[1]. Bastante, F.G., Taboada, J., Alejano, L.R., & Ordóñez, C. (2005). Evaluation of the resources of a slate deposit using indicator kriging. Engineering Geology, 81(4), 407-418.
[2]. Heriawan, M.N., & Koike, K. (2008). Uncertainty assessment of coal tonnage by spatial modeling of seam distribution and coal quality. International Journal of Coal Geology, 76(3), 217-226.
[3]. Vargas-Guzmán, J. (2008). Unbiased Resource Evaluations with Kriging and Stochastic Models of Heterogeneous Rock Properties. Nat Resour Res, 17, 245–254.
[4]. Daya, A.A. (2012). Reserve estimation of central part of Choghart north anomaly iron ore deposit through ordinary kriging method. International Journal of Mining Science and Technology, 22(4), 573-577.
[5]. Moosavi, E., & Gholamnejad, J. (2015). Long-term production scheduling modeling for the open pit mines considering tonnage uncertainty via indicator kriging. J Min Sci, 51, 1226–1234.
[6]. Monteiro da Rocha, M., & Yamamoto J.K. (2000). Comparison between kriging variance and interpolation variance as uncertainty measurements in the Capanema Iron Mine, State of Minas Gerais-Brazil. Nat Resour Res, 9,223–235.
[7]. Lloyd, C., & Atkinson, P. (2001). Assessing uncertainty in estimates with ordinary and indicator kriging. Computational Geosciences, 27(8), 929–937.
[8]. Carr, J., & Mao, N. (1993). A general-form of probability kriging for estimation of the indicator and uniform transforms. Math Geol,25(4), 425–438.
[9]. Carle, S., & Fogg, G. (1996). Transition probability-based indicator geostatistics. Math Geol, 28(4), 453–476.
[10]. Bogaert, P. (1999). On the optimal estimation of the cumulative distribution function in presence of spatial dependence. Math Geol,3(2), 213–239.
[11]. Pardo-Igúzquiza, E., & Dowd, P. (2005). Multiple indicator cokriging with application to optimal sampling for environmental monitoring. Computational Geoscience, 31(1),1–13.
[12]. Bardossy, A. (2006). Copula-based geostatistical models for groundwater quality parameters. Water Resour. Res, 42.
[13]. Bardossy, A., & Li, J. (2008). Geostatistical interpolation using copulas. Water Resour. Res, 44.
[14]. Kazianka, H., & Pilz, J. (2010). Copula-based geostatistical modeling of continuous and discrete data including covariates. Stoch. Env. Res. Risk A., 24, 661–673.
[15]. Atalay, F., & Tercan, A.E. (2017). Coal resource estimation using Gaussian copula, International Journal of Coal Geology, 175.
[16]. Käärik, E., & Käärik, M. (2009). Modeling dropouts by conditional distribution, a copula-based approach. Journal of Statistical Planning and Inference, 139(11), 3830-3835.
[17]. Parsa, R.A., & Klugman, S.A. (2011). Copula regression. Var. Adv. Sci. Risk, 5, 45-54.
[18]. Kwak, M. (2017). Estimation and inference on the joint conditional distribution for bivariate longitudinal data using Gaussian copula, Journal of the Korean Statistical Society, 46(3), 349-364.
[19]. Chang, B., & Joe, H. (2019). Prediction based on conditional distributions of vine copulas, Computational Statistics & Data Analysis, 139, 45-63.
[20]. Musafer, G. N., Thompson, M. H., Kozan, E., & Wolff, R. C. (2016). Spatial Pair-Copula Modeling of Grade in Ore Bodies: A Case Study. Natural Resources Research, 26(2), 223–236.
[21]. Addo, E., Chanda, E.K., & Metcalfe, A.V. (2017). Estimation of direction of increase of gold mineralization using pair-copulas, International Congress on Modelling and Simulation.
[22]. Sohrabian, B., Soltani-Mohammadi, S., Pourmirzaee, R., & Carranza, E.J.M. (2023). Geostatistical Evaluation of a Porphyry Copper Deposit Using Copulas. Minerals, 13(6), 732.
[23]. Bárdossy, A., & Hörning, S. (2023). Definition of Spatial Copula Based Dependence Using a Family of Non‐Gaussian Spatial Random Fields. Water Resources Research, 59(7).
[24]. Sklar, A. (1959). Fonctions de Répartition à n Dimensions et Leurs Marges. Publications de l’Institut Statistique de l’Université de Paris, 8, 229-231.
[25]. Addo, E., Chanda, E.K. & Metcalfe, A.V. (2018). Spatial Pair-Copula Model of Grade for an Anisotropic Gold Deposit. Mathematical Geosciences, 51(5), 553–578.
[26]. Isaaks, E.H., & Srivastava, R.M. (1989). An Introduction to Applied Geostatistics. Oxford University Press, New York, 413.
[27]. Journel, A.G. (1983). Nonparametric estimation of spatial distributions. Math. Geol., 15, 445–468.
[28]. Tercan, A.E., & Dowd, P.A. (1995). Approximate Local Confidence Intervals under Change of Support. Mathematical Geology, 27(1), 149–72.
[29]. Deutsch, C.V. (1996). Direct Assessment of Local Accuracy and Precision. Geostatistics Wollongong 96, Vol 1, Baafi and Schofield, editors, Kluwer Academic Publishers, pp 115-125.
[30]. Pyrcz, M.J., & Deutsch, C.V. (2014). Geostatistical Reservoir Modeling, 2nd Edition, Oxford University Press, New York, p. 448.
[31]. Berberian, M., & King, G.C.P. (1981). Towards a paleogeography and tectonic evolution of Iran, Canadian Journal of Earth Sciences, 18, 210–265.
[32]. Alavi, M. (1991). Sedimentary and structural characteristics of the Paleo-Tethys remnants in northeastern Iran, Geological Society of America Bulletin, 103, 983–992.
[33]. Kou, G.Y., Xu, B., Zhou, Y., Zheng, Y.C., Hou, Z.Q., Zhou, L.M., Zhang, L.M., & Yu, J.X. (2021). Geology and petrogenesis of the Sungun deposits: Implications for the genesis of porphyry-type mineralisation in the NW Urumieh–Dokhtar magmatic Arc, Iran. Ore Geology Reviews [Internet].
[34]. Lescuyer, J.L., Riou, R., Babakhani, A., Alavi Tehrani, N., Nogol, M.A., Dido, J., & Gemain, Y.M. (1978). Geological map of the Ahar area. Geological Survey of Iran.
[35]. Mehrpartou, M. (1993). Contributions to the geology, geochemistry, ore genesis and fluid inclusion investigations on Sungun Cu–Mo porphyry deposit, (North-West of Iran). PhD Thesis, Hamburg University 1993. Hamburg, 245 pp.
[36]. Simmonds, V., Moazzen, M., & Mathur, R. (2017). Constraining the timing of porphyry mineralization in northwest Iran in relation to Lesser Caucasus and Central Iran; Re–Os age data for Sungun porphyry Cu–Mo deposit. International Geology Review, 59(12), 1561–1574.
[37]. Calagari, A.A., Pattrick, R.A.D., & Polya, D.A. (2001). Veinlets and micro-veinlets studies in Sungun porphyry copper deposit, East Azarbaidjan, Iran. Iranian Journal of Geoscience, 39–40, 70–79.
[38]. Soltani, F., Afzal, P., & Asghari, O. (2014). Delineation of Alteration Zones Based on Sequential Gaussian Simulation and Concentration–Volume Fractal Modeling in the Hypogene Zone of Sungun Copper Deposit, NW Iran. Journal of Geochemical Exploration, 140, 64–76.
[39]. Sullivan, J. (1984). Non-parametric estimation of spatial distributions. Unpublished PhD dissertation, Stanford University, 367 pp.
[40]. Myers, J.C. (1997). Geostatistical Error Management: Quantifying Uncertainty for Environmental Sampling and Mapping, John Wiley and Sons, 596 pp.
[41]. Sohrabian, B. (2021a). Geostatistical prediction through convex combination of Archimedean copulas. Spatial Statistics, 41, 100488.
[42]. Sohrabian, B. (2021b). Capacity assessment of Gumbel-Clayton copula for geostatistical estimation. Iran J Min Eng, 16(51), 52–67.