[1]. Hezarkhani, A., & Ghannadpour, S.S. (2015). Exploration Information Analysis. Amirkabir University of Technology Publications.
[2]. Biranvandpour, A., & Hashim, M. (2014). ASTER, ALI and Hyperion sensors data for lithological mapping and ore minerals exploration. Springer Plus, 3, 130.
[3]. Ghassemian, H. (2016). A review of remote sensing image fusion methods. Information Fusion, 32, 75–89. Elsevier B.V.
[4]. Van der Meer, F., Hecker, C., van Ruitenbeek, F., van der Werff, H., de Wijkerslooth, C., & Wechsler, C. (2014). Geologic remote sensing for geothermal exploration: A review. International Journal of Applied Earth Observation and Geoinformation, 33(1), 255–269.
[5]. Cheng, Q, Agterberg, F.P., & Bonham-Carter, G.F. (1996). A spatial analysis method for geochemical anomaly separation. Journal of Geochemical Exploration, 56, 183–I95.
[6]. Cheng, Q., Yaguang, X., & Eric, G. (2000). Integrated spatial and spectrum method for geochemical anomaly separation. Natural Resources Research, 9(1), 43–52.
[7]. Ghannadpour, S.S., & Hezarkhani, A. (2016). Introducing 3D U-statistic method for separating anomaly from background in exploration geochemical data with associated software development. Journal of Earth System Science, 125(2), 387–401.
[8]. Ghannadpour, S.S., & Hezarkhani, A. (2016). Exploration geochemistry data-application for anomaly separation based on discriminant function analysis in the Parkam porphyry system (Iran). Geoscience Journal, 20(6), 837–850.
[9]. Ghannadpour, S.S., Hezarkhani, A., & Sharifzadeh, M. (2017). A method for extracting anomaly map of Au and As using combination of U-statistic and Euclidean distance methods in Susanvar district, Iran. Journal of Central South University, 24, 2693-2704.
[10]. Ghannadpour, S.S., & Hezarkhani, A. (2017). Comparing U-statistic and nonstructural methods for separating anomaly and generating geochemical anomaly maps of Cu and Mo in Parkam district, Kerman, Iran. Carbonates and Evaporites, 32(2), 155–166.
[11]. Ghannadpour, S.S., Hezarkhani, A., & Roodpeyma, T. (2017). Combination of Separation Methods and Data Mining Techniques for Prediction of Anomalous Areas in Susanvar, Central Iran. African Journal of Earth Sciences, 134, 516–525.
[12]. Ghannadpour, S.S., & Hezarkhani, A. (2018). Providing the bivariate anomaly map of Cu–Mo and Pb–Zn using combination of statistic methods in Parkam district, Iran. Carbonates and Evaporites, 33(3), 403–420.
[10]. B Behbahanı, H Haratı, P Afzal, M Lotfı, 2023. Determination of alteration zones applying fractal
[13]. Zamyad, M., Afzal, P., Pourkermani, M., Nouri, R., & Jafari, M.R. (2019). Determination of hydrothermal alteration zones using remote sensing methods in Tirka Area, Toroud, NE Iran. Journal of the Indian Society of Remote Sensing, 47, 1817-1830
[14]. Mandelbrot, B.B. 1983. The fractal geometry of nature. W.H. Freeman and company, San Francisco, New York, 468 p.
[15].
Cheng, Q.,
Agterberg, F.P., & Ballantyne, S.B. (1994). The separation of geochemical anomalies from background by fractal methods.
Journal of Geochemical Exploration, 51, 109- 130.
[16]. Li, C., Ma, T., & Shi, J. (2003). Application of a fractal method relating concentrations and distances for separation of geochemical anomalies from background. Journal of Geochemical Exploration, 77, 167-175.
[17]. Afzal, P., Alghalandis, Y. F., Khakzad, A., Moarefvand, P., & Omran, N.R. (2011). Delineation of mineralization zones in porphyry Cu deposits by fractal concentration–volume modeling. Journal of Geochemical exploration, 108 (3), 220-232.
[18]. Hassanpour, S., & Afzal, P. (2013). Application of concentration–number (C-N) multifractal modeling for geochemical anomaly separation in Haftcheshmeh porphyry system, NW Iran. Arabian Journal of Geosciences, 6, 957-970.
[19]. Nazarpour, A., Omran, N.R., & Paydar, G.R. (2015). Application of multifractal models to identify geochemical anomalies in Zarshuran Au deposit, NW Iran. Arabian Journal of Geosciences, 8, 877-889.
[20]. Momeni, S., Shahrokhi, S.V., Afzal, P., Sadeghi, B., Farhadinejad, T., & Nikzad, M.R. (2016). “Delineation of the Cr mineralization based on the stream sediment data utilizing fractal modeling and factor analysis in the Khoy 1:100,000 sheet, NW Iran. Bulletin of the Mineral Research and Exploration, 152, 1-17.
[21].
Ahmadfaraj, M.,
Mirmohammadi, M., &
Afzal, P. (2016). Application of fractal modeling and PCA method for hydrothermal alteration mapping in the Saveh area (Central Iran) based on ASTER multispectral data.
International Journal of Mining and Geo-Engineering, 50(1), 37-48.
[22]. Afzal, P., Ahmadi, K., & Rahbar, K. (2017). Application of fractal-wavelet analysis for separation of geochemical anomalies. African Journal of Earth Science, 128, 27-36.
[23]. Koohzadi, F., Afzal, P., Jahani, D., & Pourkermani, M., (2021). Geochemical exploration for Li in regional scale utilizing Staged Factor Analysis (SFA) and Spectrum-Area (S-A) fractal model in north central Iran. Iranian Journal of Earth Sciences, 13, 299-307.
[24]. Shahbazi, S., Ghaderi, M., & Afzal, P. (2021). Prognosis of gold mineralization phases by multifractal modeling in the Zehabad epithermal deposit, NW Iran. Iranian Journal of Earth Sciences, 13, 31-40.
[25]. Farhadi, S., Afzal, P., Boveiri Konari, M., Daneshvar Saein, L., & Sadeghi, B. (2022). Combination of Machine Learning Algorithms with Concentration-Area Fractal Method for Soil Geochemical Anomaly Detection in Sediment-Hosted Irankuh Pb-Zn Deposit, Central Iran. Minerals, 12(6), 689.
[28]. Ghannadpour, S.S., Hasiri, M., Talebiesfandarani, S., & Jalili, H. (2024). Applying the fractal geometry method (C-A model) to Processing ASTER satellite images.
Journal of Mineral Resources Engineering, 9(3), 10.30479/jmre.2024.19329.1665. (In Persian with English Abstract). https://jmre.journals.ikiu.ac.ir/article_3314.html
[29]. Ghannadpour, S.S., Hasiri, M., Jalili, H., & Talebiesfandarani, S. (2024). Satellite Image Processing: Application for Alteration Separation based on U-Statistic Method in Zafarghand Porphyry System (Iran). Journal of Mining and Environment, 15(2), 667-681.
[30]. Ghannadpour, S.S., Esmailzadeh Kalkhoran, S., Jalili, H., & Behifar, M. (2024). Delineation of mineral potential zone using U-statistic method in processing satellite remote sensing images. International Journal of Mining and Geo-Engineering, 57(4), 445-453.
[32]. Sadeghian, M., & Ghafari, M. (2011). Petrogenesis of the Zafarghand Granitoid Massif (Southeast of Isfahan). Petrology, 2(6), 47-70.
[33]. Aminoroayaei Yamini, M., Tutti, F., & Ahmadian, J. (2016). Hydrothermal Alteration of Porphyry Copper Deposit in the Southwest of Zafarghand with Emphasis on Mineralogical and Geochemical Changes in the Area. Journal of Earth Sciences Research, 7(25), 75-90.
[34]. Mohammadi, S., Nedaei, A.R., & Aalami Nia, Z. (2018). Analysis of the relationship between mineralization and alteration zones with tectonic structures using remote sensing studies in south Ardestan area (northeastern Isfahan). Geotectonics, 7, 29-47.
[35].
Aminoroayaei Yamini, M.,
Tutti, F.,
Haschke, M.,
Ahmadian, j., &
Murata, M. (2016). Synorogenic copper mineralization during the Alpine–Himalayan orogeny in the Zafarghand copper exploration district, Central Iran: petrography, geochemistry and alteration thermometry.
Geological Journal, 25(2), 263-281.
[36]. Esmailzadeh Kalkhoran, S., Ghannadpour, S.S., Moeini Rad, A., & Jalili, H. (2024). comparing the Performance of ASTER and LANDSAT 8 Satellite Images in Identifying Iron Oxide and Porphyry Copper Alterations in Zafarghand Region of Isfahan Province. Journal of Mineral Resources Engineering, 9(1), 41-65.
[37]. Esmailzadeh Kalkhoran, S., Ghannadpour, S.S., Jalili, H., & Moeini Rad, A. (2024). Investigating porphyry copper alterations and spectral behavior of related minerals using ASTER satellite images in the Zafarghand region, Isfahan.
Advanced Applied Geology, Articles in Press: 10.22055/aag.2024.45697.2425 (In Persian with English Abstract). https://aag.scu.ac.ir/article_19164.html
[38]. Hewson, R.D., Cudahy, T.J., Mizuhiko, S., Ueda, K., & Mauger, A.j. (2005). Seamless geological map generation using ASTER in the Broken Hill-Curnamona province of Australia. Remote Sensing of Environment, 99, 159-172.
[39]. Ghrefat, H., Awawdeh, M., Howari, F., & Al-Rawabdeh, A. (2023). Mineral exploration using multispectral and hyperspectral remote sensing data. Geoinformatics for Geosciences, 197–222.
[40]. Pournamdari, M., Hashim, M. & Pour, A. B. (2014). Spectral transformation of ASTER and Landsat TM bands for lithological mapping of Soghan ophiolite complex, south Iran. Advances in Space Research, 54(4), 694-709.
[41]. Azizi, A., Tarverdi, M. A., & Akbarpour, A. (2010). Extraction of hydrothermal alterations from ASTER SWIR data from east Zanjan, northern Iran. Advances in Space Research, 54(4), 99-109.
[42]. Grove, C.I., Hook, S.J. & Paylor III, E.D. (1992). Laboratory reflectance spectra of 160 minerals,0.4 to 2.5 micrometers.
[43]. Hunt, G.R. & Salisbury, J.W. (1971). Visible and near infrared spectra of minerals and rocks. II. Carbonates. Modern Geology, 2, 23-30.
[44]. Salisbury, J.W. & D'Aria, D.M. (1992). Emissivity of terrestrial materials in the 8–14 μm atmospheric window. Remote Sensing of Environment, 42(2), 83-106.
[45]. Vicente, L.E. & de Souza Filho, C.R. (2011). Identification of mineral components in tropical soils using reflectance spectroscopy and advanced spaceborne thermal emission and reflection radiometer (ASTER) data. Remote Sensing of Environment, 115(8), 1824-1836.
[46]. Beiranvand Pour, A., & Hashim, M. (2011). Identification of hydrothermal alteration mineral for exploration of porphyry copper deposit using ASTER data, SE Iran. ELSEVER: Journal of Asian Earth Sciences, 42, 1309-1323.
[47]. El-Qassas, R.A.Y., Abu-Donia, A.M., & Omar, A.E.A. (2023). Delineation of hydrothermal alteration zones associated with mineral deposits, using remote sensing and airborne geophysics data. A case study: El‑Bakriya area, Central Eastern Desert, Egypt. Acta Geodaetica et Geophysica, 5, 71–107.
[48]. Shahi, H., & Kamkar-Rouhami, A. (2014). A GIS-based weights of evidence model for mineral potential mapping of hydrothermal gold deposits in Torbat-e-Heydarieh area. Journal of Mining and Environment, 5(2), 79-89.
[49]. Mhangara, P. (2005). Testing the ability of ASTER (Advanced spaceborne thermal emission and reflection radiometer) to tap hydrothermal alteration zones: a case study of the Haib Porphyry Copper-Molybdenum Deposit, Namibia. MSc dissertation, Stellenbosch University.
[50]. Pour, A.B., & Hashim, M. (2012). The application of ASTER remote sensing to porphyry copper and epithermal gold deposits. Ore Geology Reviews, 44, 1-9.
[51]. Nouri, R., Jafari, M. R., Arain, M., & Feizi, F. (2012). Hydrothermal Alteration Zones Identification Based on Remote Sensing Data in the Mahin Area, West of Qazvin Province, Iran. In Proceedings of World Academy of Science, Engineering and Technology 67, World Academy of Science, Engineering and Technology.
[52]. Sadek, M.F., Ali-Bik, M.W., & Hassan, S.M. (2015). Late Neoproterozoic basement rocks of Kadabora-Suwayqat area, Central Eastern Desert, Egypt: geochemical and remote sensing characterization. Arabian Journal of Geoscience, 8, 10459–10479.
[53]. Kumar, C., Shetty, A., Raval, S., Sharma, R., & Ray, P. K. C. (2015). Lithological Discrimination and Mapping using ASTER SWIR Data in the Udaipur area of Rajasthan, India. Procedia Earth Planet. Sci, 11, 180–188.