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In recent years, hyperspectral data have been widely used in earth sciences because
these data provide accurate spectral information of the earth's surface. This research
aims to apply match filtering (MF) on Hyperion hyperspectral imagery for mapping
alteration mineral in the Astarghan area, NW Iran. Astarghan is located in the northwest
of Iran where deposits of low-sulfide gold-bearing ore rocks occur as veins and
stockworks. Therefore, at first, the Astarghan Hyperion scene was topographically and
atmospherically corrected. Then, the data quality was surveyed to recognize bad bands
and improve the accuracy of the subsequent processing steps. In MF analysis, it is a
challenge to separate MF abundance images to target and background pixels.
Therefore, to cope with this challenge, a moving threshold technique is proposed. The
results indicated three indicative minerals including kaolinite, opal and jarosite. Then,
the results were statistically verified by virtual verification and geological data. The
verification was performed virtually using United States Geological Survey (USGS)
spectral library data, which showed an agreement of 78.06%. Moreover, a comparison
of the MF analysis results showed a good agreement with field investigations and
overlaying with a detailed geological map of the study area. Finally, in this study the
X-ray diffraction (XRD) of three indicative mineral samples was used to check the
efficiency of the applied method.

1. Introduction

In recent years, remote sensing has become one
of the most interesting fields among earth science
subjects due to its wide range of applications and
capabilities for different studies. One of the most
important geological applications of remote
sensing is the mapping of key alteration minerals
that is vital for ore exploration. These data have
been widely used in mineral prospecting and
exploration of mineral deposits [1-3].

In a classification, remote sensing optical
images are divided into hyperspectral and
multispectral data. Multispectral data are a type of
remote sensing data that capture reflectance across
multiple bands of the electromagnetic spectrum. It
typically has 5 to 30 bands that collect data in
visible, near-infrared, shortwave infrared, and
thermal infrared bands. However, Hyperspectral
data capture reflectance across a continuous range
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of wavelengths. These data usually have hundreds
or more bands and provide a more acceptable level
of spectral resolution [4,5].

Therefore, hyperspectral remote sensing data
analysis allows one to recognize individual
materials such as minerals regarding their
reflectance characteristics [4, 6, 7]. Hyperion
space-borne hyperspectral data became available
for more studies of earth surface structures and ore
exploration in November 2000.

Several studies have used Hyperion data for
geological and mineralogical surveys [8]. A
detailed investigation of Hyperion capabilities in
mineralogical mapping was implemented by Kruse
[6] through comparing airborne visible/infrared
imaging spectrometer (AVIRIS) and Hyperion data
for mineral mapping across Nevada and California,
USA. The results confirmed that the Hyperion



Pourmirzaee, and Jamshid Moghadam

short-wave infrared (SWIR) data are capable of
producing useful geologic information.

Cudahy et al. [9] investigated the capability of
visible/near-infrared (VNIR) and SWIR bands of
Hyperion data for mineral potential mapping at
Mountain Fitton, South Australia. There was a
good correspondence between mineral distribution
(particularly in SWIR data), geology, and
alteration maps. Gersman et al. [4] successfully
detected hydrothermally altered rocks and mapped
different lithological units at the Northern Danakil
Depression in Eritrea.

Pour and Hashim [10] used Hyperion and ALI
images to map key minerals of hydrothermal
alteration halos related to porphyry copper ore
deposits in SE Iran. For this purpose, they began
with ALI data to map lithological units on a
regional scale and then analyzed SWIR Hyperion
data to distinguish propylitic, argillic, and phyllic
alteration zones.

Oskouei and Babakan [8] analyzed the
Hyperion data of the Lahroud region in
northwestern Iran to map alteration minerals. As a
result, the low SNR of the Hyperion sensor tended
to impose some difficulties, but considering the
associated costs and time required for field studies,
the results of Hyperion data analysis served as a
valuable tool for prospecting and reconnaissance
studies.

Ekanayake et al. [11], using image processing
techniques on Hyperion data, successfully mapped
an ilmenite deposit in Pulmudai, Sri Lanka.
Vignesh and Kiran [12] carried out a comparative
analysis of mineral mapping for Hyperion and
Landsat-8 OLI data. They concluded that due to
large reflectance bands in short bandwidth
intervals, Hyperion shows better results than
Landsat-8 OLIL.

In addition, other applications of Hyperion data
in mineral exploration are shown in [13, 14, 15, 16,
17].

In this study, the capabilities of Hyperion data
in terms of mapping alteration minerals in the
Astarghan area were investigated. For this aim,
after preprocessing steps, the Hyperion data were
unmixed through the standard approach developed
for analytical imaging and geophysics (AIG).
Then, the distribution of extracted endmembers
(i.e. alteration minerals) was obtained using the
MF, a spectral matching algorithm [18]. In the
current study, to map alteration minerals
accurately, the MF together with the moving
threshold were applied on Hyperion data. Moving
threshold is a suitable tool for classifying the MF
abundance maps of the endmembers to target and
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background pixels [19]. This method was tested on
HyMap airborne data that have a high spectral and
spatial resolution and the results were acceptable,
but have not been tested so far on space-born data
such as Hyperion. In the present study, three
indicative minerals were distinguished across the
study area: kaolinite, opal, and jarosite. The
method’s accuracy was assessed by a virtual
verification through of the region. The evaluations
showed that the applied method for Hyperion
image analysis was an efficient tool to map the
alteration minerals. This consistency was
confirmed by the XRD results of three samples
collected from three indicative mineral units
distinguished from the study area.

1.2. Geological setting

Astarghan area is approximately located 50 km
north of Tabriz, northwest Iran (Figurel). The
study area is in the Gharadagh-Arasbaran
metallogenic zone [20, 21]. The most important
lithological units in the area are a hypabyssal
porphyritic granodioritic intrusive stock (Oligo-
Miocene) and a flysch-type sedimentary sequence
consisting of limestone, limy sandstone, and marl
(Paleocene-Eocene) [22]. The intrusion of this
stock into the sedimentary rocks has altered them
to a series of metasomatic and metamorphic rocks
along the contact zone. Potassic, propylitic,
argillic, and phyllic alteration zones are developed
surrounding the fractured and brecciated zones in
the study area. However, the argillic alteration zone
represents the dominant alteration zone in the
Astarghan area. Instances of Au, Cu, and Sb
mineralization have occurred at different parts of
the area as porphyry, stockwork, and vein-type
mineralization. Ore rock in the Astarghan area is of
low-sulfide gold-bearing type and appears as veins,
vein zones, and stockworks with quartz and
subordinate amounts of sulfide and other metallic
minerals [21]. Astarghan’s epithermal gold deposit
is the main mine across the region.

Furthermore, the flysch sequence was thermally
metamorphosed following the emplacement of the
Astarghan stock, and resulted in the development
of skarn patches, hornfels and marble. The major
skarn patches crop out mainly at Kaghdara (Zone
A). Volcanic rocks comprised of andesitic and
trachytic lavas and stuffs have an intimate
relationship with intrusive rocks and probably
represent their igneous equivalents. They are
mainly seen at topographic heights of the area (e.g.,
at Nowrozkala) and show the impacts of tectonic
activities in the form of numerous joints and
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fractures. Two dike generations (1-40 m thick) cut
the stock, metasomatites, and sedimentary rocks,
which have been characterized by their
composition, mineral assemblage, and general
trend. Finally, Quaternary alluvial deposits,
alluviums and terraces are the youngest units in the
study area [21]. The detailed 1:20000 geological
map of the Astarghan region is illustrated in Figure
1.

2. Data analysis
2.1. The Hyperion Scene

The Hyperion instrument provides
hyperspectral data for geological purposes and
mineral exploration. Hyperion is composed of
VNIR and SWIR spectrometers. Nevertheless,
Hyperion's poor calibration has caused several
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deficiencies (e.g. smile effect and vertical strips) in
the VNIR/SWIR regions [23]. Correcting these
effects will help to accurately identify minerals and
other targets. This study processes about 90 km? of
Hyperion scene obtained on 30 November 2004.

2.2. Preprocessing

The preprocessing of data is a significant step to
get reliable results from the remotely sensed
images. All errors and unwanted occurrences that
may arise during various steps of data collection
are corrected in the preprocessing phase. Being in
level 1R (L1R), the Astarghan Hyperion scene has
already undergone some preprocessing steps by
USGS such as echo removal and smear correction
[24].
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Figure 1. Location map of the Astarghan region and surrounding geological formations [21].
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2.2.1. Destriping

Inaccurate co-calibration of the individual
detectors on the focal plane array (FPA) causes
severe stripping on Hyperion images that is the so-
called stripping effect [25]. The intensity of
striping in a band depends on its wavelength, and
column number corresponding to the position of
the detector on the two-dimensional FPA [26]. The
striping effect could reduce classification accuracy
of minerals in the study area. Scheffler and
Karrasch [26] investigated the most popular
available striping removal techniques in detail.
Three approaches have been recognized as suitable
techniques for image striping correction from
different methods proposed for striping removal: 1)
wavelet Fourier adaptive filtering [27], ii)) ENVI
general purpose utilities — destripe [28], and iii)
ENVI spectral processing exploitation and analysis
resource (SPEAR) tools. In this work, ENVI
SPEAR tools-vertical destripe removal was applied
to remove Hyperion stripes.

2.2.2. Smile effect

In order to accurately analyze spectral Hyperion
data, especially in the case of mineral mapping, the
smile effect needs to be corrected [29]. The smile
effect is an interior effect of a sensor that mainly
appears in hyperspectral data especially Hyperion
[26]. Different methods, i.e., moving linear fitting
and interpolation, column mean adjusted in
radiance space and column mean adjusted in MNF
space [30] have been developed to correct the smile
effect. In the current study, the smile effect was
removed using column mean adjusted in radiance
space through the “cross-track illumination
corrections” module, provided within the ENVI
software [28].

2.2.3. Atmospheric and topographic corrections

The atmospheric effect causes errors in
remotely sensed data by reducing the results’
accuracy. To compensate for this effect, an
atmospheric correction is necessary for converting
radiance to reflectance data. Several algorithms
such as the atmospheric removal (ATREM), the
fast line-of-sight atmospheric analysis of spectral
hypercubes (FLAASH), atmospheric correction
(ATCOR), and atmospheric correction now
(ACORN) [6] have been introduced for
atmospheric correction. This study implements the
FLAASH algorithm to Hyperion data. The
FLAASH calculates the apparent reflectance
through the MODTRAN (moderate resolution
atmospheric transmission) algorithm [31]. Another
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radiometric effect on remote sensing imagery is the
distortions due to the topography of the earth’s
surface (Figure2). Topographic correction or
elimination of terrain-dependent illumination in
rugged terrains is also crucial. The main
topographic correction techniques include cosine,
Minnaert, and statistical-empirical [32]. Due to its
straightforward and reliable functionality, this
study used the cosine correction method.
Accordingly, the cosine algorithm  was
programmed in interactive data language (IDL)
and utilized for topographic correction of the
Hyperion dataset.

Solar light

Figure 2. Topographic effects on reflectance [33].

Once atmospheric and topographic effects were
corrected, the Hyperion data were qualitatively
assessed. The presence of noisy bands in data
causes errors in the output mineralogical
distribution map. Among various approaches used
in bands’ quality evaluation of hyperspectral data,
the signal-to-noise ratio (SNR) determination is a
popular one. Most of these approaches are
conducted by comparing the ratio of mean spectral
response to the corresponding standard deviation.
Therefore, the mean-to-standard deviation ratio
was used as the approximation of the SNR in this
study. The bands with significantly lower SNR
values were marked as noisy or bad bands.
Moreover, the un-calibrated bands (1-7, 58-76, and
225-242) and spectrally overlapping bands (57, 77)
were added to the bad bands list. Then, bad bands
were deleted from the dataset. Finally, only 139
good bands (out of 242 total bands) were selected
to perform the unmixing task.

The order of steps for the preprocessing of
remote sensing data plays a significant role. For
example, applying an atmospheric or topographic
correction before removing sensor internal errors
or incorrect detector calibration may end up with
wrong results [34]. Thus, to achieve trustworthy
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results, the Hyperion dataset of the study area was
corrected following the sequence shown in Figure
3.

Hyperion L1R data
(242 bands)

A

Destriping

A4

Smile carrection

v

Atmospheric correction

A

Topographic correction

A4

Data quality assessment

Reflectance data
(139 bands)

Z
L
Z
Figure3. Preprocessing workflow for Hyperion data
of study area.

3. Results
3.1. Processing

Spectral unmixing is a procedure for the
separation of a mixed pixel of remote sensing
image to its main constituents. Generally, two
models are used to unmix remote sensing images:
1) linear mixture model (LMM) and 2) non-linear
mixing model (NLMM). In the LMM, a mixed
pixel spectrum is considered to be a linear mixture
of the endmembers weighted by their fractions
inside the pixel. Thus, if there are M endmembers,
the LMM could be demonstrated by equation (1).

q
x=Zatst+w=Sa+N
t=1

(D
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Where x is the pixel spectrum (L X 1 vector), S
is the L X g endmembers matrix (L and q are the
number of bands and endmembers respectively),
s, t=1,...,q, a is the g X 1 aboundance vector
whose elements are a;, t = 1,...,M, and N is the
L X 1 noise spectrum [35, 36].

On the other hand, if pixels of remote sensing
images comprise of non-uniform materials or
different compositions, reflections may diffuse into
one another. In this case, scattering causes
systematic nonlinear mixing of different
components of the pixel. Because of its efficiency
and simplicity in many case studies, LMM is the
most common model in the development of
unmixing algorithms. The main obstacle along the
path to implement the NLMM is the large number
of parameters contributing to the solution, so that
complicated equations are needed to apply this
method [36, 37].

3.1.1 Endmember extraction

To spectrally analyze remote sensing data, one
should select an endmember through either of the
following two approaches: 1) selecting the
endmembers from the USGS spectral library, or 2)
extracting the endmembers from image analysis.
The extracted endmember using the latter approach
is more reliable as it is obtained in the same
conditions as those of the data being processed
[19]. Therefore, for mineral mapping and alteration
studies, it is better to select endmembers’ spectra
from the image rather than spectral libraries. In the
current study, the endmembers were extracted from
Hyperion imagery and to extract mineralogical
information, standardized AIG method was used
[6]. The AIG is a stepwise algorithm provided in
the ENVI software package [28] that can be
implemented for processing of remotely sensed
data (Figure4). To effectively detect endmembers
of hyperspectral data, it is essential to decrease
dimensionality and undertake noise separation.
Minimum noise fraction (MNF) [38, 39] is a useful
technique for denoising Hyperion hyperspectral
data. Accordingly, lower-order MNF bands are
removed from the next processing steps. Then,
pixel purity index (PPI) analysis [36, 38] is
performed to find extreme pixels from higher-order
MNF bands that are assumed as the purest
endmembers.
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_______________

Figure 4. a block diagram of standardized AIG method for Hyperion data processing.

Because of the lower SNR of Hyperion data,
one may recognize fewer constituents with high-
SNR in hyperspectral data. Therefore, to enhance
the accuracy of the mapped minerals in the current
study, the MNF-transformed images were
generated for 0.4-2.4 um and 2-2.4 um regions.
The former range presents information on the
general shape of spectral profiles. The VNIR

region includes absorption features of ferric iron
and chlorophyll, but the SWIR region includes
absorption features of OH™, HOH, and COs* [40].
Jarosite also has absorption features at 2.265 and
2.215pum in the SWIR range [41]. The number of
extracted endmembers (classes) from the Hyperion
scene of the Astarghan region is shown in Table 1.

Table 1. The number of endmembers extracted by PPI from Hyperion data set of study area.

Wavelength range (pm) Number of bands Number of endmember
0.4-2.4 139 4
2-2.4 25 2

Therefore, endmembers or target minerals were
extracted from the scene using PPI method. In this
case, the MNF bands were chosen and the
distribution of pure pixels was investigated
visually in 2-3-4- dimensional scatter plots.
Generally, each cluster represents a pure
endmember within the scatter plots. Then mean
spectral profiles of the clusters are assumed as the
target endmember spectrum. In order to recognize
minerals, the spectra of the determined
endmembers were compared to reference spectra
provided by USGS. The similarity of the reference
spectra with extracted endmembers spectra was
also visually surveyed. Finally, out of the six PPI
endmembers of the Hyperion scene, three
endmembers were recognized. These had the
highest similarity to the spectral features of
kaolinite, opal, and jarosite. Figure 5 illustrates
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spectral profiles of identified minerals together
with corresponding standard USGS spectra.

3.1.2. Spectral mapping

The distribution maps of the identified minerals
were estimated by the matched filtering (MF)
technique. Matched filters are used for recognizing
a target spectrum against a background. The match
filtering technique is a widely used approach in
signal processing. Different matched filtering
algorithms have been introduced, e.g. orthogonal
subspace projection (OSP) and constrained energy
minimization (CEM) [42, 43]. Equation 2 explains
the MF method.

MF(x) = (t —m)TS™1(x —m) )

Where ¢ is the target vector, x is the sample
vector, m is the background mean and S is the
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background covariance [44]. In the processing of
remote sensing data, the MF method serves as a
suitable tool for the detection of minerals based on
the degree of matching to the USGS reference
spectra. MF results for identified endmembers are
shown as grayscale images in Figure 6, where each
pixel value demonstrates the degree to which the

Jarosite

Standard spectra

sesseeenn Endmember specia

Reflectance

1200 1600 2000

Wavelength (nm)

2400

Reflectance

Opal
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spectrum of reference endmembers matches the
spectral profiles of identified minerals. As can be
seen, the MF band of jarosite is similar to one for
kaolinite. This is also observed in the field
investigations that kaolinite coincided with the
jarosite in the Astarghan region.

Kaolinite

Standard spectra

=ssseesnn Endmember specira

L .
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0
400

——— Standard spectra
wearenmes Endmember spectra

Reflectance

T

400 800

1200

1600 2000 2400

‘Wavelength (nm)
Figure 5. The reflectance spectra of extracted endmembers from the Hyperion image of the Astarghan area
together with matched USGS reference spectra. Solid line: USGS reference spectra, dashed line: spectral profiles
of extracted endmembers.

4. Validation

After processing the data, the results should be
validated to check their accuracy. To this end,
some evaluation methods for remote sensing data
are implemented [8, 45], i.e., virtual validation and
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Figure 6. MF analysis of Hyperion image of the study area: A) Kaolinite, B) Opal, C) Jarosite.

validating by geological data. Virtual validation
requires direct control of the remote sensing data
with  sufficient  spatial and/or  spectral
resolution. In-situ verification, on the contrary,
requires visiting the area of interest (i.e. field
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check) and directly sampling the environment to
validate the remote sensing data. Overlaying
mineral distribution maps extracted from remotely
sensed data with geological data is another
approach for the validation of the remote sensing
results. The more detailed geological data are used,
the more robust validation can be performed.

In the current study, at first, the MF analysis
results were verified virtually. MF technique
represents the results in the form of floating-point
that can be displayed as grayscale images. Virtual
verification analysis reveals the constituent
minerals of pixels. Therefore, if the value of pixels
that contain the endmembers could be realized,
then MF images can be easily classified into the
background and target pixels and the distribution
map of each endmember can be recognized
accurately. Molan et al. [19] proposed a moving
threshold for this purpose. In moving threshold,
different threshold values are tested to the image
histogram of each endmember, and then the
threshold that leads to the maximum accuracy of
the mapping of endmember is selected to classify
the MF image. For example, in this study, of the
various threshold values applied for opal, 0.83 was
chosen to classify the corresponding MF image.
That means, pixels having values higher than the
threshold were assumed to contain opal, with the
remaining pixels being classified as background
pixels. In the case of opal, the threshold of 0.83
showed 80.64% accuracy (Figure7). In this study,
120 pixels were selected within the fraction map of
the endmembers for using the moving threshold
and verifying the results. The accuracy of the

Journal of Mining & Environment, Vol. 16, No. 2, 2025

results was obtained by dividing the accurately
mapped pixels by the total number of pixels. The
total number of pixels was obtained by summing
up the non-mapped pixels, accurately mapped
pixels, and inaccurately mapped pixels.

Moving toward the values smaller than the
threshold may increase the number of accurately
and inaccurately mapped pixels, but reduces the
number of non-mapped pixels. Moreover, moving
toward the values larger than the threshold may
reduce the number of accurately and inaccurately
mapped pixels, but increases the number of non-
mapped pixels. Therefore, whether to apply an
upward or downward moving threshold can result
in different levels of accuracy [19]. The accurately
mapped pixels in the MF image describe pixels that
exist in the calculated threshold of each
endmember and also the fact that the existence of
the endmember in the pixels is validated by virtual
verification. In contrast, inaccurately mapped
pixels are the ones that are in the calculated
threshold of each endmember, but the existence of
the endmember inside them is not validated by
virtual verification. As well, non-mapped pixels
correspond to pixels that are not in the calculated
threshold of the endmember, but their existence is
validated by the virtual verification. MF analysis
using a moving threshold was performed for three
endmembers, and the optimum threshold values
were selected (Figure7). Comparing the MF
mapping results with visual assessment of
absorption features of the selected pixels spectra,
an agreement of 78.06% was obtained (Table 2).

Table 2. Accuracy values of mapped endmembers by MF method evaluated by virtual verification.

endmembers Total
Kaolinite Opal Jarosite
Accurate mapped pixels 70 75 65 210
Inaccurate mapped pixels 4 5 6 15
Not mapped pixels 15 13 16 44
Accuracy (%) 78.65 80.64 74.71 78.06

Notice that in Table 3, the total number of pixels
for each endmember is lower than 120. This is
because the selected pixels that pertained to the
background were ignored in the accuracy
calculation (i.e. the pixels with values below the

728

threshold and those with spectra dissimilar to the
endmember were disregarded). In this study, the
threshold value with the highest accuracy was
introduced as the optimum threshold value for each
mineral.
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Figure7. Accuracy analysis of various applied threshold values corresponds to MF images of endmembers.

Another validation was made using the 1:20000
geological map of the study area. In the current
approach, the feasible lithologies which can
comprise a mineral were selected for each
extracted endmember using the union function of
the ArcGIS v. 10.2 software. Then, for each
endmember, the “Intersect” overlay function was
implemented for delineating the intersection of its
abundant areas (derived from the moving threshold
technique on MF analysis) with feasible
lithologies. The feasible lithologies corresponding
to each endmember according to the field
investigations are tabulated in Table 3. The ratio of
the area of intersection to the total distribution area
can be used as a metric for evaluating the accuracy
of the mineral mapping approach. The ratio of one
indicates that the extracted distribution areas by
using of moving threshold method for an
endmember are whole inside the lithological units
that can comprise it. According to the results of the
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overlay functions, 62% of jarosite are distributed in
35% of the study area. In this case, 35% of the
study area is covered by jarosite-bearing
lithologies. The one for opal is 63% in 41%, and
for kaolinite is 77% in 41%. The overlay maps are
indicated in Figure 8.

Three chip samples were selected from
lithological units including opal, kaolinite, and
jarosite. Then, the samples were analyzed by the
XRD method. XRD analysis is an effective method
for identifying the mineral phases. Table 4 shows
the results of the XRD analysis of samples that are
consistent with the lithological units. In addition,
the spectra obtained from XRD analysis are also
shown in Fig 9. Finally, applying the optimum
threshold values, the distribution map of alteration
minerals in the Astarghan area along with the
location of sampling from the area's indicative
alterations is shown in Figure 10.
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Figure 8. Overlay map of the minerals distribution areas extracted by moving threshold technique and a)
jarosite, b) kaolinite, c) opal bearing lithological units.

Table 3. The list of lithologies that can comprise endmembers according to the field investigations.

Endmember Feasible lithologies list
. Porphyry diorite, micro-diorite to quartz-monzodiorite, porphyritic to granular granite-granodiorite, sill,
Jarosite . . . . .
dike swarm, vein veinlets, andesite, skarn, elluvium.
Kaolinit Porphyry diorite, micro-diorite to quartz-monzodiorite, porphyritic to granular granite-granodiorite, sill,
aolmnite dike swarm, vein veinlets, hornfels, andesite, Contact metamorphic rocks, terrace, skarn, elluvium.
Opal Porphyry diorite, micro-diorite to quartz-monzodiorite, porphyritic to granular granite-granodiorite, sill,
P dike swarm, vein veinlets, hornfels, andesite, Contact metamorphic rocks, terrace, skarn, elluvium.
Table 4. Minerals identified using XRD for three samples.
No.sample Major phase(s) Minor phase(s)
1 Kaolinite (A12Si205(OH)4) Goethite (FeO(OH))
2 Quartz (Si02), Kaolinite (A12Si205(OH)4) Clay mineral(Illite or/& Smectite group)
3 Jarosite (KFe3(So4)2.(OH)6) Scorodite (FeAsO4,2H20), Quartz (SiO02)
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Figure 9. The spectra obtained from XRD analysis for lithological units.
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Figure 10. Distribution map of alteration minerals in the Astarghan area that extracted by implementing the
moving threshold technique on MF bands along with the location of samples from the area of indicative
alterations (two right-hand pictures, i.e., a and b, are related to the argellic alteration zones that show the
location of XRD samples, i.e., S1&S2, also two left-hand pictures, i.e., ¢ and d, are related to the phyllic zones
that show the location of XRD sample, i.e., S3).

5. Discussion

In general, one of the most important problems
in image processing, especially hyperspectral data,
is the presence of noise in the data. With the
increase of noise in the data, processing is more
difficult and it is necessary to use more accurate
methods to extract information. However, the use
of noise reduction and denoising methods such as
SNR and MNF can relatively solve this
shortcoming, but the presence of noise in some data
with high noise is still noticeable.

Hyperion data as hyperspectral space-born data
has these conditions. Therefore, different methods
should be used to process this type of data and
validate the resulting maps properly. In this study,
the most common processing method for
hyperspectral data, i.e., the unmixing method was
used. Noticeably, by investigating both linear and
nonlinear unmixing methods it concluded that due
to the noise intensity of Hyperion images the use of
nonlinear unmixing methods has no effects on the
quality of the results. Therefore, a linear unmixing
method, i.e., AIG was applied. Moreover, in this
research, in addition to applying the PPI method on
all MNF bands, in order to get more reliable results,
Hyperion bands in the SWIR range were also
separately analyzed because the SWIR is a suitable
wavelength range for investigating mineral spectral
features. Therefore, as seen in Table 1, two
endmembers were extracted by analyzing 25 bands
in the spectral range of 2 pm to 2.4 um, in which
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there is a good agreement between the spectral of
these endmembers and the spectral of jarosite and
kaolinite minerals.

After identifying the endmembers, i.e., three
members, the abundance of each member in the
image by the match filtering method was
determined. Due to the intensity of noise in
Hyperion data, accurate mapping of the minerals
abundance is a challenging task. So, to cope with
this challenge Moving Threshold method was
applied. The main advantage of the Moving
Threshold method is measuring the accuracy of
different thresholds and giving the best abundance
map for each endmember. In other words, Moving
Threshold, through statistical analysis of image
pixels, helps the user to find a more accurate
abundance map.

To validate the performance of the Moving
Threshold method, a comparison was made
between the final abundance map of each
endmember with the detailed geological map of
Astarghan area, in which results show an
acceptable agreement between them. As well,
taken samples from the identified areas also
showed a good coincidence between the major
detected phase of XRD and the detected end
members in the study area.

6. Conclusions

In general, the application of effective
processing techniques for hyperspectral data
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analysis is the key step for alteration zones
mapping. In this study, the distribution of alteration
minerals in the Astarghan area (NW-Iran) was
successfully mapped by using Hyperion data
analysis. For this purpose, at first, the MNF
transformation was performed. Then pure
endmembers were extracted using PPI computation
and n-d visualizer. The MF approach was used to
analyze the Hyperion data to map the distribution
of the endmembers. The separation of MF
grayscale into background and target pixels is a
challenge in the MF analysis. To address this issue
in the present study, the concept of moving
threshold was introduced into the MF analysis of
Hyperion imagery. Moving threshold is a useful
technique to find proper values in order to separate
MF images into the target and background pixels.
The results of the MF analysis were statistically
validated by the virtual verification method by
comparing the spectrums of three extracted
minerals to the USGS spectral library. The
conformity between the MF results and virtual
verification was about 78%. The results were
further verified using the geological settings
(1:20000 geological map of the Astarghan area).
Overlaying the extracted minerals distribution
maps with digitized maps of the lithological units
in ArcGIS software shows a good consistency
between them so that the majority of distribution
areas of minerals coincide with proper geological
units. The field studies indicated argillic, phyllic,
and propylitic alteration zones across the
Astarghan region. Moreover, field studies
demonstrated that the most extensive alteration
zone in the study area was argillic, which itself
consisted of quartz, kaolinite, illite, and dickite.
Furthermore, across the central part of the study
area, there was a supergene advance argillic
alteration that consists of jarosite, quartz, and clay
minerals, and these minerals were defined as the
representatives of the argillic zone. Based on the
final map of alteration minerals obtained from the
analysis of Hyperion data by moving threshold
method and the field investigations, there is a high
consistency between the results of this study and
field observations such that the pixels of alteration
minerals in the final map (figure 10) correspond to
the areas of alterations that occurred in the
Astarghan region. As well, three samples from
extracted mineral distribution areas (MFs) were
also selected and their XRD analysis results were
in good agreement with our outputs. As future
research, the moving threshold method can be
performed on more recent hyperspectral data such
as PRISMA and check the accuracy of the results.

733

Journal of Mining & Environment, Vol. 16, No. 2, 2025

References

[1]. Poormirzaee, R. & Oskouei, M.M. (2010). Use of
spectral analysis for detection of alterations in ETM
data, Yazd, Iran. Appl Geomat, 2, 147-154.

[2]. Saed, S, Azizi, H., Daneshvar, N., Afzal, P.,
Whattam, S.A. & Mohammad, Y.O. (2022).
Hydrothermal alteration mapping using ASTER data,
Takab-Baneh area, NW Iran: A key for further
exploration of polymetal deposits. Geocarto
International, 37(26), 11456-11482.

[3]. Pourgholam, M. M., Afzal, P., Adib, A., Rahbar, K.,
& Gholinejad, M. (2022). Delineation of Iron alteration
zones using spectrum-area fractal model and TOPSIS
decision-making method in Tarom Metallogenic Zone,
NW Iran. Journal of Mining and Environment, 13(2),
503-525.

[4]. Gersman, R., Ben-Dor, E., Beyth, M., Avigad, D.,
Abraha, M. & Kibreba, A. (2008). Mapping Of
hydrothermally altered rocks by the EO-1 Hyperrion
sensor, northern Danakil, Eritrea. Int. J. Remote Sens.,
29(13),3911-3936.

[5]. Goetz, A.F.H. (2009). Three decades of
hyperspectral remote sensing of the Earth: A personal
view. Remote Sensing of Environment, 113 (1).

[6]. Kruse, F.A. (2003). Mineral mapping with AVIRIS
and EO-1 Hyperion. Presented at the 12th JPL Airborne
Geoscience Workshop, Pasadena, California.

[7]. SrinivasaPerumal, P., Shanmugam, S. & Ganapathi,
P. (2020). Satellite imagery and spectral matching for
improved estimation of calcium carbonate and iron
oxide abundance in mine areas. Arabian Journal of
Geosciences, 13(18), 1-13.

[8]. Oskouei, M.M. & Babakan, S. (2016). Detection of
alteration minerals using Hyperion data analysis in
Lahroud. Journal of the Indian society of remote
sensing, 44(5), 713-721.

[9]. Cudahy, T.J., Hewson, R., Huntington, J.F.,
Quigley, M.A. & Barry, P.S. (2001). The performance
of the satellite-borne Hyperion hyperspectral VNIR-
SWIR imaging system for mineral mapping at Mount
Fitton, South Aust. IEEE IGARSS proc. pp: 9-13.

[10]. Pour, B.A., Hashim, M. & Marghany, M. (2011).
Using spectral mapping techniques on short wave
infrared bands of ASTER remote sensing data for
alteration mineral mapping in SE Iran. Int J Physical
Sci., 6(4), 917-929.

[11]. Ekanayake, E. M. M. B., Vithana, S. S. P,
Ekanayake, E. M. H. E. B., Rathnayake, A. R. M. A. N,
Abeysekara, A. M. R., Oorloff, T. S. J., ... & Senaratne,
A. (2019). Mapping ilmenite deposit in Pulmudai, Sri
Lanka using a hyperspectral imaging-based surface
mineral mapping method. Journal of the National
Science Foundation of Sri Lanka, 47(3),271-284.



Pourmirzaee, and Jamshid Moghadam

[12]. Vignesh, K. & Kiran, Y. (2020). Comparative
analysis of mineral mapping for hyperspectral and
multispectral imagery. Arabian Journal of Geosciences,
13(4), 1-12.

[13]. Bi, X., Miao, F. & Ye, C. (2012). Lithology
identification and mapping by hyperion hyperspectral
remote sensing. Comput Tech Geophys Geochem
Explor, 34, 599-603.

[14]. Wang, J., Zhou, G., Zhang, Y., Bussink, C., Zhang,
J. & Ge, H. (2016). An unsupervised mixture-tuned
matched filtering-based method for the remote sensing
of opium poppy fields using EO-1 Hyperion data: An
example from Helmand, Afghanistan. Remote Sensing
Letters, 7(10), 945-954.

[15]. Govil, H., Gill, N., Rajendran, S., Santosh, M. &
Kumar, S. (2018). Identification of new base metal
mineralization in Kumaon Himalaya, India, using
hyperspectral remote sensing and hydrothermal
alteration. Ore Geology Reviews, 92, 271-283.

[16]. Khatun, M., Sharma, R.U. & Chattoraj, S.L.
(2019). Mineralogical mapping using field and image
based spectra in parts of Delhi-Aravalli Fold Belt,
Rajasthan, India. International Journal of Economic and
Environmental Geology, 8-14.

[17]. Pan, Z., Liu, J., Ma, L., Chen, F., Zhu, G., Qin, F.
& Wang, J. (2019). Research on hyperspectral
identification of altered minerals in Yemaquan West
Gold Field, Xinjiang. Sustainability, 11(2), 428.

[18]. Boardman, J.W. (1998). Leveraging the high
dimensionality of AVIRIS data for improved sub-pixel
target unmixing and rejection of false positives: mixture
tuned matched filtering. In: Summaries of the Seventh
Annual JPL Airborne Geoscience Workshop, Pasadena,
CA, pp. 55.

[19]. Molan, Y .E., Refahi, D. & Tarashti, A.H. (2014).
Mineral mapping in the Maherabad area, eastern Iran,
using the HyMap remote sensing data. International
Journal of Applied Earth  Observation and
Geoinformation, 27, 117-1217.

[20]. Ferdowsi, R., Calagari, A.A., Houseinzadeh, M.R.
& Seyahcheshm, K. (2016). Studies of alteration zones
of Astarghan area based on spectral behaviour of
alteration minerals, mineralogy and Fluid Inclusions
signatures, Kharvana, East- Azarbidjan. 34th national
geosciences symposium, Tehran, Iran.

[21]. Ferdowsi, R., Calagari, A.A., Simmonds, V. &
Miranvari, A. (2021). Evolution of the gold (copper)
mineralization in the porphyry stock and the related
skarn zones and epithermal veins in the Astarghan area,
NW Iran: Evidence from fluid inclusion, mineral
chemistry and sulfur isotope analyses. Ore Geology
Reviews, 136, 104196.

[22]. Mehrpartov, M. (1997). 1:100000 Geological Map
and geological report of Siahrood. Geological survey of
Iran (GSI).

734

Journal of Mining & Environment, Vol. 16, No. 2, 2025

[23]. Hosseinjanizadeh, M., Tangestani, M.H., Roldan,
F.V. & Yusta, I. (2014). Sub-pixel mineral mapping of
a porphyry copper belt using EO-1 Hyperion data.
Advances in Space Research, 53 (3),440-451.

[24]. Barry, P.S. (2001). [EO-1/ Hyperion Science Data
User’s Guide, Level 1 B], TRW Space, Defense &
Information Systems, Redondo Beach, CA.

[25].Bindschadler, R. & Choi, H. (2003). Characterizing
and correcting Hyperion detectors using ice-sheet
images. IEEE Transactions on Geoscience and Remote

Sensing, 41(6), 1189-1193.

[26]. Scheffler, D. & Karrasch, P. (2013). Preprocessing
of Hyperspectral Images-a Comparative Study of
Destriping Algorithms for EO-1 Hyperion. Image and
Signal Processing for Remote Sensing, edited by
Lorenzo Bruzzone, Proc. of SPIE Vol. 8892, 88920.

[27]. Pande-Chhetri, R. & Abd-Elrahman, A. (2012).
Filtering high-resolution hyperspectral imagery in a
maximum noise fraction transform domain using
wavelet-based de-striping. Int. J. of Remote Sensing
34(6),2216-2235.

[28]. RSI, 2000. ENVI User’s Guide, the Environment
for Visualizing Images, Version 3.2. Research Systems,
2995 Wilderness Place, Boulder, CO 80301, USA.

[29]. Oskouei, M.M. & Babakan, S. (2016). Role of
smile correction in mineral detection on hyperion data.
Journal of Mining & Environment, 7(2), 261-272.

[30]. Goodenough, D.G., Dyk, A., Niemann, K.O.,
Pearlman, J.S., Hao, C., Tian, H., Murdoch, M. & West,
C. (2003). Processing Hyperion and Ali for forest
classification. [EEE Transactions on Geoscience and
Remote Sensing, 41 (6), 1321-1331.

[31]. Fuyi, T., Mohammed, S., Abdullah, K., Lim, H. &
Ishola, K., (2013). A comparison of atmospheric
correction techniques for environmental applications.
IEEE International Conference on Space Science and
Communication (IconSpace).

[32]. Poormirzaee, R., & Mohammadi Moskouei, M.
(2012). Topographic correction of hyperspectral data of
west east-Azarbayjan. Journal of Mining
Engineering, 7(15), 25-33.

[33]. Riafio, D., Chuvieco, E., Salas, J. & Aguado, I.
(2003). Assessment of different topographic corrections
in Landsat-TM data for mapping vegetation types. IEEE
Transactions on Geoscience and Remote sensing, 41(5),
1056-1061.

[34]. Khurshid, K.S., Staenz, K., Sun, L., Neville, R.,
White, H.P., Bannari, A., Champagne, C.M. &
Hitchcock, R. (2006). Preprocessing of EO-1 Hyperion
Data. Canadian Journal of Remote Sensing, 32(2), 84—
97.

[35]. Keshbava, N. & Mustard, J.F., (2002). Spectral
unmixing. IEEE signal processing magazine. 1053-
5888/02/S17.00.



Pourmirzaee, and Jamshid Moghadam

[36]. Bioucas-Dias, J.M., Plaza, A., Dobigeon, N.,
Parente, M., Du, Q., Gader, P. & Chanussot, J. (2012).
Hyperspectral Unmixing Overview: Geometrical,
Statistical, and Sparse Regression-Based Approaches.
IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, 5(2), 354-379.

[37]. Dobigeon, N., Altmann, Y., Brun, N. &
Moussaoui, S. (2016). Linear and nonlinear unmixing in
hyperspectral imaging. Data Handling in Science and
Technology: Resolving Spectral Mixtures, 41.

[38]. Boardman, J.W. (1993). Automated spectral
unmixing of AVIRIS data using convex geometry
concepts. In Summaries, Fourth JPL Airborne
Geoscience Workshop, JPL Publication, 93-26, 1, p. 11-
14.

[39].Chang C-I. 2013. Hyperspectral data processing:
algorithm design and analysis. John Wiley & Sons.

[40]. Green, A.A., Berman, M., Switzer, B. & Craig,
M.D. (1988). A transformation for ordering
multispectral data in terms of image quality with

735

Journal of Mining & Environment, Vol. 16, No. 2, 2025

implications for noise removal. I[EEE Transactions on
Geoscience and Remote Sensing, 26(1), 65 - 74.

[41]. Clark, R.N. (1999). Spectroscopy of rocks and
minerals, and principles of spectroscopy. In: Rencz,
A.N. (Ed.), Manual of Remote Sensing. Remote Sensing
for the Earth Sciences. John Wiley & Sons, New York,
pp- 3-58.

[42]. Harsanyi, J.C., Farrand, W.H. & Chang, C.I
(1994). Detection of subpixel signatures in
hyperspectral image sequences. Proceedings of 1994
ASPRS Annual Conference, Reno, Nevada, pp 236—
247.

[43]. Chang, C-I. (2005). Orthogonal subspace
projection (OSP) revisited: A comprehensive study and
analysis. IEEE transactions on geoscience and remote
sensing, 43(3),502-518.

[44]. Schott, J.R. (2007). Remote Sensing, The Image
Chain Approach, second ed. Oxford University Press,
New York, pp. 688.



FeT0 Jlo ipgo o)lod s jlammo g bne iy~ oole 40t pldo dnivaz g Hljyn )90

&y Byl diliio )0 Sl S5 b o po G SIS (40591 )0 Aldii 4y 33 (492 ;e Siubl ) i glai 3l osliiuwl
ol ») el yo

Y -« S # e, .
Ol cdnogyl cdnog yl (Simio oIS ¢ yuro (cwdigeo 09,5 -
IRl 3 G S (o oIS g oo oSl - Y
YeVF/PIYA Gopdy YoVE-0/- L)

rashed.poormirzace@gmail.com oLl Jgtams sdinmgs #

RS

oo 41 e s 31 o sk oS s o0l () aST,2 wailazs 5 15 olizial 5,50 cyo psle 5 08,1 b 4 el (gloosls 3] gla L o
Byl adhie 3 (Gl S5 Gla S o )51,0 4t & sln sl aebol sl 55, 2 (MF) (el 2L (3 5l oolitsl G 0l Ba i
) anlllae gl 5 el e B I3T (61a5 5 5 g Sgiasd S 4 ailyms o5 Jlogi ol (6o HLuslS 5T 10 a5 300,13 ol o e yo oyl e
eS80 05u Sz oy slaaily Bis 5 (Lol (sl ools oS s 28,5 ol (il 5 T 5155 ol Q8] Gl sl )
Soe il ol @ slp i ol 53l e SO dne) e 5 B Gla J Sy 4 abg e poal SIS M (g 50 Lol ad (o g3m Bl
5 Jusl a3l s pals G5 aw Jlold 1Sl gl adlllas 3550 a5l 55, 2 gy ol Jles! 31 ams onl ouds Sl (S oo ailins) (s lel iS5
A osliiwl alyzeo glao Slosliiul (rizren 5 (el AlLS ool 3lme (2l Ghe) 50 Sl S (2l Cu o ablate 0 Zs
b g5 dslio el 2 o5l ol Gt |, TVA/+§ o (USGS) et VLI (o aolieyn; olojls (il ailioliS glaools jl oalital Uy zmlis )|
D51 Sl S0 sla Gl (39 5T j0ass 4y 50 aalllae cpl 50 (g0l by cmlio w0 Shoe Sl 05250 (cuilid (o ST 5 ol o sl 2

s o3lil Ko wigod s XRD 50T aomsts jl eyse e sl 55, oot Slalis slo G5 oS 3 b)) cugr

Lo SIS (55050 adhs 4 ¢S et ailiw] ¢gudai L8 ¢yg ula slaosls s gaudS slaojl




