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One of the most critical designs in open-pit mining is the ultimate pit limit (UPL).
The UPL is frequently computed initially through profit-maximizing algorithms like
the Lerchs-Grossman (LG). Then, in order to optimize net present value (NPV),
production planning is executed for the blocks that fall within the designated pit
limit. This paper presents a mathematical model of the UPL with NPV
maximization, enabling simultaneous determination of the UPL and long-term
production planning. Model behavior is nonlinear. Thus, in order to achieve model
linearization, the model has been partitioned into two linear sub-problems. The
procedure facilitates the model solution and the strategy by decreasing the number
of decision variables. Naturally, the model is NP-Hard. As a result, in order to
address the issue, the Dynamic Pit Tracker (DPT) heuristic algorithm was devised,
accepting economic block models as input. A comparison is made between the
economic values and positional weights of blocks throughout the steps in order to
identify the most appropriate block. The outcomes of the mathematical model, LG,
and Latorre-Golosinski (LAGO) algorithms were assessed in relation to the DPT on
a two-dimensional block model. Comparative analysis revealed that the UPLs
generated by these algorithms are consistent in this instance. Utilizing the new
algorithm to determine UPL for a 3D block model revealed that the final pit profit
matched LG UPL by 97.95%.

1. Introduction

Various designs should be carried out for open
pit mining. In general, open pit mines commonly
are designed in two stages: Ultimate Pit Limit
(UPL) optimization and production planning. UPL
is the term used to refer to the ultimate boundary of
an open pit mine that is attained upon the mine's
decommissioning. In reality, the economic
threshold of surface mining operations is
established by the outline. This indicates that
surface mining beyond the boundary is not
economically viable, and miners are advised to
contemplate adopting an underground approach or
abandoning the operation entirely. So, UPL design
itself is an economic evaluation. In this way, the
most common goal of UPL determination is to
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maximize profits. Following this, long- and short-
term production planning will be conducted to
achieve the highest Net Present Value (NPV). Like
other long-term economic projects with huge
amounts of investments. Ideally, the criterion of
ULP optimization should be maximization of NPV
of the pit [1], which previously was justified by
Whittle [2]. This means the extraction sequence of
blocks and UPL should be determined at the same
time.

In the past decades, some algorithms have been
proposed for designing of the final pit with
mathematical, heuristic, and meta-heuristic
approaches. The Floating Cone (FC) algorithm [3]
and its modified methods [4] and Krobov algorithm
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[5] are some of the heuristic algorithms for the UPL
determination. The algorithms focused on
undiscounted profit maximization instead of NPV
maximization. Meta-heuristic methods such as the
Genetic Algorithm (GA) [6] and artificial neural
networks (ANN) [7] have been used to determine
UPL. In this regard, Sayadi et al. [8] developed a
new 3D pit optimization algorithm using the neural
network and applied it in an economic classified
block model. Franco-Sepulveda et al. [9] also
discussed the application of ANN in open pit
mining. Jodeiri et al. [10] introduced a Flashlight
Algorithm (FL) as a heuristic approach to
determine UPL. Unlike other heuristic algorithms,
it is based on the movement from bottom to top.
According to the results presented by the
researchers, the FL algorithm performed better
than Korobov and FC algorithms in the examined
cases. Turan and Onur [11] also developed an
improved floating cone algorithm to optimize open
pit mine design and production planning. The
mentioned algorithms have been developed based
on approximate approaches which means they
don’t guarantee an optimal solution. In contrast,
some algorithms are based on mathematical
solutions. Lerchs-Grossman's algorithm (LG) [12]
based on graph theory is a mathematical approach
and it finds the optimal solution. Liu and Kozan
[13] developed two novel graph-based algorithms
based on network flow graph and conjunctive
graph theory. Esmaeil et al. [14] developed a
logical mathematical algorithm that considers the
important designing parameters and the mining
economy. The mathematical approaches still aim to

design the UPL according to the profit
maximization. Another problem with the
mathematical algorithms is their immense

complexity of understanding and programing. On
the other hand, the running time of solution will
considerably increase with increase in the size of
the problem. Another weakness of the algorithms
reviewed is that they do not provide extraction
sequences for the mining blocks.

Unlike the above methods, some algorithms are
also provided for the simultaneous determination
of the UPL and the extraction sequence of mining
blocks. Caccetta and Hill [15] and Saleki et al. [16]
mathematically proved that the UPL resulted from
NPV maximization is smaller than, or equal to, the
one resulted from NPV maximization. This means
that theoretically and ideally there is no warranty
that LG's ultimate pit outline produces the
maximum NPV. So, Roman [17], Gershon [18],
Wang and Sevim [19, 20, 21], Askari-Nasab and
Awuah-Offei [22], Latorre and Golosinski [23],
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and Saleki et al. [24] developed innovative
methodologies and heuristic algorithms to
determine the final pit with the aim of NPV
maximization. The disadvantages of these
methods, or some of them, include lack of
mathematical proof, two-dimensionality,
complexity, and non-use in industrial and
commercial terms.

Another classification of approaches dealing
with open pit mine design is
deterministic/uncertain. During the past decade,
several approaches considering economical and
geological factors uncertainties in open pit mining
have been developed. Dimitrakopoulos [25]
considered a new mine planning paradigm
integrating stochastic simulation and stochastic
optimization. Benndorf and Dimitrakopoulos [26]
developed a stochastic integer programming
formulation (SIP) to integrate geological
uncertainty described by sets of equally possible
scenarios of the unknown orebody. Chatterjee et al.
[27] implemented a minimum cut network flow
algorithm for the optimal production phase and
ultimate pit limit design under commodity price or
market uncertainty. Lamghari and
Dimitrakopoulos [28] introduced a new open-pit
mine production scheduling problem (MPSP)
formulation accounting for metal uncertainty and
considering multiple destinations for the mined
material, including stockpiles. They compared four
different heuristics for the problem. Gilani and
Sattarvand  [29] developed a  stochastic
optimization algorithm based on ant colony
optimization (ACO) approach to integrate
geological uncertainty described through a series
of the simulated ore bodies. Richmond [30]
proposed an algorithm integrating Monte Carlo-
based simulation and heuristic optimization
techniques which can account explicitly for
commodity price cycles and uncertainty.
Upadhyay and Askari-Nasab [31] presented
simulation optimization framework/tool to account
for uncertainties in mining operations for robust
short-term production planning and proactive
decision making. Paithankar and Chatterjee [32]
used the maximum flow algorithm with a genetic
algorithm to generate the long-term production
schedule. Rimele et al. [33] studied the combined
effect of geological and commodity price
uncertainty. Gilani et al. [34] used a stochastic
particle swarm based model to consider geological
uncertainty in long term production planning
optimization. Acorn et al. [35] used a heuristic pit
optimizer to manage the effect of geological
uncertainty in the resources within a pit shell with
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multiple uncertainty rated solutions. Lagos et al.
[36] also presents an adaptive optimization scheme
for multi-period production scheduling in open-pit
mining under geological uncertainty. Armstrong et
al. [37] developed an adaptive stochastic
optimisation approach for multi-period production
scheduling in open-pit mines under geological
uncertainty, and compared it to an existing two-
stage optimisation method. Danish et al. [38]
presented a Simulated Annealing based stochastic
optimization algorithm to integrate geological
uncertainty into the optimization process while
considering stockpiling options and other relevant
constraints.

Industrially, as well as practically speaking,
algorithms for open pit design are the core of
technical and commercial software packages
widely used in the mining industry. Educationally,
they are an essential component of surface mining
courses for future mining engineers. These
algorithms are easier to understand for educational
purposes than more sophisticated methodologies,
which enable students to better understand open pit
mining design. The literature review indicates that
in recent years there has been less emphasis on
innovative heuristic algorithms. On the other hand,
it has been partially neglected to develop
algorithmic solutions aiming at NPV maximization
as the ideal goal of UPL optimization and design.
Furthermore, the topic of UPL and production
planning are among challenging mathematical
optimization problems in which researchers are
interested and come up with new algorithms and
solutions. So, new solutions to the problems can
develop the area in different ways. Consequently,
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as the literature review shows, the new approaches
can be bases to lead researchers to think up and find
new ideas about open pit mining to increase the
accuracy and efficiency of the approaches. In this
regard, broadening the mathematical definition of
the optimization goal of UPL and development of
solutions to the models are some key aspects of
open pit mining which need more attention.
Therefore, methodologies are needed seeking
novel solutions aiming at UPL and NPV
optimization simultaneously. As mentioned, one of
the main approaches in optimization is
development of heuristics to combine UPL and
blocks extraction sequence.

In this paper, an integer mathematical model is
presented to determine the optimal final pit by
maximizing NPV. Because the proposed model is
non-linear and complicated to solve, it has been
linearized in two steps. Then, a heuristic algorithm
was developed to solve the model. For a 2D block
model, the results of the objective function and the
proposed algorithm were compared with the results
of other algorithms. The algorithms have been
applied to determine simultaneously the ultimate
pit limit and blocks' extraction sequence of a 3D
economic block model.

2. Mathematical model of ultimate pit limit to
maximize NPV

The final pit limit strategy determination can be
illustrated in Figure 1. In this process, after
removing the dispensable blocks, the optimum
order of extraction of the ore blocks will be
determined.

Determination of
mining sequence of
selected blocks

Selecting the effective
blocks on ultimate pit
determination

Calculating the Determination of
cumulative NPVs of all optimal ultimate pit
the effective blocks limit

Figure 1. Suggested process of determination of the optimal ultimate pit limit

2.1. Notation

In table 1, the indices, sets and parameters related
to sets are presented for use in this paper. Also, the
right-handed coordinate system used in the
modeling is shown in Figure 2.a. Accordingly, the
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x axis represents the vertical direction with index
of i. The y axis is east-west, with index ofj, and the
z axis is north-south and its index is k. The visual
definitions of the sets have been illustrated in
Figure 2.b.
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Table 1. The indices, sets and parameters related to sets

Explanation Set/Index/Parameter related to sets
number of blocks inside the biggest possible pit (BPP) N
set of integer numbers Z
set of coordinates of all blocks within the ore body OB c 73
set of coordinates of blocks within the BPP BPP c 73
coordinates of the blocks within BPP In horizon i BPP, c 73
set of coordinates within the BPP; that are valid in the defined conditions BPPL.jk = {(i,]", k') € BPPL.|k' *k /\]" * ]}
set of coordinates of blocks within the downward cone of block #jk without its DC. .. 73
coordinate Uk
set of coordinates of the blocks within the BPP and outside DC;j,and below 0DC: C T3
the horizon i yk
(G=1,j,k=1),~1,jk), \
set of coordinates of blocks above the block 7k in the horizon i — 1 that must I (-1jk+1),(-1j-1k-1), I
be removed to extract it. (in 3D models 9 blocks for each block (1: 9) and for UB;j, = 4 (i-1,j-1k),(-1j-1k+1), 5 cz3
2D models 1:3) 1i—-1,j+1L,k-1),(—-1,j+1k),l
(i—1j+Lk+1) )
Between the above defined sets, the following imaxV
relations are established:
U BPP; (3)
BPP c OB (D i1
BPP, c BPP ) 0DCyj. = (BPP\DCyj.)\BPP; (4)

Other parameters and decision variables are also
given in Table 2.

Table 2. Parameters and Decision Variables

Explanation Parameter/decision variable
value of block #jk (assuming the stability of economic vV
parameters over time) ijk
highest (optimal value) of the cumulative Net Present
Value NPVmaX
integer decision variable represents the optimal order of y.. el
extracting the block ijk ik

binary variable indicates the presence or absence of block

ijk in the ultimate optimum pit

0 if the block is out of optimum pit limit

1 if the block is within optimum pit limit

Augxiliary binary variable to prevent equalization of the
values of yjx and i« decision variables

Gy iy €101

Discount rate for the period of the extraction of one block  C
A large integer number M
2.2. Mathematical modeling
X S X

The objective function of the traditional ultimate
pit limit determination for undiscounted profit
maximization is shown in Eq. (5). Most of the
ultimate pit limit determination algorithms have
been developed to achieve a precise or approximate
answer to this objective function.

Z Ve X%

(i,j k)eOB

Max Z = )

Subject to:
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(6)
V(i,j,k)eOB, (i',j",k") eUB

In order to determine the final pit with the aim of
maximizing NPV, the model should be written for
all the blocks. Its objective function must have two
sets of variables simultaneously, one variable that
determines the optimal final pit and the other for
optimal extraction sequence. So each block has two
variables, one for its extraction sequence, and the
other to define its existence or not within the final

pit.
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b) Definition of BPP;, BPP!¥, DC,j,., ODCyjy, UByjy,

Figure 2. Block model of deposit and axes of x, y and z, and illustration of sets defined in Table 1.

Since, the search space for the problem solution
includes all the blocks in the deposit, the size of the
problem increases dramatically. To reduce this
huge size, one of the techniques suggested by
Wang and Swim [20] is used. It is the
determination of a pit as the biggest possible pit
(BPP) by considering the technical slope and
permitted mining limits. This pit includes the
deepest and horizontally farthest ore blocks (Figure

3). In fact, the set of the blocks within BPP are the
blocks effective on the UPL determination. The
technique also has been used before in heuristic
algorithms [10, 24]. Using this technique, rubbish
blocks that have no effect on the final pit
determination will be eliminated from the
calculations. The total space of a 2D deposit and its
BPP, are shown in Figures 3a and 3b, respectively.
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ore Blocks, W: waste Blocks)

w| lw| o] o 0O | W|o|WwW | w|Ww
W lw/|lo | WwW|WwW|w]|o 0| 0 | W
w | w|w]| o 0 0 (W | o0 | wW|Ww
w | w| | w]| o 0| W | W |WwW | WwW|Ww
W W | W | W |W|W|W|W|W|W
a) Entire search space for the whole of the ore body to design the UPL (O:
w| lw| o] o 0O | W | o0 |W | | W|Ww
W lw/|lo|WwW|WwW|w]|o 0| 0 | W
w| lw| | w]| o 0 0 (W |0 | wW|Ww
w | lw| | w]| o 0 | W | W |WwW | wW|Ww
W W | W | W |W|W|W|W|W|W
—BPP

According to the above description,

presented in Figure 1.

b) BPP formation and restricting search space

Figure 3. Concept of BPP

the
following non-linear integer programming model
is presented to find the optimal final pit limit with
NPV maximization. The model expresses steps

Max 7 = Z Vl./.k X(
(i,j,k)eBPP

Subject to:

1+c¢

Vijk
) XX gk (7

X S Xy v(i,j,k)e BPP, (i',j',k") e UB,, (8)
YVie > Vi v(i,j,k) e BPP, (i',j',k") eUB,, )
yijk _yijk' -M Xqijk,iﬂc' <0
v(@,j,k)eBPP, (i,j' k" e BPP* (10)

Vi =Yg + M XA=qy ) >0
Ve = Vi —M Xqy 590 <O

e s Vi, j,k) € BPP,(i", j",k") € ODC,, (11)
Vip = Vogr + M X (=g o) >0
1<y, <N V(i j,k)e BPP (12)
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The constraints (8) and (9) are resulted from the
technical necessity of blocks removal order. The
constraint (8) ensures removing 9 blocks
immediately above each block before its
extraction. Eq. (9) also states that the extraction
number of each block is larger than the extraction
number of its 9 immediate upper blocks.

The constraint (9) ensures the inequality of the
extraction sequence number of blocks within the
upward cone of the block ijk with the extraction
sequence number of block ijk. So, the model needs
some others constraints to prevent equality
between the ijk block’s sequence and blocks within
the same level of 7 and also inside BPP but outside
the ijk downward cone. The constraints (10) and
(11), wusing the auxiliary binary variables,
guarantee the allocation of each extraction time to
only one block and each block to just one time. The
“g” is an auxiliary binary variable combined with
the big number of M (bigger than the total number
of blocks). During the calculations by examining
different values of ¢ (0 or 1) at the moment only
one of the equations in constraint (10) remains in
the solution process because the other one becomes
a valid term regardless of the values of “y”” as M is
a big number. For example, if ¢ is zero, the left side
of the second equation in (10) is always positive
and valid. So this equation is negligible and only “
Vi =V <07 will be the effective constraint

which means y; and y; are not equal. The solver
will examine both 0 and 1 for ¢ and finds the
optimal answer. Equations (10) and (11) prevent
equality of variable y; in levels, and within ODCjy,
respectively.

The number of main variables of this objective

function is N integer variables () ) and N binary

ones, totally 2 x N. The number of auxiliary
variables depends entirely on the shape of the BPP
and the sets associated with their constraints.

It should also be noted that by setting the
discount rate to zero in the objective function (7),
the model turns to the model of the ultimate pit
limit with profit maximization. This indicates that
the model of the ultimate pit limit with profit

Journal of Mining & Environment, Vol. 15, No. 4, 2024

maximization is a special state of the final pit with
NPV maximization.

2.2.1. Linearizing the objective function

Function (7) is a nonlinear-integer model and due
to the huge number of its decision variables, it is
very difficult to solve and requires powerful
computer memory and processors. Usually, solver
software programs find non-accurate and local
answers to these kinds of problems. To solve this
problem, according to the main strategy, the
function is divided into two linear steps. In the first
step, the optimal extraction sequence for all blocks
will be obtained. Subsequently, the final pit limit
will be determined. In this way, the nonlinear
function is broken into two linear functions, each
of which has N variables.

2.2.1.1. First Step: Determining the optimal
sequencing of blocks

To solve the objective function (7), it is
necessary to determine the optimal removal order
of blocks. To maximize the sum of terms of
function (7), each term has to be maximized in
accordance with the constraints. In a technical
sense, since the coefficient 1/(1+¢) is less than 1,
subsequently the ore blocks (positive terms) must
be mined earlier (lowest possible V), and the

waste blocks (negative ones) should be extracted
afterward.

The mathematical model of the first stage is
represented in two equivalent forms of (13) and
(14):

Max Z = _IXVijk XY i

yijk >yi]"7c'

(i .j k)eBPP (13)
or
(i ,j )k )eBPP
Subject to:
Y(i, j,k) e BPP, (i',j',k') € UB,, (15)
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yijk _yijk' -M Xqijk,iﬂc' <0

v(@,j,k)eBPP, (i,j'.,k") e BPP* (16)
yijk _yij7c' +M X(l _qijk,iﬂc') >0
YVig = Virnr -M XY e iy <0
Y Y Wi, j.k)eBPP(i",j"k")eODC,, (17)
yij _yi"j"k“ +M x (1 _qijk,i’j"k") >0
1<y, <N Y(i, j,k)e BPP (18)
The equations (13) and (14) sort the extraction
sequence of blocks within BPP according to their X SXppp
value subject to the mining and technical (20)

constraints in a descending way to extract the
blocks with higher value earlier.

2.1.1.2. Second Step: Determination of optimum
pit limit

In the mathematical model of second step, the
variables solved in function (13) or (14) are used as
constant coefficients in determining the net present
value of each block. In this step, the binary
variables associated with the final pit are unknown
and should be determined. It should be noted that
at this stage, the discount rate parameter (c) plays
an important role in determining the net present

value of each block (NPV; ). The objective

function of the second stage is expressed as
follows:

Vijk
Max 7Z = Z Vl.jkx( ) XX (19
(i.j J)eBPP l+c )
%,—J
NPVijk
Subject to:
J—)
. -1 -1 ]2 | -1 -1
1
Vladl+alalala
1 -1 [+ -1 | -1

Figure 4. 2D economic block model example
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v(i,j,k)e BPP, (i',j' k') e UB,

To solve the objective function (Eq. 13 or 14),
the cumulative NPVs of the blocks should be
calculated and drawn graphically. Then the global
extremum of the cumulative values is defined as

the ultimate pit limit (' yp, ). In other words, the

block with order of y y,, -~ and all blocks having

the extraction order less than it, are considered as
the optimum final pit.

Flowing the model development, a small 2D
example is explained in order to illustrate steps
involved in the proposed model. At first, the
objective function (7) for the two-dimensional
block model assumed in Figure 4 is solved with
Lingo. This solution is in one step. Then the same
objective function is solved in two steps by using
Equations. (13) or (14) and (19) and the final pit
can be calculated. Figure 5 shows the BPP for the
model

A2 )11

T T S T O S

S S ST I
< BPP

Figure 5. BPP for the two-dimensional economic
block model
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The results from solving with Lingo for this
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c=01
model by following parameters are represented in
Figure 6: M=100
N=9
-1 -1 +2 -1 -1
1,3 1,2 1,1 0,6 0,5
+4 -1 -1
1,4 0,7 0,8
+1
0,9
Vy

Figure 6. Determination of UPL and optimal extraction order of blocks simultaneously in one step

Solving the model in two steps:
A) First step: Determining the optimum
sequences of extraction of blocks

In this step, decision variables of the mining
orders of blocks are specified. Subsequently the
optimum pit should be determined. After solving
this model, its global optimal solution was
obtained. The obtained optimal sequence is shown
in Figure 7.

-1 -1 +2 -1 -1
3 2 1 6 5
+4 -1 -1
4 7 8
+1
9
Vij
Vi

Figure 7. Determining the optimal sequences of the
whole of BPP blocks
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B) Second step: Ultimate pit limit determination

In the second step, determining the ultimate pit
limit, the answers obtained for the decision
variables of the first step (mining sequencing of
blocks) are used as fixed parameters in the second
stage. The results of this stage obtained from the
Lingo solver are shown in Figure 8. As the results
show, the final pit with an NPV of 2.972 currency
units (CU) and 4 blocks has the highest NPV. The
cumulative values of the NPVs are presented in
Table 3. In Figure 9, the graph of the cumulative
values is shown.

1 -1 +2 -1 -1
1,3 12 1,1 0,6 0,5
+4 -1 -1
1,4 0,7 0,8
+1
0,9

Vij

Figure 8. Optimum UPL obtained in the second step
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Table 3. Calculating the cumulative NPV for the example model

Block Ovtimal Sequencin Value NPV Cumulative NPV
Coordinate P quencing (CU) (CU) (CU)

(1,3) 1 2 1.818 1.818
(1,2) 2 -1 -0.826 0.991
(1,1) 3 -1 -0.751 0.24
(2,2) 4 4 2.732 2.972 (NPVuw)
(1,5) 5 -1 -0.62 2.351
(1,4) 6 -1 -0.564 1.787
(2,3) 7 -1 -0.513 1.273
2.4 8 -1 -0.466 0.807
(3,3) 9 1 0.424 1.231

35

3.0
S 2.5
)
E 2.0
V-4
ﬁ 15
E
O 1.0

0.5

0.0 T T T T T T T T ]

0 1 2 3 4 5 6 7 8 9 10

Optimal Sequencing

Figure 9. Cumulative chart of NPVs and its maximum value

In this example, the results of the nonlinear and
linear strategies are in agreement. But one-step
solution for real deposits with a large number of
variables, is local, approximate, and time-
consuming. It is therefore very difficult to
determine its exact optimal answer. Due to the fact
that each linear sub-problem contains one-half of
the total number of non-linear variables, breaking
the main issue into two linear sub-problems is an
appropriate mathematical solution.

3. Heuristic Solution

The mathematical model developed is NP-Hard
and is so difficult to solve by a mathematical
solution in a reasonable time. So, one of the most
used strategies to find an acceptable solution for
this type of optimization problems is a heuristic
algorithm. These algorithms are looking for the
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best answer during a simpler process which is
achievable in a reasonable time.

To solve the model, the heuristic algorithm called
Dynamic Pit Tracker (DPT) shown in Figure 10
has been developed. The algorithm’s input is the
economic block model of the ore body. To use the
algorithm, the monetary value and positional
weight (PW) of blocks are needed. PW is the sum
of the positive values of blocks within a block's
downward cone (DC). Previously, downward
cones and PWs were only used in grade block
models [18, 24], but in this study, they are used in
economic block models as well. The concepts of
DC and PW are shown in Figure 11.

The downward cone of a block identifies blocks
whose extraction paths are mostly determined by
its extraction. So, it indicates that extracting that
block opens and facilitates access to them. In
contrast, not to extract that one makes extraction of
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blocks inside the downward cone impossible.
According to the meaning and idea of
the downward cone, during mining, we want to
exploit ore blocks with higher values earlier.
While comparing candidates, PW's concept helps
us determine the path leading to parts with higher
grades and values. Consequently, the greater PW
of a block means its removal leads the miner to
blocks with higher values.

In each step of the algorithm, firstly candidate
blocks whose extraction technically is possible are

1383
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compared. The first criterion compared between
the candidates is their economic values. So, the
block with the highest value must be selected to
lead the process to the higher NPV. Otherwise, if
there are at least two blocks with the highest value,
then their PWs should be compared. The logic
behind the second criterion is that the higher PW
leads the process to higher grade part of the ore
body which logically will result in a higher NPV.
The algorithm has been explained in details in the
next section through a numerical example.
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| Enter the economic block model |

| Determine BPP |

'

| Calculate PW of BPP blocks |

Cumulative NPV =0

Max(NPV) =0
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Figure 10. The developed Dynamic Pit Tracker algorithm to find UPL
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Figure 11. The concept of DC and PW for an ore block
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3.1. A Numerical Example

In this section, using a simple 2D block model
(Figure 12) the process of the algorithm is
explained. Figure 13 shows the input data (V and
PW) calculated. Assuming that the discount rate
for each block is 3%.

Journal of Mining & Environment, Vol. 15, No. 4, 2024

3
1 (-1]-1]3|-1|-1]-1
6

3 -1|-11}]3]-1]-1

—BPP

1 2 3 4 5 6
-1 -1 3 -1 -1 -1
1
6 15 15 11 5 4
5 6 -1 1
2
1 4 4 3
1 3
3
0 0
\%
«— Block Cell
PW

Figure 13. The input data calculated for each block cell according to DPT requirements

Figure 14 shows the steps of the algorithm
solution. In each step, the extractable blocks are
candidates. By comparing the Vs and PWs of
candidates, the most suitable block will be mined.
First, their Vs are compared. If one has the highest
V, it will be removed. But if some candidates have
equal V, their PWs must be examined and the one
with the highest PW will be selected. If there is
more than 1 block with the highest PW, randomly
one should be chosen. Then, the overall NPV of the
mined blocks will be calculated after each
selection. When one block has been selected to
extract, it must be deleted from the block model to
update the topography for the next turn. In each
step, if the updated cumulative NPV is greater than
the previous value stored, the previous value will
be replaced by the updated one. This point is a local
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extremum and is called the temporary pit limit.
Based on the calculations, the cumulative NPV was
plotted. For this example, Figure 15 shows the
cumulative NPV graph. A total of 5 local extrema
have been calculated, of which the 5th is the
maximum and the final pit value.

Based on the solution, the ultimate pit for the
block model contains 12 blocks with 10.999 CU.
The model also was solved by the mathematical
solution which was compared with the algorithm
results (Figure 16). The comparison for this
example clearly shows the exact correspondence
between the optimal solution and the algorithm’s
approximation. Scientifically, examples cannot
prove the optimality of algorithms but can
demonstrate their performance.
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Figure 14. Steps of application of DPT calculations for the 2D example

1386



Saleki et al.

Journal of Mining & Environment, Vol. 15, No. 4, 2024

12 «

10 o

Cumulative NPV
N

10.999

1 2 3 4 5

6

7 8 9 10 11 12

Extarction Sequence

Figure 15. The graph of cumulative NPV and the local extrema
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a) The extraction sequences based on algorithm’s results
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12 11

b) The optimal extraction sequences (mathematical solution)

Figure 16. Comparison between results of
mathematical and heuristic solutions

4. A comparison between the developed
algorithm and other algorithms

In this section, the heuristic algorithm has been
applied to find the final pit and extraction sequence
of the block model shown in Figure 17. The
algorithm was compared with the results of the
objective function developed, the LG algorithm,
and the Latorre-Golosinski (LAGO) algorithm
[23]. To do this, at first the UPL based on the
undiscounted profit has been determined by LG
method. So, the LG algorithm (Figure 18) values
the ultimate pit at 253 CU. This result will be
compared with the result of the algorithm
developed at 0 discount rate to validate it.
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At the second step of comparison, the answer to
the objective function of this block model as an
optimum mathematical solution was compared
with the results of the LAGO heuristic algorithm.
So, the final pit and optimum extraction sequence
obtained from the objective function and the
LAGO algorithm are shown in Figures. 19 and 20,
respectively, for a 3% discount rate per block. As
can be seen, the results of the objective function
and LAGO algorithm are in agreement. The pits
generated are smaller than the LG pit which has
100 blocks with an undiscounted profit of 250 CU.
Consequently, their NPV at a discount rate of 3%
per block is 35 CU.

As the third step, the sequence of extraction has
been determined by the new algorithm. The
extraction sequence has been shown in Figure 21.
To determine the UPL, the cumulative NPV has
been calculated. The graph of cumulative NPV is
plotted and shown in Figure 22. According to the
result and the procedure of the algorithm, the
maximum NPV occurs in the block with 100
extraction order, which is determined as the final
pit. So, the overall NPV for the ultimate pitis 29.11
CU.

Consequently, the pit boundary determined by
the proposed algorithm fully agrees with the
objective function and the LAGO algorithm.

Additionally, as another way of validation, the
final pit determined by the algorithm developed for
zero discount rate is completely consistent with the
LG pit (see Figures 17 and 23).
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Figure 17. The hypothesized 2D block model [23]
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Figure 18. The optimum pit limit with LG
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Figure 19. Optimum pit limit with the highest NPV at 3% discount rate
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Figure 20. The optimum extracting sequence of the blocks of the ultimate pit limit at 3% discount rate
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Figure 21. The extraction sequence of the block model resulted from the new heuristic algorithm

30

20

Cumulative NPV

-10

20

20 I | I I I I | I
0 20 40 60 80 100 120 140 160 180
Sequence Number

Figure 22. The cumulative NPV graph resulted from the new algorithm
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Figure 23. The ultimate pit resulted from the new algorithm at 0 discount rate

5. Application of the developed algorithm in a
3D block model

The algorithm proposed has been applied to a 3D
economic block model. Table 4 presents the block
model characteristics. There are 6533 blocks
involved in the BPP, and the LG pit limit profit
amounts to 26761 CU. The heuristic algorithm
with zero discount rate produced a final pit limit
with a value of 26213 CU. This shows 97.95%
accuracy according to the LG result. If the discount
rate is set at 0.1% per block the maximum NPV
will be 5660 CU. The graph of cumulative NPV is

shown in Figure 24. Figure 25 shows the ultimate
pit limit plot.

Table 4. The characteristics of the 3D block model

Parameter Value
Number of all blocks 20680
Blocks’ dimension (m) 10x10x10
East-west (blocks) 40
South-north (blocks) 47
Vertical (blocks) 11
number of BPP blocks 6533
Number of ore blocks 1784
Number of effective waste blocks 4749
Percentage of BPP to all blocks 31.6

1 1

2000

5000 7000

Extraction Sequence

Figure 24. The cumulative NPV graph for 3D block model
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Figure 25. The plot of the ultimate pit according to the result of the new algorithm (each cell shows the number
of blocks vertically belonging to the final pit in that point)

6. Conclusions

In conclusion, this paper introduces a
mathematical integer model for optimizing the
Ultimate Pit Limit (UPL) to maximize Net Present
Value (NPV). When the discount rate in the
objective function is set to zero, the model
simplifies to the common UPL model focused on
profit maximization. The key finding is that the
primary solution for UPL lies in NPV
maximization.

The developed objective function is non-linear,
necessitating a two-step linearization process
involving  extraction sequence and UPL
determination. Due to the complexity, large
number of decision variables, and constraints, the
model is classified as an NP-hard optimization
problem. To address this challenge, a heuristic
methodology named Dynamic Pit Tracker (DPT)
was derived through linearization. This heuristic
algorithm offers a simpler and more programmable
solution than conventional complex algorithms.

The DPT algorithm takes the economic block
model as input, calculating a positional weight
(PW) for each block. During the algorithm's
execution, the economic values and PWs of
candidate blocks are compared. The one with the
highest value or PW will be selected at each step.
This strategy aims to maximize NPV throughout
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the mine's lifespan. The results demonstrate that
the algorithm can yield an acceptable solution
within a reasonable timeframe.

Comparisons with other algorithms validate DPT
effectiveness, showing agreements on pit
boundaries and total pit values. In a 3D block
model, DPT achieved 97.95% accuracy compared
to the LG algorithm. Notably, DPT, in addition to
UPL determination, provides a mining extraction
plan resulting in an NPV of 5660 CU for the
orebody. It should be noticed also that for heuristic
algorithms the accuracy cannot be predicted based
on the previous studies and cases, but the logic of
the algorithms and the results of the studies can
show the overall trend of the accuracy.

Future studies should focus on enhancing
accuracy and developing commercial software
packages for practical application. Improvements
in comparison criteria, incorporation of additional
production planning constraints and targets,
consideration of uncertain parameters, and
comparison between the new algorithm and other
solutions are recommended to make the model
more comprehensive and applicable in diverse
mining scenarios.
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