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 Innovation in mineral exploration occurs either in the construction of new ore 
deposit models or the development of new techniques used to locate the ore 
deposits. Band ratio is the image processing technique developed for mineral 
exploration. The present study presents a new approach used to evaluate the band 
ratio technique for discrimination and prediction of the Iron-Titanium mineralization 
exposed in the Khamal area, Western Saudi Arabia using the ensemble Random 
Forest model (RF) and SPOT-5 satellite data. SPOT-5 band ratio images are 
prepared and used as the explanatory variables. The target variable is prepared in 
which (70%) of the target locations are used for training and the rest are for 
validation. A confusion matrix and the precision-recall curves are constructed to 
evaluate the RF model performance and the Receiver Operating Characteristics 
curves (ROC) are used to rank the band ratio images. Results revealed that the 3/1, 
2/1 & 3/2 band ratio images show excellent discrimination with AUC values of 
0.986, 0.980 & 0.919 respectively. The present study successfully selects the 3/1 
band ratio image as the best classifier and presents a new Fe-Ti mineralization 
image map. The present study proved the usefulness of the Random Forest classifier 
for the prediction of the Fe-Ti mineralization with an accuracy of 97%. 
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1. Introduction 

Band ratio is one of the most important remote 
sensing techniques used to locate the ore deposits. 
Selection of the best band ratio classifier can be 
performed either visually or statistically [1-22]. 
The present study presents a new approach used 
to predict the Iron-Titanium Mineralization 
exposed in the Khamal area, Western Saudi 
Arabia (Figure 1) using the RF machine learning 
algorithm and the ROC curves. Data-driven 
machine learning (ML) algorithms are capable of 
learning and modeling complex patterns in a large 
dataset [23]. The capabilities of machine learning 
predictive models have emerged as a powerful 
decision-making tool for mineral exploration. 
Machine learning algorithms provide a valuable 
prediction using several geo-datasets.  The 
Support Vector Machine (SVM) and the Random 

Forest (RF) are the most common ML models 
used to predict mineral occurrences [24-45]. 

Multi-criteria decision-making GIS predictive 
models (Knowledge-driven and data-driven) are 
developed to generate predictive favorability 
maps showing promising sites for mineral 
occurrences [29, 46-64]. The Random Forest 
regression is used to locate the gold deposits in 
the Rodalquilar mining district, Southern Spain 
[29]. Results indicated that the use of the RF 
offers several advantages over existing methods. 
Two individual regression models (KNN and 
SVM) and two robust ensemble methods (RFR 
and GBR) are developed to predict ore grades (Pb 
and Zn) in the Irankuh area of Central Iran [43]. 
Results revealed that the hybrid method is 
promising for predicting the ore elemental 
distribution. The ensemble learning models, 
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logistic regression (LR), and support vector 
machines (SVM) are compared to predict the 
lithological classes using geological and 
geochemical data [45]. Results emphasize the 
potential of ensemble learning models for 
lithologic classification. A decision support 
system based on remote sensing and GIS 
techniques is developed for gold-rich area 
mapping in SE Spain [50]. A Knowledge-driven 
predictive model is used to generate a favorability 
map for gold mineralization at the Bulghah gold 
mine area, in Saudi Arabia using the integration of 
several geo-datasets [56]. Also, a data-driven 
predictive mapping using the Random Forest 
algorithm is used to map mineral occurrences in 
the Baguio gold district, Philippines using 

different datasets [59]. The integration of Landsat 
ETM imagery, geochemistry, airborne radiometric 
data, and aeromagnetic data is performed to 
produce a mineral potential exploration model of 
the Riruwai Complex, Nigeria [62]. A knowledge-
driven GIS predictive model is used to generate 
the favorability maps for gold and copper 
mineralization for south Gabal Um Monqul and 
the Gabal Al Kharaza prospects, the northern 
Eastern Desert of Egypt [63]. A processed 
multispectral satellite data is used to map the gold 
deposits in the Hamissana area, NE Sudan based 
on a Random Forest predictive model [64]. 
Results revealed that ASTER and Sentinel-2 
datasets achieved very similar accuracy.  

 
Figure 1. Location map for the study area (modified after [20]). The yellow asterisk indicates the location of the 

study area. 

2. Study Area and the Fe-Ti Mineralization 

The study area is located in the northwestern 
part of the Arabian Shield (Figure 1). It is covered 
by a sequence of ultramafic-mafic rocks that 
belong to the Wadi Khamal-Wadi Murattijah 
complex [65]. It represents a well-known example 
of Neoproterozoic post-collisional layered mafic 
intrusions [66]. It hosts ore deposits characteristic 
of layered intrusions, including Fe-Ti oxides and 
Fe-Ti-apatite-rich nelsonite. Several authors 
studied the geology, mineralogy, stratigraphy, and 
mineralization of the Wadi Khamal Complex [67-

72]. The study area is dominated by a sequence of 
ultramafic-mafic rocks intruded on the 
metamorphic rocks of the Farri group and post-Al 
Ays granitoid rocks (Figure2). This rock sequence 
was intruded by younger granitic batholiths, and 
mafic dykes, and is locally overlain by Tertiary to 
Quaternary basalt flows, marine sediments, and 
alluvial terraces. The Khamal complex can be 
classified into four main units namely; 1) 
Marginal gabbro unit (KU1), 2) Anorthosites 
(KU2), 3) Central gabbros (KU3), and 4) 
Northern gabbronorite (KU4) [66]. The RF model 
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was applied to the SPOT 5 subsets covering the 
KU2 and KU3 units. The Fe-Ti mineralizations 
are commonly formed during the late stage of 
fractionation of basic magma and are mainly 
associated with the Gabbro-Anorthosite Complex. 
The main factor controlling the distribution of the 
mineralization in the study area is lithology. Two 

types of Fe-Ti mineralization are recorded [65]; 
(i) massive nelsonite bands of magnetite-ilmenite 
and apatite in different proportions, and (ii) 
massive magnetite-ilmenite ore found either as 
bands intercalated with nelsonite or as dike-like 
bodies hosted by anorthosite. 

 
Figure 2. Part of the geological map for the Khamal area, (modified after [66]). 

3. Methodology  

Spatial Data Science (SDS) is a part of data 
science concerned with the analyses of spatial 
data. One of the main activities of SDS is the 
predictive modeling. It is a statistical technique 
that utilizes machine learning algorithms to 
predict future outcomes with the aid of historical 
data. Figure 3 shows the general methodology 
used to predict Fe-Ti-mineralization and the 
selection of the best band ratio classifier.  SPOT 5 
data are digitally processed using PCI image 
processing software. Image subsets from the 
original multispectral images covering the study 
area are prepared. The band ratio technique is the 

main image processing technique used to generate 
SPOT-5 band ratio images which are used as 
explanatory variables in the Random Forest ML 
model. A dependent variable consisting of 106 
mineralized and non-mineralized locations is 
prepared. It is split into (70%) for training the 
model and (30%) for validation. A Random Forest 
model is performed using the ArcGIS Pro 
package. A confusion matrix and precision-recall 
curves are used for model performance and 
validation. The ROC curves are generated and 
evaluated to determine the most successful 
classifier for Fe-Ti-mineralization predication and 
mapping. 
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Figure 3. General methodology for prediction of Fe-Ti-mineralization using the RF ML model. 

3.1. SPOT 5 Satellite Data  

SPOT series are high spatial resolution Earth 
observation satellites operating in visible-near-
infrared wavelength regions. The SPOT 5 satellite 
contains two identical High-Resolution cameras 
providing 2.5 m and 5 m resolution in a 
panchromatic mode and a 10 m resolution in a 
multi-spectral mode. The SPOT 5 has four 
spectral bands: Band1 (0.50-0.59 µm); Band2 
(0.61-0.68 µm); Band3 (0.79-0.89 µm); and MIR-
band (1.58-1.75 µm). Several authors utilized 
SPOT 5 data in land use/land cover mapping, 
Natural disasters, and urban planning applications 
[73-79]. Few studies utilized SPOT data for 
geological mapping [7]. In the present study, 
image subsets from the original SPOT 5 
multispectral images are prepared and processed 
using the band ratio technique. 

 
 

3.2. Preparation of Explanatory and Target 
Variables 

The explanatory variables are represented by the 
band ratio images prepared from the multispectral 
SPOT-5 data. Band ratio is an important 
technique used for mineral identification and 
lithologic discrimination [1, 3, 4, 9, 18, 20]. SPOT 
5 satellite data is utilized for mapping gold 
mineralized diorite-tonalite intrusion in the 
Bulghah gold mine area, Saudi Arabia [7]. Band 
ratio technique is used to discriminate the 
listvenite and serpentinite rocks along some shear 
zones, in Saudi Arabia [20]. Figure 4 shows the 
results of the band ratio technique applied to 
SPOT data. These images are used to discriminate 
gabbros from anorthosite rocks and to predict the 
Fe-Ti mineralization. Visual inspection revealed 
that: 1) anorthosites have dark grey image 
signatures on images 4/1, 4/2 & 4/3 whereas 
central gabbros have bright grey image signature 
on 2/1 band ratio image.   
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Figure 4. Explanatory variables: SPOT 5 band ratio images. 

The target variable is represented by the 
mineralized and non-mineralized locations 
covered in the study area (Figure5). The 
mineralized locations are used after [66]. Two 
types of Fe-Ti mineralization are recorded in the 
study area; (i) massive nelsonite bands, and (ii) 
massive magnetite-ilmenite ore found as dike-like 
bodies hosted by anorthosite. The mode of 
occurrence of the mineralization and their 
dimensions in addition to the spatial resolution of 
SPOT 5 data are favorable conditions for the 
prediction of the Fe-Ti mineralization using a 
machine learning model. The last type of 
mineralization (massive magnetite-ilmenite dike-
like bodies) is the main target of the RF model. 
The non-mineralized sites are represented by the 
host rocks such as gabbros and anorthosites. The 
RF model is applied to the SPOT 5 subsets 
covered by the anorthosites and central gabbros. 

 
 
 

3.3. Random Forest (RF) Algorithm and Model 
Performance  

The Random Forest machine learning model is 
used to predict the Fe-Ti mineralization. The 
model falls under the umbrella of ensemble 
classifiers and is characterized by bootstrap 
aggregation and randomization. The RF model 
allows the user to build optimal decision trees 
based on the aggregation of multiple iterative 
trees built from randomly selected samples of the 
training step [80]. Several authors demonstrated 
the ability of the RF model to show the variable 
importance during the training and prediction 
stages [30,33,81].  The number of trees and the 
explanatory variables are the main parameters 
required to implement the RF model. In the 
present work, the number of trees is set to the 
default (100) whereas the explanatory variable is 
represented by the SPOT 5 band ratio images.  
Several authors utilized the RF model and other 
machine-learning models for mineral exploration, 
among them [30,33,39,40, 43,44,45,59, 82,83]. In 
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this study, confusion matrix and classification 
reports are generated to evaluate the model 
performance. Accuracy, precision, recall 
(sensitivity), and FI-score are generated and 
evaluated. In the present study, a precision-recall 
curve is evaluated for the model performance. It is 
a plot of the precision (y-axis) and the recall (x-
axis) for different thresholds [84, 85]. A 

precision-recall curve is useful in the case of 
imbalanced data (as in the case of our study) in 
which there are many observations of class 0 and 
few of class 1. The Receiver Operating 
Characteristics (ROC) curves are evaluated to 
select the best classifier from the explanatory 
variables. 

 
Figure 5. The target variable. Yellow dots represent the mineralized locations. 

4. Results and Discussion 

Collinear analysis is the study of the linear 
correlation between the independent variables. 
Results of this analysis revealed: 1) the presence 
of strong positive correlations between a) ratio 4/3 
and ratio 4/1 (R2= 0.97); b) ratio 3/1 and ratio2/1 
(R2= 0.86); c) ratio 4/2 and ratio4/1 (R2= 0.81); 
and d) ratio 3/2 and ratio 3/1 (R2= 0.81); 2) the 
presence of negative correlations between a) ratio 
4/3 versus 3/2, 3/1 and 2/1 ratios; b) ratio 4/2 
versus 3/2, 3/1 and 2/1; and c) ratio 4/1 versus 
3/2, 3/1 and 2/1. In the present study, all the above 

ratios are used as the explanatory variables during 
the implementation of the RF model. 

4.1. The Random Forest (RF) Model 
Evaluation 

The Random Forest model is implemented 
using a reference variable containing about (106 
points) of mineralized and non-mineralized 
locations. The model is trained using 70% of these 
points and is validated using the rest (30%). The 
six SPOT band ratio images are used as 
explanatory variables.  Figure 6 shows the 
variable importance of SPOT band ratio variables 
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during the training (Figure6a) and the prediction (Figure6b) stages. 

 
Figure 6. SPOT variable importance during, a) training and b) prediction stages. 

The ratios 4/3, 4/1, and 3/2 are the most 
important variables in the training stage with 
values reaching 28%, 27%, and 19% respectively. 
During the prediction stage, the ratios 4/1, 4/2, 

and 3/2 are the important variables reaching 42%, 
20%, and 18% respectively.  Table 1 shows the 
importance percentage for each variable during 
the training and prediction stages. 

Table 1. SPOT variable importance percentage. 
Variables I-train %train I-Pred %Pred 

RS-41 0.041082 27.328 0.06035 42.6 
RS-42 0.013397 8.912 0.02837 20.026 
RS-32 0.029056 19.328 0.02588 18.268 
RS-43 0.043331 28.823 0.016726 11.807 
RS-21 0.017216 11.452 0.009091 6.417 
RS-31 0.00625 4.157 0.00125 0.882 

 
The confusion matrix and the precision-recall 

curves are used for model performance and 
evaluation. The confusion matrix is organized to 
map the prediction classes to the original classes 
of the data. It reports the numbers of true positives 
(TP), false positives (FP), true negatives (TN), 
and false negatives (FN). During the training 
stage, among 106 samples of actual data, 66 
samples were classified as true positive, 3 samples 
as true negative, 8 samples as false positive, and 
29 samples as false negative. Figure 7 shows the 
confusion matrix of the RF model applied for 
SPOT ratios. For the prediction, among 32 (30%) 
samples of actual data, 28 samples are classified 
as true positive, and 3 samples are classified as 

true negative. The overall accuracy reached up to 
97%. Figure 8 shows the new locations of the Fe-
Ti mineralization predicted using the RF model.  

 
Figure 7. Confusion matrix of SPOT data. 
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Figure 8. New locations of Fe-Ti mineralization (black spots) predicted using the RF model. 

Due to the imbalanced observations of the 
dependent variable, the precision-recall curves 
have been constructed to show the model 
performance. Figure 9 shows the result of the 
precision-recall curves. Table 2 shows the 

variable performance items F1& AUC for each 
variable at the optimum threshold value. The 
ratios 3/1, 2/1 & 3/2 have the F1 & AUC values 
of 0.800, 0.842, 0.636 & 0.894, 0.806, 0.514 
respectively. 

Table 2. Variable performance items (F1& AUC). 

Variable Associated 
Criterion F1 AUC 

Ratio 3/1 1.582 0.800 0.894 
Ratio 2/1 1.420 0.842 0.806 
Ratio 3/2 1.129 0.636 0.514 
Ratio 4/3 0.532 0.286 0.139 
Ratio 4/1 0.835 0.333 0.131 
Ratio 4/2 0.632 0.220 0.094 

 

4.2. Evaluation of the Band Ratio technique 
using the ROC Curves 

The Receiver Operating Characteristic (ROC) 
curves are graphs showing the performance of the 
classification model at different thresholds. They 
are useful for organizing classifiers and 
visualizing their performance [86]. It is commonly 
used to evaluate predictive models and is 
frequently used in machine learning models. The 

curve has two parameters namely true positive 
rate and false positive rate, expressed as the 
following equations: (True positive rate (TPR) = 
TP/TP+FN) and (False positive rate (FPR) = 
FP/FP+TN). Whereas TP is true positive; FN is 
false negative; FP is false positive & TN is true 
negative. In the present study, the ROC curves are 
used to select the best classifier used for the 
prediction of Fe-Ti-mineralization. Table 3 shows 
the variable performance items (sensitivity, 
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specificity, accuracy & AUC) measured at the 
optimum threshold value. It shows that the 3/1 
ratio is the best classifier with accuracy reaching 
94.79% and AUC reaching 0.986. Band ratios 3/1, 
2/1 & 3/2 exhibit good discrimination with AUC 

values of 0.986, 0.980 & 0.919 respectively. Band 
ratios 4/3, 4/1 & 4/2 show less discrimination and 
have AUC values of 0.703, 0.683 & 0.534 
respectively. Figure 10 shows the ROC curves for 
the explanatory variables. 

 

  

  

  
Figure 9. Precision-recall curves of the explanatory variables. 
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Table 3. Variable performance items (sensitivity, specificity, accuracy & AUC). 
Variable Cutoff value Sensitivity Specificity Accuracy AUC Remarks 
Ratio 3/1 1.568918 100.00 94.79 0.9479 0.986 excellent discrimination 
Ratio 2/1 1.398237 100 92.71 0.9271 0.980 excellent discrimination 
Ratio 3/2 1.117008 90.00 83.33 0.7333 0.919 Acceptable discrimination 
Ratio 4/3 0.553021 100.00 47.92 0.4792 0.703 less discrimination 
Ratio 4/1 0.835634 90.00 63.54 0.5354 0.683 less discrimination 
Ratio 4/2 0.632206 100 26.04 0.2604 0.534 less discrimination 

s  
Figure 10. The ROC for SPOT band ratio classifiers. 

5. Conclusions 

The present study successfully evaluates the 
band ratio technique using the ROC curves. It 
utilized the SPOT 5 satellite data and the Random 
Forest (RF) model to predict the Fe-Ti 
mineralization. A set of band ratio images are 
prepared and used as input variables. The RF 
model was trained according to the target variable 
which contains mineralized and non-mineralized 
locations.  The following conclusions are reached: 
1) the 3/1 band ratio image shows excellent 
discrimination of Fe-Ti mineralization with AUC 
values of 0.986; 2) the prediction accuracy of the 
RF model reached up to 97%; 3) a new image 
map shows the distribution of the Fe-Ti 
mineralization is generated; 4) the present study 

proved the usefulness of the RF algorithm for the 
prediction of Fe-Ti mineralization. 

References 
[1]. Madani, A. (2001). Geological studies and remote 
sensing applications on Wadi Natash volcanic, Eastern 
Desert, Egypt. PhD thesis, Faculty of Science, Cairo 
University. 

[2]. Tommaso, I., & Rubinstein, N. (2007). 
Hydrothermal alteration mapping using ASTER data in 
the Infiernillo porphyry deposit, Argentina. Ore Geol. 
Rev., 32,275-290. 

[3]. Madani, A. (2009). Utilization of landsat ETM+ 
data for mapping gossans and iron rich zones exposed 
at Bahrah Area, Western Arabian Shield, Saudi Arabia. 
JKAU Earth Sci 20(1), 35–49. 



Madani Journal of Mining & Environment, Vol. 15, No. 4, 2024 

 

1367 

[4]. Madani, A., & Emam, A. (2011). SWIR ASTER 
band ratios for lithological mapping and mineral 
exploration: a case study from El Hudi area, South 
Eastern Desert, Egypt. Arab J Geosci 4, 45–52. 

[5].  Nouri, R., Jafari, MR., Arian, F., & Feizi, F. 
(2012). Hydrothermal alteration zone identification 
based on remote sensing data in the Mahn Area, West 
of Qazvin Province Iran. World Acad Sci Eng 
Technol, 67, 479-482. 

[6]. Madani, A., & Harbi, H. (2012). Spectroscopy of 
the mineralized tonalite–diorite intrusions, Bulghah 
gold mine area, Saudi Arabia: effects of opaques and 
alteration products on FieldSpec data. Ore Geol Rev 
44,148–157. 

[7]. Harbi, H., & Madani, A. (2013). Utilization of 
SPOT 5 data for mapping gold mineralized diorite–
tonalite intrusion, Bulghah gold mine area, Saudi 
Arabia. Arab J Geosci,. 

[8]. Tayebi, MH., Hashemi, TM., & Keller, VR. 
(2014). Alteration mineral mapping with ASTER data 
by integration of coded spectral ratio imaging and 
SOM neural network model. Turkish J. Earth Sci., 23, 
627-644, 

[9]. Madani, A. (2015). Spectroscopy of olivine basalts 
using FieldSpec and ASTER data: a case study from 
Wadi Natash volcanic field, South Eastern Desert, 
Egypt. J Earth Syst Sci 124(7), 1475–1486. 

[10]. Sadiya, TB., Halilu, AS., Asmah, TF., Agu, 
NV., Nsofor, CJ., Sanusi, M., Aliyu, I.,  & Ibrahim, I. 
(2015). Hydrothermal alteration mapping in Ijio, Oyo 
state, Nigeria using satellite imagery & remote sensing 
technique. SSRG Int. J. Geo Inform. Geolog. Sci. 
(SSRG-IJGGS), 2, 2. 

[11]. Zhang, Z., Zuo, R., & Xiong, Y. (2016). A 
comparative study of fuzzy weights of evidence and 
random forests for mapping mineral prospectivity for 
skarn-type Fe deposits in the southwestern Fujian 
metallogenic belt, China. Science China Earth Sciences 
59,556–572. 

[12]. Rajendran, S., & Nasir, S. (2017). 
Characterization of STER spectral bands for mapping 
of alteration zones of volcanogenic massive sulphide 
deposits. Ore Geology Reviews 88, 317–335. 

[13].   Zamyad, M., Afzal, P., Pourkermani, M., Nouri, 
R., & Jafari, MR. (2019). Determination of 
hydrothermal alteration zones using remote sensing 
methods in Tirka Area, Toroud, NE Iran. J. Indian Soc. 
Remote Sens., 47(11), 1817-1830. 

[14]. Traore, M., Takodjou, Wambo, JD., Ndepete, 
CP., Tekin, S., Pour, AB., & Muslim, AM. (2020). 
Lithological and alteration mineral mapping for 
alluvial gold exploration in the south east of Birao area, 
Central African Republic using Landsat-8 Operational 
Land Imager (OLI) data. J. Afr. Earth Sci. p.170. 

[15]. Shi, X., Al-Arifi, N., Abdelkareem, M., & 
Abdalla, F. (2020). Application of remote sensing and 
GIS techniques for exploring potential areas of 
hydrothermal mineralization in the central Eastern 
Desert of Egypt. J. Taibah Univ. Sci. 14, 1421–1432. 

[16]. Sekandari, M., Masoumi, I., Pour, AB., Muslim, 
AM., Rahmani, O., Hashim, M., Zoheir, B., Pradhan, 
B., Misra, A., & Aminpour, SM. (2020). Application of 
Landsat-8, Sentinel-2, ASTER andWorldView-3 
Spectral Imagery for Exploration of Carbonate-Hosted 
Pb-Zn Deposits in the Central Iranian Terrane 
(CIT). Remote Sens. 12, 1239. 

[17]. El Sobky, MA., Madani, AA., & Surour, AA. 
(2020). Spectral characterization of the Batuga granite 
pluton, South Eastern Desert, Egypt: influence of 
lithological and mineralogical variation on ASD 
Terraspec data. Arabian Journal of Geosciences 13, 
1246. 

[18]. Sadek, MF., El-Kalioubi, BA., Ali-Bik, MW., El 
Hefnawi, MA., & Elnazer, AA. (2020). Utilizing 
Landsat-8 and ASTER data in geologic mapping of 
hyper-arid mountainous region: case of Gabal Batoga 
area, South Eastern Desert of Egypt. Environ Earth Sci 
79(5), 1–14. 

[19]. El-Din, GM., El-Noby, ME., Abdelkareem, ZM., 
& Hamimi, Z. (2021). Using multispectral and radar 
remote sensing data for geological investigation, Qena-
Safaga Shear Zone, Eastern Desert, Egypt. Arab. J. 
Geosci. 14, 997. 

[20].  Madani, AA., Harbi, HM., El-Dougdoug, AA., 
Surour, AA., & Ahmed, AH. (2021). Spectral 
Characteristics of Listvenites and Serpentineites Along 
Ophiolite-Decorated Megashears (Suture Zones) in the 
Arabian Shield Using ASD Fieldspec and Satellite 
Data in:Hamimi (ed) The Geology of the Arabian-
Nubian Shield, Springer, Cham, 559-583. 

[21]. Ige, O., Tende, A., Bale, R., Gajere, J., & Aminu, 
M. (2022). Spatial mapping of hydrothermal alterations 
and structural features for gold and cassiterite 
exploration. Scientific African Volume 17, September 
2022, e01307. 

[22]. Abd El-Fatah, A., Madani, A., Surour, A., & 
Azer, M. (2023). Integration of Landsat-8 and 
Reflectance Spectroscopy data for Mapping of Late 
Neoproterozoic Igneous Ring Complexes in an Arid 
Environment: a Case Study of Gebel El-Bakriyah Area, 
Eastern Desert, Egypt. Journal of Mining and 
Environment (JME). 

[23]. Ali, D., & Frimpong, S. (2020). Artificial 
intelligence, machine learning and process automation: 
Existing knowledge frontier and way  forward for 
mining sector. Artif. Intell. Rev. 53, 6025–6042.  

[24]. Brown, WM., Gedeon, TD., Groves, D., & 
Barnes, RG. (2000). Artificial neural networks: A new 
method for mineral prospectivity mapping. Australian 
Journal of Earth Sciences 47, 757–770. 



Madani Journal of Mining & Environment, Vol. 15, No. 4, 2024 

 

1368 

[25]. Carranza, EJ. (2014). Data-driven evidential 
belief modeling of mineral potential using few 
prospects and evidence with missing values. Natural 
Resources Research 24, 291–304. 

[26]. Porwal, A., Carranza, EJ., Hale, M. (2003). 
Artificial neural networks for mineral-potential 
mapping: A case study from Aravalli Province, western 
India. Nat Resour Res 12, 155–171. 

[27]. Fung, CC., Iyer, V., Brown, W., & Wong, KW. 
(2005). Comparing the performance of different neural 
networks architectures for the prediction of mineral 
prospectivity. In Proceedings of the fourth 
international conference on machine learning and 
cybernetics, Guangzhou 394–398. 

[28]. Abedi, M., Norouzi, GH., & Bahroudi, A. (2012). 
Support vector machine for multi- classification of 
mineral prospectivity areas. Computers Geosciences 
46, 272–283. 

[29]. Rodriguez-Galiano, VF., Chica-Olmo, M., & 
Chica-Rivas, M. (2014). Predictive modelling of gold 
potential with the integration of multisource 
information based on random forest: A case study on 
the Rodalquilar area, Southern Spain. Int J Geogr Inf 
Sci 28, 1336–1354.  

[30]. Carranza, EJ., & Laborte, AG. (2015b). Random 
forest predictive modeling of mineral prospectivity 
with small number of prospects and data with missing 
values in Abra (Philippines). Computers & 
Geosciences 74, 60–70. 

[31]. Zhang, Z., Zuo, R., & Xiong, Y. (2015). A 
comparative study of fuzzy weights of evidence and 
random forests for mapping mineral prospectivity for 
skarn-type fe deposits in the southwestern Fujian 
metallogenic belt, China. Sci China Earth Sci 59, 556–
572. 

[32]. Carranza, EJ., & Laborte, AG. (2016). Data-
driven predictive modeling of mineral prospectivity 
using random forest: a case study in Catanduanes 
Island (Philippines). Natural Resources Research 25, 
35-50. 

[33]. Rodriguez-Galiano, V., Sanchez-Castillo, M., 
Chica-Olmo, M., & Chica-Rivas, M. (2015). Machine 
learning predictive models for mineral prospectivity: 
An evaluation of neural networks, random forest, 
regression trees and support vector machines. Ore Geol 
Rev 71, 804–818. 

[34]. McKay, G., & Harris, JR. (2016). Comparison of 
the data-driven random forests model and a 
knowledge-driven method for mineral prospectivity 
mapping: A case study for gold deposits around the 
Huritz Group and Nueltin Suite, Nunavut, Canada. 
Natural Resources Research 25, 125–143. 

[35]. Zhang, Z., Zuo, R., & Xiong, Y. (2016). A 
comparative study of fuzzy weights of evidence and 
random forests for mapping mineral prospectivity for 

skarn-type Fe deposits in the southwestern Fujian 
metallogenic belt, China. Science China Earth Sciences 
59, 556–572. 

[36]. Hariharan, S., Tirodkar, S., Porwal, A., 
Bhattacharya, A., & Joly, A. (2017). Random forest-
based prospectivity modelling of greenfieldterrains 
using sparse deposit data: An example from the 
Tanami Region,Western Australia. Nat Resour Res 26, 
489–507. 

[37]. Wang,Y., Fang, Z., & Hong, H. (2019). 
Comparison of convolutional neural networks for 
landslide susceptibility mapping in Yanshan County, 
China. Sci Total Environ 666, 975–993. 

[38]. Sun, T., Chen, F., Zhong, L., Liu, W., & Wang, 
Y. (2019). GIS-based mineral prospectivity mapping 
using machine learning methods: A case study from 
Tongling ore district, eastern China. Ore Geol Rev 109, 
26–49. 

[39]. Chen, C., He, B., & Zeng, Z. (2014). A method 
for mineral prospectivity mapping integrating C4. 5 
decision tree, weights-of-evidence and m-branch 
smoothing techniques: a case study in the eastern 
Kunlun Mountains, China. Earth Science Informatics 
7, 13–24. 

[40]. Sun, T., Hui, Li., Kaixing, Wu., Fei Chen, Zhong 
Zhu, & Zijuan Hu (2020). Data-Driven Predictive 
Modelling of Mineral Prospectivity Using Machine 
Learning and Deep Learning Methods: A Case Study 
from Southern Jiangxi Province, China. 
Minerals, 10(2),102. 

[41]. Jooshaki, M., Nad, A., & Michaux, S. (2021). A 
Systematic Review on the Application of Machine 
Learning in Exploiting Mineralogical Data in Mining 
and Mineral Industry. Minerals 11, 816.  

[42]. Li, S., Chen, J., & Liu, C. (2022). Overview on 
the Development of Intelligent Methods for Mineral 
Resource Prediction under the Background of 
Geological Big Data. Minerals 12, 616.  

 [43]. Farhadi, S., Afzal, P., Boveiri Konari, M., 
Daneshvar Saein, L., & Sadeghi, B., (2022). 
Combination of machine learning algorithms with 
concentration-area fractal method for soil geochemical 
anomaly detection in sediment-hosted Irankuh Pb-Zn 
deposit, Central Iran. Minerals 12(6), 689. 

[44]. Afzal, P., Farhadi, S., Konari, MB., Meigooni, 
MS., & Saein, LD., (2022). Geochemical anomaly 
detection in the Irankuh District using Hybrid Machine 
learning technique and fractal modeling. Geopersia 
12(1), 191-199. 

[45]. Farhadi, S., Tatullo, S., Konari, MB., & Afzal, P., 
(2024). Evaluating StackingC and ensemble models for 
enhanced lithological classification in geological 
mapping. Journal of Geochemical Exploration 260, 
107441. 



Madani Journal of Mining & Environment, Vol. 15, No. 4, 2024 

 

1369 

[46]. Bonham-Carter, G. (1994). Geographic 
information systems for geoscientists: Modelling with 
GIS. Oxford:Pergamon Press. 

[47]. Carranza, EJ., Mangaoang, JC., & Hale, M. 
(1999). Application of mineral exploration models and 
GIS to generate mineral potential maps as input for 
optimum land-use planning in the Philippines. Natural 
Resources Research 8, 165–173. 

[48]. Singer, DA., & Kouda, R. (1999). A Comparison 
of the weights of evidence method and probabilistic 
neural networks. Natural Resources Research 8, 87–
298. 

[49]. Asadi, HH., & Hale, M. (2001). A predictive GIS 
model for mapping potential gold and base metal 
mineralization in Takab area, Iran. Comput Geosci 27, 
901–912. 

[50]. Chica-Olmo, M., Abarca, F., & Rigol, JP. (2002). 
Development of a Decision Support System based on 
remote sensing and GIS techniques for gold-rich area 
identification in SE Spain. International Journal of 
Remote Sensing, 23(22), 4801-4814. 

[51]. Harris, D., Zurcher, L., Stanley, M., Marlow, J., 
& Pan, G. (2003). A comparative analysis of 
favorability mappings by weights of evidence, 
probabilistic neural networks, discriminant analysis, 
and logistic regression. Nat Res Res 12, 241-255. 

[52]. Carranza, EJ., Woldai, T., & Chikambwe, EM. 
(2005). Application of data-driven evidential belief 
functions to prospectivity mapping for aquamarine-
bearing pegmatites, Lundazi District, Zambia. Natural 
Resources Research 14, 47–63. 

[53]. Caumon, GJ., Ortiz, O., & Rabeau, (2006). A 
comparative study of three data-driven Mineral 
Potential Mapping techniques. Int. Assoc. for 
Mathematical Geology XIth International Congress 
Université de Liège – Belgium Liège – September, 3rd 
- 8th S13-05. 

[54]. Carranza, EJ., van Ruitenbeek, FJ., Hecker, C., 
van der Meijde, M., & van der Meer, FD. (2008). 
Knowledge-guided data-driven evidential belief 
modeling of mineral prospectivity in Cabo de Gata, SE 
Spain. Int J Appl Earth Obs 10, 374–387. 

[55]. Partington, G. (2010). Developing models using 
GIS to assess geological and economic risk: An 
example from VMS copper gold mineral exploration in 
Oman. Ore Geology Reviews 38, 197–207. 

[56]. Madani, A. (2011). Knowledge-driven GIS 
modeling technique for gold exploration, Bulghah gold 
mine area, Saudi Arabia. Egypt J Remote Sensing and 
Space Sci 14:91–97. 

[57]. Joly, A., Porwal, A., & McCuaig, TC. (2012). 
Exploration targeting for orogenic gold deposits in the 
Granites-Tanami Orogen: Mineral system analysis, 
targeting model and prospectivity analysis. Ore 
Geology Reviews 48, 349–383. 

[58].  Ford, A., Miller, JM., & Mol, AG. (2015). A 
comparative analysis of weights of evidence, evidential 
belief functions, and fuzzy logic for mineral potential 
mapping using incomplete data at the scale of 
investigation. Natural Resources Research 25, 19–33. 

[59]. Carranza, EJ., & Laborte, AG. (2015a). Data-
driven predictive mapping of gold prospectivity, 
Baguio district, Philippines: application of Random 
Forest algorithm. Ore Geology Reviews 71, 777–787. 

[60].  Harris, JR., Grunsky, E., Behnia, P., & Corrigan, 
D. (2015). Data- and knowledge-driven mineral 
prospectivity maps for Canada's North. Ore Geology 
Reviews 71:788-803. 

[61]. Sun, T., Wu, K., Chen, L., Liu, W., Wang, Y., & 
Zhang, C. (2017). Joint application of fractal analysis 
and weights-of-evidence method for revealing the 
geological controls on regional-scale tungsten 
mineralization in southern Jiangxi Province, China. 
Minerals 7, 243. 

[62]. Olasehinde, A., & Ashano, E. (2021). Data 
Driven Predictive Modelling of Mineral Prospectivity 
Using Principal Component Analysis: A Case Study of 
Riruwai Complex. Advances in Applied Science 
Research 12(7), 33. 

[63]. Atef, A., Madani, A., Surour, A., & Azer, M. 
(2023). A predictive GIS model for mapping gold- and 
copper-bearing alteration zones at South Gabal Um 
Monqul and Gabal Al Kharaza prospects, north Eastern 
Desert, Egypt. Journal of mining and environment.  

[64]. Taha, AM., Xi, Y., He, Q., Hu, A., Wang, S., & 
Liu, X. (2023), Investigating the Capabilities of 
Various Multispectral Remote Sensors Data to Map 
Mineral Prospectivity Based on Random Forest 
Predictive Model: A Case Study for Gold Deposits in 
Hamissana Area, NE Sudan. Minerals 13, 49.  

[65]. Chevremont, P., & Johan, Z., (1981). Wadi 
Khamal-Wadi Murattijah Ultramafic-Mafic Layered 
Complex, Saudi Arabian. Deputy Ministry for Mineral 
Resources: Open File Report BRGMOF-01,36, 143. 

[66]. Harbi, HM. (2008). Geology and 
Lithostratigraphy of the Ultramafic-Mafic Rocks and 
Associated Mineralizations, Wadi Khamal Area, West-
Central Arabian Shield. JKAU: Earth Sci 19, 119-157. 

[67]. Bache, J., & Chevermont, P. (1976). Mineral 
Investigations for Nickel and Copper in the Wadi 
Khamal Region: Bureau de Recherches Geologiques et 
Minieres, Open-File-Report-JED-OR-79(8),37. 

[68]. Pellaton, C. (1979). Geologic Map of the Yanbu 
Al Bahr Quadrangle, Sheet 24C, Kingdom of Saudi 
Arabia, Saudi Dir. Gen. Miner. Resour. Geologic Map 
GM-48-A, 16. 

[69]. Hashem, WB. (1981). The Geology of the Wadi 
Khamal Basic Layered Intrusion, Yanbou Al Bahr, 
Saudi Arabia, Unpublished Ph.D. Thesis, University of 
Bristol UK. 



Madani Journal of Mining & Environment, Vol. 15, No. 4, 2024 

 

1370 

 [70]. Al Ghamdi, AM. (1994). Mineralization and 
Associated Platinum Group Elements in mafic-
ultramafic rocks, Northwestern Arabian Shield, K.S.A: 
Unpublished Ph.D. Thesis, King Abdulaziz University, 
Faculty of Earth Sciences. 

 [71]. Eldougdoug, A., Abd El-Rahman, Y.,  & Harbi, 
H. (2020). The Ediacaran Post-Collisional Khamal 
Gabbro-Anorthosite Complex from the Arabian Shield 
and Its Fe-Ti-P Ore: An Analogy to Proterozoic 
Massif-Type Anorthosites. Lithos 372–373, 105674. 

[72]. Abuamarah, B A., Alshehri, F., Azer, MK., & 
Asimow, PD. (2023). Loveringite from the Khamal 
Layered Mafic Intrusion: The First Occurrence in the 
Arabian Shield, Northwest Saudi Arabia. Minerals 
13,172. 

[73]. Galaup, M., & Dupuy, S. (2003). Benefits of 
SPOT 5 imagery for town planning with new adapted 
processing techniques. Proceedings of IGARSS 2003, 
IEEE International Geoscience and Remote Sensing 
symposium. 

[74]. Clandillon, S., Yesou, H., & Meyer, C. (2003). 
Benefits of SPOT 5 HR and VHR data for forest 
management and windfall damage mapping. 
Proceedings of IGARSS, IEEE International 
Geoscience and Remote Sensing symposium.  

 [75]. Yésou, H, Clandillon, S., Allenbach, B., Bestault, 
C., De Fraipont, P., Inglada, J., & Favard, C. (2003). A 
constellation of advantages with SPOT SWIR and 
VHR SPOT 5 data for flood extent mapping during the 
September 2002 Gard event (France). Proceedings of 
IGARSS 2003, IEEE International Geoscience and 
Remote Sensing symposium. 

[76]. Kakiuchi, H., Onaka, M., Asai, M., & Itoh, F. 
(2004). Topographic mapping at scale of 1:25,000 
using SPOT 5 satellite imagery. ISPRS 2004, Istanbul, 
Turkey. 

[77]. Ferreira, F. (2004). Using SPOT 5 to improve 
census cartography. ISPRS, Istanbul, Turkey.  

[78]. Retière, A., Senegas, O., Parriaux, A., Haeberlin, 
Y., & Turberg, P. (2004). Validation of SPOT 5 
satellite imagery for geological hazard identification 
and risk assessment for landslides, mud- and debris 
flows in Matagalpa, Nicaragua. ISPRS 2004, Istanbul, 
Turkey. 

[79].  Fajji, NG., Palamuleni, LG., & Mlambo, V. 
(2018). Application of SPOT Imagery for Landcover 
Mapping and Assessing Indicators of Erosion and 
Proportion of Bareground in Arid and Semi-arid 
Environment. J Remote Sens GIS 7, 240.  

[80]. Breiman, L. (2001). Random forests. Machine 
learning 45, 5-32. 

[81]. Madani, A., & Niyazi, B. (2023). Groundwater 
Potential Mapping Using Remote Sensing and Random 
Forest Machine Learning Model: A Case Study from 
Lower Part of Wadi Yalamlam,Western Saudi Arabia. 
Sustainability 2023, 15, 2772. 

 [82].  O’Brien, JJ., Spry, PG., Nettleton, D., Xu, R., & 
Teale, GS. (2015). Using Random Forests to 
distinguish gahnite compositions as an exploration 
guide to Broken Hill-type Pb–Zn–Ag deposits in the 
Broken Hill domain, Australia. J Geochem Explor 149, 
74–86.  

 [83]. Long, T., Zhou, Z., Hancke, G., Bai, Y., & Gao, 
Q. (2022). A Review of Artificial Intelligence 
Technologies in Mineral Identification: Classification 
and Visualization. J. Sens. Actuator Netw. 2022, 11, 
50. 

 [84]. Davis, J., & Goadrich, M., (2006). The 
relationship between Precision-Recall and ROC curves. 
Proceedings of the 23rd international conference on 
Machine learning. 233–240. 

 [85]. Saito, T., & Rehmsmeier, M. (2015). The 
Precision-Recall Plot Is More Informative than the 
ROC Plot When Evaluating Binary Classifiers on 
Imbalanced Datasets. PLoS ONE 10(3): e0118432. 

[86]. Fawcett, T. (2005). An introduction to ROC 
analysis. Pattern Recognition Letters 27, 861–874. 

 
 
 
 
 
 
 
 



  1403، شماره چهارم، سال زیست پژوهشی معدن و محیط - نشریه علمی  ی مدن
  

 

  

  ینیماش ير یادگ یبا استفاده از مدل  ومیتانیت- آهن يسازیکان ینیبشیپ يبرا ينسبت نوار ک یتکن یابی ارز
 یاز منطقه خمال، عربستان غرب ي: مطالعه موردیگروه

  

  ی مدن یاحمد عل

  مصر  زه،یدانشکده علوم، دانشگاه قاهره، ج  ،یشناس نیگروه زم

  05/2024/ 11، پذیرش  04/2024/ 24ارسال 

  aamadani@sci.cu.edu.eg* نویسنده مسئول مکاتبات: 

  

  چکیده:

. نســبت بانــد دهــدیرخ م یمعدن ریذخا یابیمکان يمورد استفاده برا دیجد يهاکیتوسعه تکن ایکانسار   دیجد  يهادر ساخت مدل  ای  یدر اکتشاف معدن  ينوآور
 ينسبت نــوار کیتکن یابیزار يکه برا کندیرا ارائه م يدیجد کردیاست. مطالعه حاضر رو  افتهیتوسعه    یاکتشاف مواد معدن  ياست که برا  ریپردازش تصو  کیتکن
 يهــا) و دادهRF( یبا اســتفاده از مــدل جنگــل تصــادف يدر معرض در منطقه خمال، غرب عربستان سعود  ومیتانیت- آهن  يسازیکان  ینیبشیو پ  صیتشخ  يبرا

شده اســت کــه  هیهدف ته ریشود. متغ یاستفاده م یحیتوض يرهایشده و به عنوان متغ هیته SPOT-5نسبت باند  ری. تصاوشودیاستفاده م  SPOT-5  ياماهواره
 ــارز يبــرا قی ــفراخــوان دق يهــایو منحن یسردرگم سیماتر کیشود.  یاستفاده م یاعتبار سنج يبرا هیآموزش و بق يهدف برا ي) از مکان ها%70در آن (  یابی

نســبت بانــد  رینشان داد که تصاو ج ی. نتاشوندیاستفاده م ندنسبت با ریتصاو يبندرتبه ي) براROC( رندهیگ  یاتیعمل  يهایژگیو  يهایو منحن  RFعملکرد مدل  
را بــه  3/1نســبت بانــد  ریتصو تی. مطالعه حاضر با موفقدهندینشان م 0.919و  0.980، 0.986 بیبه ترت AUC ریرا با مقاد  یخوب  اریبس  زیتما  3/2و    2/1،  3/1

 یجنگل تصادف کنندهيبندطبقه ي. مطالعه حاضر سودمندکندیارائه م دیجد Fe-Ti يسازیکان رینقشه تصو کیکننده انتخاب کرده و   يبندطبقه  نیعنوان بهتر
 درصد اثبات کرد. 97با دقت  Fe-Ti يسازیکان ینیبشیپ يرا برا

  .یغرب ي، عربستان سعودFe-Ti يسازی، کانSPOT-5 يهاداده ،یجنگل تصادف تمیالگور ،یبر هوش مصنوع  یمبتن ینیبشیمدل پ کلمات کلیدي:

 

 

 

 


