., Awalushaumi, L., & Susanto, M. (2018). The approximation of nonlinear function using daubechies and symlets wavelets. First International Conference on Mathematics and Islam, 300-306.
[56]. Torshizian, H., Afzal, P., Rahbar, K., Yasrebi, A. B., Wetherelt, A., & Fyzollahhi, N. (2021). Application of modified wavelet and fractal modeling for detection of geochemical anomaly. Geochemistry, 81(4), 125800.
[57]. Ge, H., Sun, Z., Lu, X., Jiang, Y., Lv, M., Li, G., & Zhang, Y. (2024). THz spectrum processing method based on optimal wavelet selection. Optics Express, 32(3), 4457-4472.
[58]. Bølviken, B., Stokke, P., Feder, J. and Jössang, T. (1992). The fractal nature of geochemical landscapes. Journal of Geochemical exploration, 43, 91-109.
[59]. Cheng, Q., Agterberg, F. and Ballantyne, S. (1994). The separation of geochemical anomalies from background by fractal methods. Journal of Geochemical Exploration, 51, 109-130.
[60]. Lima, A., De Vivo, B., Cicchella, D., Cortini, M. and Albanese, S. (2003). Multifractal IDW interpolation and fractal filtering method in environmental studies: an application on regional stream sediments of (Italy), Campania region. Applied geochemistry, 18, 1853-1865.
[61]. Yousefi, M., & Carranza, E. J. M. (2015). Prediction–area (P–A) plot and C–A fractal analysis to classify and evaluate evidential maps for mineral prospectivity modeling. Computers & Geosciences, 79, 69-81.
[62]. Paravarzar, S., Mokhtari, Z., Afzal, P., & Aliyari, F. (2023). Application of an approximate geostatistical simulation algorithm to delineate the gold mineralized zones characterized by fractal methodology. Journal of African Earth Sciences, 200, 104865.
[63]. Zuo, R., Cheng, Q. and Xia, Q. (2009). Application of fractal models to characterization of vertical distribution of geochemical element concentration. Journal of Geochemical Exploration, 102, 37-43.
[64]. Madani, N. and Sadeghi, B. (2019). Capturing Hidden Geochemical Anomalies in Scarce Data by Fractal Analysis and Stochastic Modeling. Natural Resources Research, 28, 833-847.
[65]. Ghaeminejad, H., Abedi, M., Afzal, P., Zaynali, F., & Yousefi, M. (2020). A fractal-based outranking approach for integrating geochemical, geological, and geophysical data. Bollettino Di Geofisica Teorica Ed Applicata, 61(4), 555-588.
[66]. Mahdiyanfar, H., & Seyedrahimi-Niaraq, M. (2022). Improvement of geochemical prospectivity mapping using power spectrum–area fractal modelling of the multi-element mineralization factor (SAF-MF). Geochemistry: Exploration, Environment, Analysis, 22(4), geochem2022-015.
[67]. Seyedrahimi-Niaraq, M., & Hekmatnejad, A. (2021). The efficiency and accuracy of probability diagram, spatial statistic and fractal methods in the identification of shear zone gold mineralization: a case study of the Saqqez gold ore district, NW Iran. Acta Geochimica, 40, 78-88.
[68]. Seyedrahimi-Niaraq, M., Mahdiyanfar, H., & Mokhtari, A. R. (2023). Application of geochemical structural methods to determine lead-contaminated areas related to mining activities. Journal of Analytical and Numerical Methods in Mining Engineering, 13(34), 41-55.