Document Type : Review Paper

Authors

1 Ph.D. Candidate of Rock Mechanics, Faculty of Mining, Petroleum & Geophysics Engineering, Shahrood University of Technology

2 Shahrood University of Technology

10.22044/jme.2024.14299.2671

Abstract

The deformation modulus of rock mass is necessary for stability analysis of rock structures, which is generally estimated by empirical models with one to five input parameters/indexes. However, appropriate input parameter participation to establish a sound basis for a reliable prediction has been a challenging task. In this study, the concept of the principal input parameters was developed based on an analytical method with an emphasis on in situ stress. Based on analytical methods, Young’s modulus of intact rock, the joint’s shear and normal stiffness, joint set spacing, and in situ stress are introduced as the main principal input parameters. A review of seventy empirical models revealed that most of them suffered from a lack of analytical parameters. Due to considering practical issues, the geological strength index (GSI) is replaced with joint set spacing; moreover, the in situ stress effect is perceived by combining Young’s modulus and joint stiffness with specific confining pressure and normal stress, respectively. The integration of the analytical base input parameters and practical issues enhanced the reliability of empirical models due to the reasonable prediction of the deformation modulus to numerical or analytical deformability analysis.

Keywords

Main Subjects