[1]. Kishor, R., Purchase, D., Ferreira, L., Mulla, S., Bilal, M., & Bharagava, R. (2020). Environmental and health hazards of textile industry wastewater pollutants and its treatment approaches. In C. Hussain (Ed.), Handbook of Environmental Materials Management (pp. 1-24). Springer Nature.
[2]. Islam, M., & Mostafa, M. (2018). Textile dyeing effluents and environment concerns-a review. Journal of Environmental Science and Natural Resources, 11. 144-131, (2-1).
[3]. Wang, Z., Xue, M., Huang, K., & Liu, Z. (2011). Textile dyeing wastewater treatment. Advances in treating textile effluent, 5, 91-116.
[4]. Mehra, S., Singh, M., & Chadha, P. (2021). Adverse impact of textile dyes on the aquatic environment as well as on human beings. Toxicol. Int, 28(2), 165.
[5]. Lachheb, H., Puzenat, E., Houas, A., Ksibi, M., Elaloui, E., Guillard, C., & Herrmann, J.-M. (2002). Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in water by UV-irradiated titania. Applied Catalysis B: Environmental, 39(1), 75-90.
[6]. Berradi, M., Hsissou, R., Khudhair, M., Assouag, M., Cherkaoui, O., El Bachiri, A., & El Harfi, A. (2019). Textile finishing dyes and their impact on aquatic environs. Heliyon, 5, (11).
[7]. Akhtar, N., Syakir Ishak, M. I., Bhawani, S. A., & Umar, K. (2021). Various natural and anthropogenic factors responsible for water quality degradation: A review. Water, 13(19), 2660.
[8]. Hao, O. J., Kim, H., & Chiang, P.-C. (2000). Decolorization of wastewater. Critical reviews in environmental science and technology, 30(4), 449-505.
[9]. Bhargava, S. K., Tardio, J., Prasad, J., Föger, K., Akolekar, D. B., & Grocott, S. C. (2006). Wet oxidation and catalytic wet oxidation. Industrial & engineering chemistry research, 45(4), 1221-1258.
[10]. Mozia, S. (2010). Photocatalytic membrane reactors (PMRs) in water and wastewater treatment. A review. Separation and purification technology, 73(2), 71-91.
[11]. Zhang, Q., Cheng, X., Zheng, C., Feng, X., Qiu, G., Tan, W., & Liu, F. (2011). Roles of manganese oxides in degradation of phenol under UV-Vis irradiation: adsorption, oxidation, and photocatalysis. Journal of Environmental Sciences, 23(11), 1904-1910.
[12]. Han, D.-H., Cha, S.-Y., & Yang, H.-Y. (2004). Improvement of oxidative decomposition of aqueous phenol by microwave irradiation in UV/H2O2 process and kinetic study. Water Research, 38(11), 2782-2790.
[13]. Veeresh, G. S., Kumar, P., & Mehrotra, I. (2005). Treatment of phenol and cresols in upflow anaerobic sludge blanket (UASB) process: a review. Water Research, 39(1), 154-170.
[14]. Kargari, A., & Mohammadi, S. (2015). Evaluation of phenol removal from aqueous solutions by UV, RO, and UV/RO hybrid systems. Desalination and water treatment, 54(6), 1612-1620.
[15]. Khataei, B., & Ghaderi, M. (2019). Optimizing the Annealing Effect of Zn/Ac Nanoparticle Synthesis on Dye Wastewater Treatment by Combination of Ultrasonic and Photocatalytic Methods. Determinations in Nanomedicine and Nanotechnology, 1(3), 1-3.
[16]. Miranzadeh, M., Afshari, F., Khataei, B., & Kassaee, M. (2020). Adsorption and photocatalytic removal of arsenic from water by a porous and magnetic nanocomposite: Ag/TiO2/Fe3O4@ GO. Adv. J. Chem. A, 3(4), 408-421.
[17]. Ahmadi, K., Qaderi, F., Rahmaninejad, M., & Shidpour, R. (2024). Sustainable nanocomposite of PAC/Fe3O4-coated geotextile using plasma treatment technique for phenol adsorption application. Geoenergy Science and Engineering, 212882.
[18]. Yaseri, A. M., Qaderi, F., & Khataei, B. (2023). Treatment of wastewater containing hard degradable pollutants through the advanced oxidation process (ozonation). Journal of Civil and Environmental Engineering.
[19]. Khourshidi, A., & Qaderi, F. (2023). Optimization of p-nitrophenol-contaminated water by non-thermal plasma technology and ozonation by response surface method. Modares Civil Engineering journal, 23(5), 0-0.
[20]. Kakavandi, B., Rezaei Kalantary, R., Esrafili, A., Jonidi Jafari, A., & Azari, A. (2013). Isotherm, kinetic and thermodynamic of Reactive Blue 5 (RB5) dye adsorption using Fe3O4 nanoparticles and activated carbon magnetic composite. Journal of Color Science and Technology, 7(3), 237-248.
[21]. Masombaigi, H., Rezaee, A., & Nasiri, A. (2009). Photocatalytic degradation of Methylene Blue using ZnO nano-particles. Iranian Journal of Health and Environment, 2(3), 188-195.
[22]. Yu, J.-G., Zhao, X.-H., Yang, H., Chen, X.-H., Yang, Q., Yu, L.-Y., Jiang, J.-H., & Chen, X.-Q. (2014). Aqueous adsorption and removal of organic contaminants by carbon nanotubes. Science of the Total Environment, 482, 241-251.
[23]. Chong, M. N., & Jin, B. (2012). Photocatalytic treatment of high concentration carbamazepine in synthetic hospital wastewater. Journal of Hazardous Materials, 199, 135-142.
[24]. Liu, X., Chen, Z., Chen, Z., Megharaj, M., & Naidu, R. (2013). Remediation of Direct Black G in wastewater using kaolin-supported bimetallic Fe/Ni nanoparticles. Chemical engineering journal, 223, 764-771.
[25]. Otton, J. K. (2006). Environmental aspects of produced-water salt releases in onshore and coastal petroleum-producing areas of the conterminous US-a bibliography. US Geological Survey Reston, VA, USA.
[26]. Ayati, B. (2018). Modeling of a photocatalytic baffled reactor to degrade colored wastewater using response surface methodology. Modares Civil Engineering journal, 18(1), 113-122.
[27]. Ghasemi, A. H., Zoqi, M. J., & Zanganeh Ranjbar, P. (2024). Enhanced photocatalytic degradation of methylene blue using a novel counter-rotating disc reactor. Frontiers in Chemistry, 12, 1335180.
[28]. Rabieian, M., & Qaderi, F. (2024). Optimizing Hybrid Photocatalytic-ozonation for Offshore Produced Water Treatment. Journal of Mining and Environment, 15(1), 239-259.
[29]. Ranjbar, P. Z., Ayati, B., & Ganjidoust, H. (2019). Kinetic study on photocatalytic degradation of Acid Orange 52 in a baffled reactor using TiO2 nanoparticles. Journal of Environmental Sciences, 79, 213-224.
[30]. Ranjbar, P. Z., Ayati, B., & Ganjidoust, H. (2022). Textile dye degradation in a novel photocatalytic baffled reactor using immobilised TiO2 nanoparticles. International Journal of Environment and Waste Management, 29(3), 241-261.
[31]. Kusior, A., Michalec, K., Jelen, P., & Radecka, M. (2019). Shaped Fe2O3 nanoparticles–synthesis and enhanced photocatalytic degradation towards RhB. Applied surface science, 476, 342-352.
[32]. Hu, C., Tang, Y., Jimmy, C. Y., & Wong, P. K. (2003). Photocatalytic degradation of cationic blue X-GRL adsorbed on TiO2/SiO2 photocatalyst. Applied Catalysis B: Environmental, 40(2), 131-140.
[33]. Hayat, K., Gondal, M., Khaled, M., Yamani, Z., & Ahmed, S. (2011). Laser induced photocatalytic degradation of hazardous dye (Safranin-O) using self synthesized nanocrystalline WO3. Journal of Hazardous Materials, 186(2-3), 1226-1233.
[34]. Malayeri, H. Z., Ayati, B., & Ganjidoust, H. (2014). Photocatalytic phenol degradation by immobilized nano ZnO: intermediates & key operating parameters. Water Environment Research, 86(9), 771-778.
[35]. De Lasa, H. I., Serrano, B., & Salaices, M. (2005). Photocatalytic reaction engineering (Vol. 590). Springer.
[36]. Weon, S., He, F., & Choi, W. (2019). Status and challenges in photocatalytic nanotechnology for cleaning air polluted with volatile organic compounds: visible light utilization and catalyst deactivation. Environmental Science: Nano, 6(11), 3185-3214.
[37]. Chiou, C.-H., Wu, C.-Y., & Juang, R.-S. (2008). Influence of operating parameters on photocatalytic degradation of phenol in UV/TiO2 process. Chemical engineering journal, 139(2), 322-329.
[38]. Gómez-Pastora, J., Dominguez, S., Bringas, E., Rivero, M. J., Ortiz, I., & Dionysiou, D. D. (2017). Review and perspectives on the use of magnetic nanophotocatalysts (MNPCs) in water treatment. Chemical engineering journal, 310, 407-427.
[39]. Liu, S.-Q. (2012). Magnetic nano-photocatalysts: preparation, structure, and application. Environmental Chemistry for a Sustainable World: Volume 1: Nanotechnology and Health Risk, 99-117.
[40]. Karimi, F., Zare, N., Jahanshahi, R., Arabpoor, Z., Ayati, A., Krivoshapkin, P., Darabi, R., Dragoi, E. N., Raja, G. G., & Fakhari, F. (2023). Natural waste-derived nano photocatalysts for azo dye degradation. Environmental Research, 117202.
[41]. Mohaghegh, N., Tasviri, M., Rahimi, E., & Gholami, M. R. (2014). Nano sized ZnO composites: Preparation, characterization and application as photocatalysts for degradation of AB92 azo dye. Materials science in semiconductor processing, 21, 167-179.
[42]. Fouda, A., Salem, S. S., Wassel, A. R., Hamza, M. F., & Shaheen, T. I. (2020). Optimization of green biosynthesized visible light active CuO/ZnO nano-photocatalysts for the degradation of organic methylene blue dye. Heliyon, 6, (9).
[43]. Padmapriya, G., Manikandan, A., Krishnasamy, V., Jaganathan, S. K., & Antony, S. A. (2016). Spinel NixZn1− xFe2O4 (0.0≤ x≤ 1.0) nano-photocatalysts: synthesis, characterization and photocatalytic degradation of methylene blue dye. Journal of Molecular Structure, 1119, 39-47.
[44]. Lops, C., Ancona, A., Di Cesare, K., Dumontel, B., Garino, N., Canavese, G., Hérnandez, S., & Cauda, V. (2019). Sonophotocatalytic degradation mechanisms of Rhodamine B dye via radicals generation by micro-and nano-particles of ZnO. Applied Catalysis B: Environmental, 243, 629-640.
[45]. Mahlambi, M. M., Mishra, A. K., Mishra, S. B., Krause, R. W., Mamba, B. B., & Raichur, A. M. (2012). Comparison of rhodamine B degradation under UV irradiation by two phases of titania nano-photocatalyst. Journal of thermal analysis and calorimetry, 110(2), 847-855.
[46]. Dhiman, P., Mehta, T., Kumar, A., Sharma, G., Naushad, M., Ahamad, T., & Mola, G. T. (2020). Mg0. 5NixZn0. 5-xFe2O4 spinel as a sustainable magnetic nano-photocatalyst with dopant driven band shifting and reduced recombination for visible and solar degradation of Reactive Blue-19. Advanced Powder Technology, 31(12), 4585-4597.
[47]. Samsudin, E. M., Goh, S. N., Wu, T. Y., Ling, T. T., Hamid, S. B. A., & Juan, J. C. (2015). Evaluation on the photocatalytic degradation activity of reactive blue 4 using pure anatase nano-TiO2. Sains Malaysiana, 44(7), 1011-1019.
[48]. Jeyaraj, M., Atchudan, R., Pitchaimuthu, S., Edison, T. N. J. I., & Sennu, P. (2021). Photocatalytic degradation of persistent brilliant green dye in water using CeO2/ZnO nanospheres. Process Safety and Environmental Protection, 156, 457-464.
[49]. Mahmood, K., Amara, U., Siddique, S., Usman, M., Peng, Q., Khalid, M., Hussain, A., Ajmal, M., Ahmad, A., & Sumrra, S. H. (2022). Green synthesis of Ag@ CdO nanocomposite and their application towards brilliant green dye degradation from wastewater. Journal of Nanostructure in Chemistry, 1-13.
[50]. Narayan, R. B., Goutham, R., Srikanth, B., & Gopinath, K. (2018). A novel nano-sized calcium hydroxide catalyst prepared from clam shells for the photodegradation of methyl red dye. Journal of Environmental Chemical Engineering, 6(3), 3640-3647.
[51]. Saghi, M., Shokri, A., Arastehnodeh, A., Khazaeinejad, M., & Nozari, A. (2018). The photo degradation of methyl red in aqueous solutions by α-Fe2O3/SiO2 nano photocatalyst. Journal of Nanoanalysis, 5(3), 163-170.
[52]. Welderfael, T., Pattabi, M., & Pattabi, R. M. (2016). Photocatalytic activity of Ag-N co-doped ZnO nanorods under visible and solar light irradiations for MB degradation. Journal of Water Process Engineering, 14, 117-123.
[53]. Trandafilović, L. V., Jovanović, D. J., Zhang, X., Ptasińska, S., & Dramićanin, M. (2017). Enhanced photocatalytic degradation of methylene blue and methyl orange by ZnO: Eu nanoparticles. Applied Catalysis B: Environmental, 203, 740-752.
[54]. Naresh Yadav, D., Anand Kishore, K., Bethi, B., Sonawane, S. H., & Bhagawan, D. (2018). ZnO nanophotocatalysts coupled with ceramic membrane method for treatment of Rhodamine-B dye waste water. Environment, Development and Sustainability, 20, 2065-2078.
[55]. Bayat, R., Derakhshi, P., Rahimi, R., Safekordi, A. A., & Rabbani, M. (2019). A magnetic ZnFe2O4/ZnO/perlite nanocomposite for photocatalytic degradation of organic pollutants under LED visible light irradiation. Solid State Sciences, 89, 167-171.
[56]. Chanu, L. A., Singh, W. J., Singh, K. J., & Devi, K. N. (2019). Effect of operational parameters on the photocatalytic degradation of Methylene blue dye solution using manganese doped ZnO nanoparticles. Results in Physics, 12, 1230-1237.
[57]. Aksu, Z., Ertuğrul, S., & Dönmez, G. (2010). Methylene Blue biosorption by Rhizopus arrhizus: Effect of SDS (sodium dodecylsulfate) surfactant on biosorption properties. Chemical engineering journal, 158(3), 474-481.
[58]. Schropp, R., & Madan, A. (1989). Properties of conductive zinc oxide films for transparent electrode applications prepared by rf magnetron sputtering. Journal of applied physics, 66(5), 2027-2031.
[59]. Kumar, G. A., Reddy, M. R., & Reddy, K. N. (2012). Effect of annealing on ZnO thin films grown on quartz substrate by RF magnetron sputtering. Journal of Physics: Conference Series,.
[60]. Khalegh, R., & Qaderi, F. (2019). Optimization of the effect of nanoparticle morphologies on the cost of dye wastewater treatment via ultrasonic/photocatalytic hybrid process. Applied Nanoscience, 9, 1869-1889.
[61]. Lundstedt, T., Seifert, E., Abramo, L., Thelin, B., Nyström, Å., Pettersen, J., & Bergman, R. (1998). Experimental design and optimization. Chemometrics and intelligent laboratory systems, 42(1-2), 3-40.
[62]. Molea, A., Popescu, V., Rowson, N. A., & Dinescu, A. M. (2014). Influence of pH on the formulation of TiO2 nano-crystalline powders with high photocatalytic activity. Powder technology, 253, 22-28.
[63]. Haque, M., & Muneer, M. (2007). Photodegradation of norfloxacin in aqueous suspensions of titanium dioxide. Journal of Hazardous Materials, 145(1-2), 51-57.
[64]. Selvaraj, V., Karthika, T. S., Mansiya, C., & Alagar, M. (2021). An over review on recently developed techniques, mechanisms and intermediate involved in the advanced azo dye degradation for industrial applications. Journal of Molecular Structure, 1224, 129195.
[65]. Li, H., Fei, G. T., Fang, M., Cui, P., Guo, X., Yan, P., & De Zhang, L. (2011). Synthesis of urchin-like Co3O4 hierarchical micro/nanostructures and their photocatalytic activity. Applied surface science, 257(15), 6527-6530.
[66]. Daneshvar, N., Salari, D., & Khataee, A. (2003). Photocatalytic degradation of azo dye acid red 14 in water: investigation of the effect of operational parameters. Journal of Photochemistry and Photobiology A: Chemistry, 157(1), 111-116.
[67]. Mahdizadeh, F., & Aber, S. (2015). Treatment of textile wastewater under visible LED lamps using CuO/ZnO nanoparticles immobilized on scoria rocks. RSC Advances, 5(92), 75474-75482.
[68]. Thejaswini, T., Mohan, A. M., Sompalli, N. K., & Deivasigamani, P. (2019). Assessment of tailor-made mesoporous metal doped TiO2 monolithic framework as fast responsive visible light photocatalysts for environmental remediation applications. Inorganic Chemistry Communications, 110, 107593.
[69]. Nuengmatcha, P., Porrawatkul, P., Chanthai, S., Sricharoen, P., & Limchoowong, N. (2019). Enhanced photocatalytic degradation of methylene blue using Fe2O3/graphene/CuO nanocomposites under visible light. Journal of Environmental Chemical Engineering, 7(6), 103438.
[70]. Gutul, T., Rusu, E., Condur, N., Ursaki, V., Goncearenco, E., & Vlazan, P. (2014). Preparation of poly (N-vinylpyrrolidone)-stabilized ZnO colloid nanoparticles. Beilstein journal of nanotechnology, 5(1), 402-406.
[71]. Ilegbusi, O. J., & Trakhtenberg, L. (2013). Synthesis and conductometric property of sol-gel-derived ZnO/PVP nano hybrid films. Journal of materials engineering and performance, 22, 911-915.
[72]. Naveed Ul Haq, A., Nadhman, A., Ullah, I., Mustafa, G., Yasinzai, M., & Khan, I. (2017). Synthesis approaches of zinc oxide nanoparticles: the dilemma of ecotoxicity. Journal of Nanomaterials, 2017.
[73]. Akpan, U. G., & Hameed, B. H. (2009). Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: a review. Journal of Hazardous Materials, 170(2-3), 520-529.
[74]. Kumar, A., & Pandey, G. (2017). A review on the factors affecting the photocatalytic degradation of hazardous materials. Mater. Sci. Eng. Int. J, 1(3), 1-10.
[75]. Reza, K. M., Kurny, A., & Gulshan, F. (2017). Parameters affecting the photocatalytic degradation of dyes using TiO2: a review. Applied Water Science, 7, 1569-1578.
[76]. Maki, L. K., Maleki, A., Rezaee, R., Daraei, H., & Yetilmezsoy, K. (2019). LED-activated immobilized Fe-Ce-N tri-doped TiO2 nanocatalyst on glass bed for photocatalytic degradation organic dye from aqueous solutions. Environmental Technology & Innovation, 15, 100411.
[77]. Luque-Morales, P. A., Lopez-Peraza, A., Nava-Olivas, O. J., Amaya-Parra, G., Baez-Lopez, Y. A., Orozco-Carmona, V. M., Garrafa-Galvez, H. E., & Chinchillas-Chinchillas, M. d. J. (2021). ZnO semiconductor nanoparticles and their application in photocatalytic degradation of various organic dyes. Materials, 14(24), 7537.
[78]. Rajkumar, R., Ezhumalai, G., & Gnanadesigan, M. (2021). A green approach for the synthesis of silver nanoparticles by Chlorella vulgaris and its application in photocatalytic dye degradation activity. Environmental Technology & Innovation, 21, 101282.
[79]. Pachiyappan, J., Gnanansundaram, N., Sivamani, S., Sankari, N. P. B. P., Senthilnathan, N., & Kerga, G. A. (2022). Preparation and characterization of magnesium oxide nanoparticles and its application for photocatalytic removal of rhodamine B and methylene blue dyes. Journal of Nanomaterials, 2022.
[80]. Kumar, R., Barakat, M., Al-Mur, B. A., Alseroury, F. A., & Eniola, J. O. (2020). Photocatalytic degradation of cefoxitin sodium antibiotic using novel BN/CdAl2O4 composite. Journal of Cleaner Production, 246, 119076.
[81]. Khezrianjoo, S., Lee, J., Kim, K.-H., & Kumar, V. (2019). Eco-toxicological and kinetic evaluation of TiO2 and ZnO nanophotocatalysts in degradation of organic dye. Catalysts, 9(10), 871.
[82]. Mohagheghian, A., Hooshmand Rad, S., Ayagh, K., & Shirzad-Siboni, M. (2022). Photocatalytic Removal of Acid Blue 113 Dye from Aqueous Solutions Using Zinc Oxide-Kaolin Nanocomposite under Visible Light Irradiation. Journal of Mazandaran University of Medical Sciences, 32(209), 146-162.