[1]. Wang, K., Yang, P., Yu, G., Yang, C., & Zhu, L. (2020). 3D numerical modelling of tailings dam breach run out flow over complex terrain: A multidisciplinary procedure. Water, 12(9), 2538.
[2]. Azam, S., & Li, Q. (2010). Tailings dam failures: a review of the last one hundred years. Geotechnical news, 28(4), 50-54.
[3]. Kossoff, D., Dubbin, W. E., Alfredsson, M., Edwards, S. J., Macklin, M. G., & Hudson-Edwards, K. A. (2014). Mine tailings dams: Characteristics, failure, environmental impacts, and remediation. Applied geochemistry, 51, 229-245.
[4]. Islam, K., & Murakami, S. (2021). Global-scale impact analysis of mine tailings dam failures: 1915–2020. Global Environmental Change, 70, 102361.
[5]. Zhang, C., Chai, J., Cao, J., Xu, Z., Qin, Y., & Lv, Z. (2020). Numerical simulation of seepage and stability of tailings dams: A case study in Lixi, China. Water, 12(3), 742.
[6]. Xu, B., & Wang, Y. (2015). Stability analysis of the Lingshan gold mine tailings dam under conditions of a raised dam height. Bulletin of Engineering Geology and the Environment, 74, 151-161.
[7]. Ozcan, N. T., Ulusay, R., & Isik, N. S. (2013). A study on geotechnical characterization and stability of downstream slope of a tailings dam to improve its storage capacity (Turkey). Environmental Earth Sciences, 69, 1871-1890.
[8]. Alsharedah, Y. A., El Naggar, M. H., & Ahmed, A. (2023). Improving Tailings Dam Safety via Soil Treatment. Sustainability, 15(21), 15276.
[9]. Ledesma, O., Sfriso, A., & Manzanal, D. (2022). Procedure for assessing the liquefaction vulnerability of tailings dams. Computers and Geotechnics, 144, 104632.
[10]. Van Niekerk, H. J., & Viljoen, M. J. (2005). Causes and consequences of the Merriespruit and other tailings‐dam failures. Land degradation & development, 16(2), 201-212.
[11]. Sadrekarimi, A., & Riveros, G. A. (2020). Static liquefaction analysis of the Fundão dam failure. Geotechnical and Geological Engineering, 38, 6431-6446.
[12]. Mayne, P., & Sharp, J. (2021). Screening for flow liquefaction for tailings and natural soils by CPTU. In Proceedings of the 20th international conference on soil mechanics and geotechnical engineering (pp. 459-464).
[13]. Cambridge, M., & Shaw, D. (2019). Preliminary reflections on the failure of the Brumadinho tailings dam in January 2019. Dams and Reservoirs, 29(3), 113-123.
[14]. Sitharam, T. G., & Hegde, A. (2017). Stability analysis of rock-fill tailing dam: an Indian case study. International Journal of Geotechnical Engineering, 11(4), 332-342.
[15]. Pacheco, F., Hermosilla, G., Piña, O., Villavicencio, G., Allende-Cid, H., Palma, J., ... & Novoa, G. (2022). Generation of synthetic data for the analysis of the physical stability of tailing dams through artificial intelligence. Mathematics, 10(23), 4396.
[16]. Lyu, Z., Chai, J., Xu, Z., Qin, Y., & Cao, J. (2019). A comprehensive review on reasons for tailings dam failures based on case history. Advances in Civil Engineering, 2019(1), 4159306.
[17]. Chakraborty, D., & Choudhury, D. (2009). Investigation of the behavior of tailings earthen dam under seismic conditions. American Journal of Engineering and Applied Sciences, 2(3), 559-564.
[18]. Singh, R., Umrao, R. K., & Singh, T. N. (2017). Hill slope stability analysis using two and three dimensions analysis: A comparative study. Journal of the Geological Society of India, 89, 295-302.
[19]. Latha, G. M., & Garaga, A. (2010). Seismic stability analysis of a Himalayan rock slope. Rock Mechanics and Rock Engineering, 43, 831-843.
[20]. Rai, R., Kalita, S., Gupta, T., & K Shrivastva, B. (2012). Sensitivity analysis of internal dragline dump stability: finite element analysis. Geotechnical and Geological Engineering, 30, 1397-1404.
[21]. Koner, R. (2021). Estimation of optimum geometric configuration of mine dumps in Wardha valley coalfields in India: A case study. Journal of Mining and Environment, 12(4), 907-927.
[22]. Chand, K., & Koner, R. (2024). Failure zone identification and slope stability analysis of mine dump based on realistic 3D numerical modeling. Geotechnical and Geological Engineering, 42(1), 543-560.
[23]. Koner, R., & Chakravarty, D. (2016). Numerical analysis of rainfall effects in external overburden dump. International Journal of Mining Science and Technology, 26(5), 825-831.
[24]. Lin, S., Zheng, H., Han, C., Han, B., & Li, W. (2021). Evaluation and prediction of slope stability using machine learning approaches. Frontiers of Structural and Civil Engineering, 15(4), 821-833.
[25]. Santos, A. E. M., Lana, M. S., & Pereira, T. M. (2022). Evaluation of machine learning methods for rock mass classification. Neural Computing and Applications, 34(6), 4633-4642.
[26]. Yilmaz, I., & Yuksek, A. G. (2008). An example of artificial neural network (ANN) application for indirect estimation of rock parameters. Rock Mechanics and Rock Engineering, 41(5), 781.
[27]. Tabrizi, S. S., & Sancar, N. (2017). Prediction of Body Mass Index: A comparative study of multiple linear regression, ANN and ANFIS models. Procedia computer science, 120, 394-401.
[28]. Khademi, F., Jamal, S. M., Deshpande, N., & Londhe, S. (2016). Predicting strength of recycled aggregate concrete using artificial neural network, adaptive neuro-fuzzy inference system and multiple linear regression. International Journal of Sustainable Built Environment, 5(2), 355-369.
[29]. Erzin, Y., & Cetin, T. (2013). The prediction of the critical factor of safety of homogeneous finite slopes using neural networks and multiple regressions. Computers & Geosciences, 51, 305-313.
[30]. Pradhan, B. (2010). Landslide susceptibility mapping of a catchment area using frequency ratio, fuzzy logic and multivariate logistic regression approaches. Journal of the Indian Society of Remote Sensing, 38, 301-320.
[31]. Pradhan, B. (2010). Remote sensing and GIS-based landslide hazard analysis and cross-validation using multivariate logistic regression model on three test areas in Malaysia. Advances in space research, 45(10), 1244-1256.
[32]. Moayedi, H., Tien Bui, D., Kalantar, B., & Kok Foong, L. (2019). Machine-learning-based classification approaches toward recognizing slope stability failure. Applied Sciences, 9(21), 4638.
[33]. Kheir, R. B., Greve, M. H., Abdallah, C., & Dalgaard, T. (2010). Spatial soil zinc content distribution from terrain parameters: A GIS-based decision-tree model in Lebanon. Environmental Pollution, 158(2), 520-528.
[34]. Tien Bui, D., Pradhan, B., Lofman, O., & Revhaug, I. (2012). Landslide susceptibility assessment in vietnam using support vector machines, decision tree, and Naive Bayes Models. Mathematical problems in Engineering, 2012(1), 974638.
[35]. Pradhan, B. (2013). A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS. Computers & Geosciences, 51, 350-365.
[36]. Paudel, U., Oguchi, T., & Hayakawa, Y. (2016). Multi-resolution landslide susceptibility analysis using a DEM and random forest. International Journal of Geosciences, 7(5), 726-743.
[37]. Xie, H., Dong, J., Deng, Y., & Dai, Y. (2022). Prediction model of the slope angle of rocky slope stability based on random forest algorithm. Mathematical Problems in Engineering, 2022(1), 9441411.
[38]. Breiman, L. (2001). Random forests. Machine learning, 45, 5-32.
[39]. Zhou, J., Li, X., & Shi, X. (2012). Long-term prediction model of rockburst in underground openings using heuristic algorithms and support vector machines. Safety science, 50(4), 629-644.
[40]. Piryonesi, S. M., & El-Diraby, T. E. (2020). Role of data analytics in infrastructure asset management: Overcoming data size and quality problems. Journal of Transportation Engineering, Part B: Pavements, 146(2), 04020022.
[41]. Drucker, H., Burges, C. J., Kaufman, L., Smola, A., & Vapnik, V. (1996). Support vector regression machines. Advances in neural information processing systems, 9.
[42]. Vapnik, V., Golowich, S., & Smola, A. (1996). Support vector method for function approximation, regression estimation and signal processing. Advances in neural information processing systems, 9.
[43]. Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning, 20, 273-297.
[44]. Yahyaoui, N., Neji, M., Kallel, M., Wali, A., & Hajji, S. (2023). A comparative approach of ML algorithms to rank irrigation water quality: case of Oriental-Coast shallow aquifer in Cap-Bon, northeastern of Tunisia. Modeling Earth Systems and Environment, 9(3), 3733-3746.
[45]. Pedregosa, F. (2011). Scikit‐learn: Machine learning in python Fabian. Journal of machine learning research, 12, 2825.
[46]. Bentéjac, C., Csörgő, A., & Martínez-Muñoz, G. (2021). A comparative analysis of gradient boosting algorithms. Artificial Intelligence Review, 54, 1937-1967.
[47]. Sheridan, R. P., Wang, W. M., Liaw, A., Ma, J., & Gifford, E. M. (2016). Extreme gradient boosting as a method for quantitative structure–activity relationships. Journal of chemical information and modeling, 56(12), 2353-2360.
[48]. Chen, T., & Guestrin, C. (2016, August). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (pp. 785-794).
[49]. Zhou, J., Li, E., Yang, S., Wang, M., Shi, X., Yao, S., & Mitri, H. S. (2019). Slope stability prediction for circular mode failure using gradient boosting machine approach based on an updated database of case histories. Safety Science, 118, 505-518.
[50]. Dehghan, S., Sattari, G. H., Chelgani, S. C., & Aliabadi, M. A. (2010). Prediction of uniaxial compressive strength and modulus of elasticity for Travertine samples using regression and artificial neural networks. Mining Science and Technology (China), 20(1), 41-46.
[51]. Monjezi, M., Hasanipanah, M., & Khandelwal, M. (2013). Evaluation and prediction of blast-induced ground vibration at Shur River Dam, Iran, by artificial neural network. Neural Computing and Applications, 22, 1637-1643.
[52]. Ebrahimi, E., Monjezi, M., Khalesi, M. R., & Armaghani, D. J. (2016). Prediction and optimization of back-break and rock fragmentation using an artificial neural network and a bee colony algorithm. Bulletin of Engineering Geology and the Environment, 75, 27-36.
[53]. Akinwekomi, A. D., & Lawal, A. I. (2021). Neural network-based model for predicting particle size of AZ61 powder during high-energy mechanical milling. Neural Computing and Applications, 33, 17611-17619.
[54]. Aladejare, A. E., Ozoji, T., Lawal, A. I., & Zhang, Z. (2022). Soft computing-based models for predicting the characteristic impedance of igneous rock from their physico-mechanical properties. Rock Mechanics and Rock Engineering, 55(7), 4291-4304.