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 Landslides pose significant risks to human life, infrastructure, and the environment, 

particularly in geologically unstable regions like the Himalayas. This study aims to 

develop and validate landslide susceptibility maps using Frequency Ratio (FR) and 

Information Value (IV) models within a GIS framework. Employing high-resolution 

geospatial data, including geomorphological, topographical, and hydrological factors 

derived from high-resolution digital elevation models (DEMs) and other geospatial 

datasets. The susceptibility maps were classified into five categories: Low, Moderate, 

High, Very High, and Extremely High. The models were trained and validated using a 

landslide inventory of 1313 landslide events, with a 70:30 split for training and testing 

datasets. The predictive performance of the models was evaluated using the Area Under 

the Curve (AUC) of the Receiver Operating Characteristic (ROC) curve, yielding AUC 

values of 84.1 for the FR model and 83.9 for the IV model. The Landslide Density 

Index (LDI) further confirmed the models' reliability, indicating higher landslide 

densities in the predicted high-susceptibility zones. The study demonstrates that both 

FR and IV models are effective tools for landslide susceptibility mapping and its 

validation. The findings highlight the FR model's superior predictive accuracy in this 

specific area. Future research should leverage advanced machine learning techniques, 

such as XGBoost, Random Forest (RF), Naive Bayes (NB), and K-Nearest Neighbors 

(KNN), to enhance the reliability and precision of landslide susceptibility models. 
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1. Introduction 

Landslides are a prevalent natural hazard, causing 

significant damage to life, property, and the environment 

globally [1–5]. This geohazard is particularly severe in 

mountainous regions, where steep slopes, heavy rainfall, 

and geological factors combine to create unstable 

conditions [6–11]. Landslides occur due to a variety of 

triggers including intense rainfall, rapid snowmelt, 

earthquakes, volcanic activity, and human activities such as 

deforestation and construction [1]. These factors lead to the 

destabilization of slopes, causing soil, rock, and debris to 

move downslope rapidly [12]. 

India is among the most landslide-prone nations in Asia, 

trailing only China. In the period from 2020 to 2021, India 

registered some of the highest figures for fatalities caused 

by landslides globally [13]. Historical events underscore 

the devastating impact of landslides in the country. For 

instance, Guwahati, Assam, experienced a catastrophic 

landslip on September 18, 1948, triggered by heavy rainfall, 

which claimed the lives of 500 people and buried an entire 

community. Similarly, Darjeeling, West Bengal, was 

struck by a disastrous landslip on October 4, 1968, during 

severe flooding, resulting in over 1000 fatalities and severe 

disruption of transportation infrastructure. More recently, 

the Kedarnath landslide in Uttarakhand on July 16, 2013, 

caused by heavy rainfall and subsequent floods, led to 

approximately 5700 fatalities and impacted 4200 villages. 

These incidents highlight the destructive nature of 

landslides in India, resulting in significant loss of life and 

extensive damage to infrastructure. Please refer to Figure 2 

for a chronological overview of major landslide incidents 

in India, including the causes and impacts of each event 

from 1948 to 2020. 

http://www.jme.shahroodut.ac.ir/
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Figure 1. A major landslide occurred in India. 

Himachal Pradesh, located in the Western 

Himalayas, frequently experiences landslides due 

to its complex geological structure, high seismicity, 

and heavy monsoon rains [12]. Among the various 

regions in Himachal Pradesh, Spiti Valley stands 

out due to its unique geographical and climatic 

conditions, making it a critical area for landslide 

susceptibility studies. The Spiti Valley is situated 

between the Kunzum range in the northwest and 

Khab on the Sutlej River in Kinnaur in the 

southeast. The Spiti River, originating from the 

base of the 6,118 m K-111 peak, flows through a 

catchment area of about 6,300 km². Due to its 

location in the rain shadow of the main Himalayan 

range, Spiti does not benefit from the Southwest 

monsoon and relies on glacier melting for peak 

river discharge in late summers. The Spiti Valley's 

unique landscape, featuring steep mountains, deep 

gorges, and a mix of braided and incised river 

channels, highlights the need for effective landslide 

susceptibility zonation (LSZ). The valley's 

geological features, such as ancient sedimentary 

deposits and neotectonic activity, further 

contribute to its landslide risk. Additionally, the 

sparse vegetation and high-altitude desert 

environment make the valley particularly 

vulnerable to landslides. Effective LSZ in Spiti 

Valley is essential for disaster preparedness, risk 

mitigation, and sustainable development, given the 

valley's remoteness and limited infrastructure.  
Landslide susceptibility and risk assessment are 

critical research areas in India, particularly in the 

Himalayan region spanning Jammu and Kashmir, 

Himachal Pradesh, Uttarakhand, Sikkim, and 

Arunachal Pradesh [5,14–17]. These areas are 

highly susceptible to landslides due to their young 

geological formations, steep slopes, and heavy 

monsoon rains, compounded by the impacts of 

climate change and human activities [13]. The 

Information Value (IV) [2,3,16,18] and Frequency 

Ratio (FR) [2,19–22] techniques have been widely 

applied across various parts of the Indian 

Himalayas, including Uttarakhand, Sikkim, and 

Arunachal Pradesh, to develop detailed Landslide 

Susceptibility Zonation (LSZ) models [23]. 

However, there is a need to assess the applicability 

of these techniques in the distinct geographical and 

climatic conditions of Spiti Valley. 

This study aims to compare the Information 

Value (IV) and Frequency Ratio (FR) techniques in 

Spiti Valley using validation methods like Area 

Under the Curve (AUC) analysis and landslide 

density mapping. These validations will assess the 

accuracy of the LSZ models developed, providing 

insights into their effectiveness in predicting 

landslide susceptibility. The findings could inform 

mitigation strategies for government bodies, 

organizations, and future research efforts focused 

on enhancing landslide risk management in Spiti 

Valley. 

2. Geological Landscape 

Spiti, a high-altitude region in the Himalayas of 

northeastern Himachal Pradesh, India, is known as 

"The middle land" due to its location between Tibet 

and India. The study area encompasses the entire 

Spiti sub-division, including the upper Spiti Valley 

and extending to Sumdo [24]. The administrative 

centre is Kaza, situated at an elevation of 3,650 

meters on the Spiti River's bank, while the district 
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headquarters is in Kyelang, Lahaul Valley [25]. 

Spiti and Lahaul are connected by NH-505 via 

Kunzum Pass at 4,590 meters, often closed by 

snow for 5-6 months annually [24]. The Spiti sub-

division covers an area of 7,252,133,482 square 

meters and has a population of 12,445 according to 

the 2011 Census. Designated as a 'Tribal Area,' 

Spiti follows the Single-Line Administration 

system for direct communication between local 

and higher authorities. 

Steep mountains, deep gorges, and a mix of 

braided and incised river channels characterise the 

valley's unique geography [25]. The Spiti River, 

originating from the base of the K-111 peak at 

6,118 meters, flows through the valley, joined by 

major tributaries like the Pin and Lingti rivers [24]. 

The elevation in Spiti ranges from 2,325 meters to 

6,558 meters, with its landscape transitioning from 

wide, braided river beds in the upper valley to 

deeply incised channels and gorges in the lower 

valley [24]. Spiti has a cold desert environment, 

marked by arid conditions due to its location in the 

rain shadow of the Himalayas. The region receives 

an average annual rainfall of about 50 mm, with 

snowfall typically less than 200 cm. Sporadically, 

there may be up to 15 mm of rainfall in a day, 

leading to erosion and landslides. The temperatures 

range from -25°C in winter to 15°C in summer. The 

region's aridity and extreme temperatures create a 

harsh environment with limited vegetation, 

primarily consisting of stunted willows and 

scattered shrubs in some villages. 

Spiti Valley is situated in a seismically active 

zone, making it susceptible to earthquakes [12]. 

The area lies within the influence of the Main 

Central Thrust (MCT) and the Main Boundary 

Thrust (MBT), significant fault lines in the 

Himalayas [5,12]. These geological structures 

result in frequent seismic activity, contributing to 

the area's vulnerability to landslides. Historical 

records indicate that the region has experienced 

several significant earthquakes, with epicenters 

often located in the vicinity of the MCT and MBT 

fault zones. The seismic activity, combined with 

steep slopes and loose sedimentary deposits, 

exacerbates the landslide risk in Spiti. 

Spiti's geology features visible sedimentary 

strata due to minimal vegetation, making it a prime 

location for geological studies [24]. Over millennia, 

the Spiti River and its tributaries, such as the Pin 

and Lingti rivers, have cut deep gorges into the 

uplifted sedimentary layers. The valley floor 

comprises ancient sedimentary deposits [26], with 

extensive scree slopes along the valley sides. The 

lower valley exhibits incised channels and gorges, 

indicative of neotectonic activity in recent 

geological history [27]. This complex geological 

framework contributes to the region's susceptibility 

to landslides and requires detailed landslide 

susceptibility zonation (LSZ) studies. 

Despite its arid conditions, Spiti boasts more 

than 450 species of plants, including Seabuckthorn, 

Aconitum, and various herbs like Ephedra and 

Artemisia [28]. The high-altitude pastures support 

small bushes and grasses, providing habitats for 

wildlife such as the Siberian ibex, snow leopard, 

red fox, and Himalayan wolf. The avifauna 

includes species like the lammergeier, Himalayan 

griffon, golden eagle, and various rosefinches [29]. 

Spiti is home to the Pin Valley National Park and 

Kibber Wildlife Sanctuary, which protect the 

region's unique biodiversity [28]. The local Bhoti-

speaking population of Spiti follows Tibetan 

Buddhism, with significant cultural and historical 

sites like the Tabo Monastery, built in 996 CE [30]. 

Traditional agriculture has shifted from subsistence 

to cash crops, and the region has become a popular 

destination for photography, homestay tourism, 

and various forms of adventure tourism, including 

winter sports. Major towns in the valley include 

Kaza, the largest settlement and administrative 

center, and Tabo, known for its ancient monastery 

[30]. Other notable villages are Dhankar, known 

for its monastery and fort, and Kibber, which is one 

of the highest inhabited villages in the world. 

Spiti's remote and rugged terrain presents 

challenges for transportation and communication, 

but it also preserves the valley's unique cultural 

heritage and natural beauty. The distinct 

geographical and climatic conditions of Spiti 

Valley, characterized by its high-altitude desert 

environment and challenging terrain, underscore 

the importance of tailored LSZ modelling. This 

study area, with its unique landscape and minimal 

vegetation, presents a significant opportunity for 

detailed LSZ studies to effectively manage 

landslide risks and contribute to sustainable 

development in the region. 
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Figure 2. Study Area Map. 

3. Material and Methods 

The initial phase of this research project entails 

obtaining the necessary data, such as topographic, 

geological, soil, land use/land cover, climatic, 

hydrological, and seismic data, for the study area 

and creating a complete map database [31–33]. 

Data is compiled from a variety of sources: seismic 

data from the USGS, Digital Elevation Model 

(DEM) data from USGS, geological data and 

landslide inventory data from Bhuvan (further 

verified by Google Earth Pro imagery), due to the 

availability of accurate data on these different web 

portals. The DEM data provides important 

topographic parameters such as slope, aspect, 

curvature, elevation, stream density, Stream Power 

Index (SPI), and Topographic Wetness Index 

(TWI) for hydrological studies. Maps with a 30m-

by-30m cell size are generated by converting DEM 

data to raster format, which are then used as inputs 

for landslip susceptibility study [34–37].  

This analysis incorporates landslide 

conditioning factors (LCFs) such as slope, aspect, 

and curvature, employing the Information Value 

(IV) method [2–4,38] and Frequency Ratio (FR) 

methods [2,7,19–22] to compute landslide hazard 

zonation in the Spiti areas. Table 1 provides the 

lists of selected factors influencing landslide 

conditions, along with their respective data types 

and sources. These factors are instrumental in 
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landslide susceptibility analysis, offering valuable 

insights into terrain characteristics and 

anthropogenic influences within the study area. 

A landslide susceptibility zonation (LSZ) map 

is a valuable tool for determining the risk of 

landslides in each location [15,32,39–41]. It entails 

compiling a complete dataset that includes geology, 

topography, satellite imaging, land use, rainfall, 

seismic, and historical landslip data. The data is 

then examined for Conditioning factors such as 

geological characteristics, slope, aspect, curvature, 

elevation, proximity to roads, rivers, faults, soil 

texture, Topographic Wetness Index (TWI), 

Topographic Roughness Index (TRI), road and 

stream density, land cover, rainfall intensity, 

proximity to water bodies, and seismic activity. 

Using Geographic Information System (GIS) 

software like ArcGIS Pro 3.2.2, thematic maps for 

each causative factor are generated, creating a 

composite susceptibility map. Information value 

(IV) and Frequency ratio (FR) techniques are 

employed for data analysis, and separate models 

are prepared for each. The final LSZ map is 

validated using methods like AUC and Landslide 

Density [8]. Detailed steps of the methodology are 

shown in Figure 3 of the flowchart.  

 
Figure 3. Methodology Flow Chart. 

3.1. Landslide Inventory 

A landslide inventory serves as a 

comprehensive record documenting past landslide 

occurrences within a specific area, encompassing 

details such as location, type, size, and triggering 

events [42,43]. It plays a crucial role in landslide 

susceptibility mapping, risk assessment, and land 

use planning by aiding stakeholders in identifying 

regions with high landslide activity frequencies 

and analyzing contributing factors [44–46]. This 

information facilitates informed decision-making 

to mitigate landslide hazards and minimize their 

impact on communities and infrastructure [47]. 

Additionally, a landslide inventory supports 

research and scientific studies on landslide 

processes, mechanisms, and impacts [48,49]. By 

continuously updating the inventory with new data, 

scholars and professionals can enhance their 

understanding of landslide mechanics and develop 

more effective landslide prevention and disaster 

management plans [50,51]. For the current study 

area, past landslide locations were gathered from 

various sources, including the Bhukosh-Geological 

Survey of India (GSI) website and Google Earth 

images [23,52,53]. These landslide events varied 

greatly, ranging from tens to thousands of square 

meters. However, for this study, the smallest 

landslide area identified measures 19.60 m², while 

the largest encompasses 76822.25 m², among a 



Dhakal and Singh Journal of Mining & Environment, Vol. 16, No. 1, 2025 

 

188 

total of 1314 landslide locations. 

From all the identified landslides, 

approximately 93.37% (1226 landslides) are 

associated with rock movement, while the 

remaining 6.63% (87 landslides) are attributed to 

debris flow. Moreover, among all landslides, 

98.09% (1288 landslides) occurred in barren land 

areas, 0.91% (12 landslides) in areas with sparse 

vegetation, 0.76% (10 landslides) in areas with 

thick vegetation, and 0.23% (3 landslides) in 

cultivated land areas. Subsequently, the training 

dataset was established, comprising 70% of the 

total landslide inventory. The remaining 30% was 

allocated for validation purposes, adhering to the 

widely adopted 70:30 ratio for the train-test 

split.[23]. This meticulous approach ensures robust 

model development and validation for effective 

landslide susceptibility assessment. 

Table 1. Lists spatial data sources used in this research and their collinearity statistics. 

Factors Data Type Primary Data and its Source 

Collinearity 

Statistics 

Tolerance VIF 

SRTM DEM* Continuous USGS (30*30)   

Road Networks** 
Vector 

 

Open Street map (vector) 

(https://www.openstreetmap.org/export 
  

Faults Data*** Vector 
Fault shapefile downloaded from Bhukosh-GSI (1:50,000; vector) 

(https://bhukosh.gsi.gov.in/Bhukosh/Public) 
  

Rainfall Data**** Excel data 
Climatic Research Unit 

(https://crudata.uea.ac.uk/cru/data/hrg) 
  

Soil Data Vector FAO world soil map (1:5 M; vector)   

Aspect Continuous Derived from DEM* 0.860 1.163 

Plan Curvature Continuous Derived from DEM* 0.881 1.135 

Slope Continuous Derived from DEM* 0.793 1.261 

Elevation Continuous Derived from DEM* 0.509 1.965 

TWI Continuous Derived from DEM* 0.526 1.902 

Geomorphology Unit Vector Geomorphology map from Bhukosh-GSI (1:2 M; vector) 0.590 1.694 

LULC Discrete Esri-landcover (10 m resolution; raster) 0.477 2.098 

Rainfall Continuous Derived from Rainfall data**** 0.625 1.600 

Earthquake Continuous USGS 0.765 1.316 

DFF Continuous Derived from faults data*** 0.565 2.150 

DFS Continuous Stream network map derived using DEM* 0.886 1.929 

DFR Continuous Derived from Road Networks** 0.763 2.315 

Road Density Classified Derived from DEM* 0.850 1.305 

Stream Density Classified Stream network map derived using DEM* 0.241 4.548 

Soil Texture Discrete Soil Data 0.915 1.292 

NDVI Discrete NASA Earth Data Portal 0.760 1.415 

TRI Continuous SRTM DEM* 0.748 1.839 

 

3.2. Conditioning factors 

Numerous factors, including human activity 

levels, occurrences of natural disasters like 

earthquakes, and prevailing geoenvironmental 

conditions, often influence the frequency of 

landslides in any given area. Landslide 

Susceptibility Studies (LSS) have no set rules for 

determining influencing factors [3,6,15,22,54–56]. 

Instead, these factors are selected based on regional 

characteristics and data availability. As supported 

by existing literature and research findings, 

topography, geology, hydrology, vegetation, 

climate, and human activities all play significant 

roles. These elements collectively shape the 

physical and environmental characteristics of a 

location. Thus, this study divides causative 

elements into five categories: geological, 

topographical, triggering, anthropogenic, and 

hydrological factors. The rationale for selecting 

specific factors in the Frequency Ratio (FR) and 

Information Value (IV) models is based on their 

demonstrated relevance and statistical significance 

in past studies. Factors such as slope angle, rainfall 

intensity, and land cover type were specifically 

chosen due to their well-documented impact on 

landslide occurrences. Slope angle is a critical 

factor as steeper slopes are more prone to failure. 

Rainfall intensity influences the saturation of soil 

and slope stability, making it a key triggering factor. 

Land cover type affects soil cohesion and runoff 

patterns, thereby impacting susceptibility.  

3.2.1. Landslide-trigging Factors 

Landslide-triggering factors in the Spiti Valley 

https://www.openstreetmap.org/export
https://bhukosh.gsi.gov.in/Bhukosh/Public
https://crudata.uea.ac.uk/cru/data/hrg
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encompass earthquake events and rainfall intensity 

[57–61], both of which are crucial in assessing 

landslide susceptibility. Earthquakes, classified 

into five magnitude classes (0-2, 2-3, 3-4, 4-5, and 

5-6) based on the Richter scale of earthquake 

intensity, are sourced from the United States 

Geological Survey (USGS). These seismic events 

contribute significantly to slope instability by 

inducing ground shaking and potentially 

destabilizing already vulnerable terrain. 

 
Figure 4. Landslide Triggering Factors Thematic Layer a) Earthquake, b) Rainfalls. 

Rainfall intensity, classified into five categories 

ranging from 40-50mm to 70-74mm, plays a 

pivotal role in triggering landslides. Higher-

intensity rainfall events can saturate soils, increase 

pore water pressure, and initiate mass movements 

on steep slopes [37,62]. The data for rainfall events 

spanning from 1990 to 2023 was obtained from the 

Climatic Research Unit (CRU) at the University of 

East Anglia (UEA). Understanding these triggering 

factors is essential for accurately predicting 

landslide susceptibility in the Spiti Valley, 

enabling effective disaster risk management 

strategies and land use planning to mitigate 

potential hazards. 

3.2.2. Geological Factors 

Geological factors play a pivotal role in 

assessing landslide susceptibility in the study area, 

encompassing geomorphological units (GU), soil 

texture (ST), and distance from faults (DFF) 

[21,63–65]. The geomorphological units provide 

crucial insights into the landscape's stability [66], 

delineating areas such as DenOri - Piedmont Slope 

and GlaOri - Glacial Terrain, each characterized by 

distinct physical and chemical properties 

influenced by past geological processes [24]. Soil 

texture variations, predominantly loam and UWB, 

further influence slope stability due to their 

permeability and shear strength characteristics, 

affecting how water and stresses interact within the 

terrain. Moreover, the proximity to faults, 

categorized into zones ranging from <500m to 

>2500m using Euclidean distance analysis, 

highlights areas vulnerable to seismic activity and 

potential landslide initiation points. Together, these 

geological factors offer a comprehensive 

framework for understanding the spatial 

distribution of landslide susceptibility, essential for 

effective hazard assessment and mitigation 

strategies in the region. 

Integrating data from the FAO platform for soil 

texture mapping and utilizing spatial analytical 

tools for fault distance categorization have 

enhanced the accuracy of landslide susceptibility 

assessments [14]. Combining these geological 

factors such as GU, ST, and DFF are essential for 

predicting LSZ in the Spiti Valley. The detailed 

characterization of GU, including DenOri - 

Piedmont Slope and GlaOri - Glacial Terrain, 

alongside soil textures like loam and UWB, 
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provides critical insights into slope stability 

dynamics. Understanding the proximity to faults, 

categorized into zones from <500m to >2500m, 

using spatial analytical tools further enhances the 

assessment of landslide risks. This comprehensive 

analysis informs the development of LSZ maps, 

crucial for sustainable land use planning and 

disaster risk management in the region. By 

integrating these geological factors, this study aims 

to predict and map LSZ effectively, supporting 

targeted interventions to mitigate landslide hazards 

and enhance resilience in the Spiti Valley.  

 
Figure 5. Geological Conditioning factors Thematic Layers. a) Distance from Fault, b) Soil Texture, c) 

Geomorphological Unit. 

3.2.3. Anthropogenic Factors 

The Normalized Difference Vegetation Index 

(NDVI) signifies vegetation cover and health [67–

69]. It is calculated using high-resolution Sentinel-

2 multispectral imagery with the formula: 

NDVI = (NIR−R)/(NIR +R),  

where NIR and R represent the near-infrared 

and red bands, respectively [23,70].  

The NDVI values are reclassified into five 

categories: <0, 0-0.2, 0.2-0.4, 0.4-0.6, and 0.6-1. 

Dense vegetation can stabilize slopes by 

reinforcing soil with roots and reducing surface 

runoff, while sparse vegetation can increase 

landslide susceptibility. Land Use Land Cover 

(LULC) is another crucial factor in landslide 

susceptibility studies [23,40,71,72]. The LULC 

map for the study area categorizes the land into 

various classes: water (1), tree (2), flooded 

vegetation (3), crop (4), built area (5), bare ground 
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(6), snow/ice (7), and rangeland (8). Each class has 

different implications for slope stability. For 

example, built areas and bare ground are more 

prone to landslides due to reduced natural 

vegetation, while tree and rangeland areas may 

offer more stability due to better root structure and 

soil reinforcement. 

The distance from roads (DFR) is another key 

factor affecting landslide susceptibility. Roads can 

alter natural drainage patterns and slope stability, 

making areas near roads more susceptible to 

landslides [73–75]. This study classified the 

distance from roads into five zones: <100m, 100-

500m, 500-1000m, 1000-1500m, and >1500m. 

Understanding the impact of proximity to roads on 

slope stability is essential for infrastructure 

planning and landslide risk management in the 

region [76]. Road density (RD) is another critical 

factor, indicating the intensity of road networks in 

an area [75,77–79]. High road density can 

exacerbate landslide risks due to increased human 

activity and alterations in natural drainage [80]. 

The road density for the study area is calculated 

using the kernel density tool and classified into five 

classes: 0-0.16, 0.16-0.35, 0.35-0.50, 0.50-0.64, 

and 0.64-0.83. This classification helps in 

identifying areas with varying degrees of risk 

related to road density, further contributing to 

comprehensive landslide susceptibility mapping. 

 
Figure 6. Anthropogenic Conditioning factors Thematic Layers a) NDVI, b) Land Use Land Cover (LULC), c) 

Distance from Roads (DFR) d) Road Density. 
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3.2.4. Topographic Factors 

Topographical factors significantly influence 

slope stability and are crucial for assessing 

landslide susceptibility [9,81,82]. Key 

topographical factors include slope, aspect, plan 

curvature, profile curvature, and elevation [83–86]. 

The geospatial database of these topographical 

factors with 30 m spatial resolution, is prepared 

using GIS with UTM Zone 43S projected 

coordinate system and WGS 1984 datum. 

Elevation, plan curvature, slope angle, and aspect 

are extracted using the digital elevation model 

(DEM) taken from the USGS database with less 

than 10% cloud coverage. 

 
Figure 7. Topographical Conditioning factors Thematic Layers a) Elevation b) Slope, c) Plan Curvature d) 

Aspect. 

Elevation is classified into five categories: 

2325-3500 m, 3500-4200 m, 4200-4900 m, 4900-

5600 m, and 5600-6558 m. Higher elevations 

typically experience more severe weather 

conditions, including higher precipitation and 

stronger winds, which contribute to erosion and 

slope instability [87–89]. Additionally, higher 

areas might have different soil types and vegetation 
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cover compared to lower elevations, influencing 

their susceptibility to landslides [90–92]. Slopes 

are also classified into five categories with ranges 

of 0-10 degrees, 10-25 degrees, 25-40 degrees, 40-

55 degrees, and 55-70 degrees. Steeper slopes are 

more prone to landslides due to the increased 

gravitational force acting on the slope material, 

making them less stable compared to gentler slopes. 

Plan curvature is classified into three 

categories: concave, flat, and convex. Concave 

slopes tend to accumulate water, increasing the risk 

of landslides [7,61], while convex slopes may shed 

water more effectively [75]. Aspect, indicating the 

direction the slope faces, is classified into nine 

categories: West (247.5-292.5 degrees), Southwest 

(202.5-247.5 degrees), Southeast (112.5-157.5 

degrees), South (157.5-202.5 degrees), Northwest 

(292.5-337.5 degrees), Northeast (22.5-67.5 

degrees), North (337.5-360 degrees), North (0-22.5 

degrees), and East (67.5-112.5 degrees). Aspect 

affects the amount of sunlight and moisture the 

slope receives, influencing soil moisture content 

and vegetation growth, both of which impact slope 

stability [64,93,94]. For instance, slopes facing the 

sun might dry out faster, reducing soil cohesion, 

while shaded slopes might retain moisture, 

increasing the risk of saturation and instability 

[32,69,73]. 

These topographical factors are integral to 

landslide susceptibility zoning (LSZ) as they 

provide a detailed understanding of the terrain's 

physical characteristics [61,89]. By analyzing these 

factors, we can identify areas at higher risk of 

landslides, enabling more effective land use 

planning and disaster risk management strategies. 

3.2.5. Hydrological Factors 

Hydrological factors derived from the Digital 

Elevation Model (DEM) play a significant role in 

assessing landslide susceptibility in the study area 

[5,89]. The Topographic Wetness Index (TWI) is 

calculated using the formula TWI = ln (AS/tan β), 

where AS is the specific contributing area and β is 

the slope angle [3,23,47,66]. TWI values, 

indicating the potential for water accumulation, are 

classified into five categories: 4-6, 6-12, 12-18, 18-

25, and 25-32. Higher TWI values suggest areas 

prone to water saturation and increased landslide 

risk due to enhanced moisture content [78,86,93]. 

The Topographic Roughness Index (TRI) 

assesses terrain ruggedness based on the variation 

in elevation [95,96]. It is calculated as (DEMmean 

- DEMmin) / (DEMmax - DEMmin), where 

DEMmean, DEMmin, and DEMmax are the mean, 

minimum, and maximum elevations, respectively 

[36,79,97,98]. TRI values ranging from 0 to 1, are 

reclassified into five categories: 0-0.2, 0.2-0.4, 0.4-

0.6, 0.6-0.8, and 0.8-1.0. Higher TRI values 

indicate more rugged terrain, influencing water 

flow patterns and contributing to localized areas of 

water accumulation and potential instability. 

Distance from Stream (DFS) categorizes proximity 

to streams, critical for understanding moisture 

availability and erosion potential [46]. DFS is 

classified into five zones: <300m, 300-500m, 500-

1000m, 1000-1500m, and >1500m. Areas closer to 

streams are more susceptible to increased moisture 

levels and erosion, impacting slope stability during 

intense rainfall events. 

Stream Density (SD) measures the total length 

of streams per unit area and reflects drainage 

network complexity [62]. SD values, ranging from 

0.00 to 1.20, are categorized into five classes: 0.00-

0.25, 0.25-0.50, 0.50-0.75, 0.75-0.95, and 0.95-

1.20. Higher SD values indicate a denser drainage 

network, influencing water flow dynamics and 

sediment transport, which are critical factors in 

landslide initiation and propagation [41,47,66]. 

Integrating these hydrological factors with 

geological and topographical data provides a 

comprehensive approach to landslide susceptibility 

mapping (LSZ), facilitating effective land use 

planning and disaster risk management strategies 

in the study area. 
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Figure 8. Hydrological Conditioning factors Thematic Layers a) Stream Density, b) Distance from Stream, c) 

Topographic Wetness Index (TWI), d) Topographic Roughness Index (TRI). 

3.3. Multicollinearity analysis of Conditioning 

factors 

After preparing all the thematic layer of 

conditioning factors, it was analysed for 

collinearity. To analyze the theses, 200 spatially 

balance points were created with the tool in 

ArcGIS Pro 3.2. Then all the thematic layers 

(conditioning factors data were extracted to this 

point with the help of extract multi values to point 

tools. Then it is exported on csv file. Then its 

Collinearity Statistics were checked by BIM SPSS 
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Software. VIF and These conditioning factors were 

analyzed using Collinearity Statistics, such as 

Variance Inflation Factor (VIF) and tolerance (T). 

A VIF value greater than 10 and tolerance less than 

0.1 indicates the problem of multicollinearity 

between landslide conditioning factors (LCFs). 

Therefore, only factors with a VIF value less than 

10 and tolerance greater than 0.1 were chosen for 

this study. By incorporating these factors, we 

ensure a comprehensive assessment of landslide 

susceptibility that reflects both regional 

characteristics and established scientific findings. 

This selection enhances the robustness of the FR 

and IV models, providing a more accurate 

prediction of landslide-prone areas. 

4. Result and discussion 

4.1. Frequency Ratio (FR) 

The Frequency Ratio (FR) method is a bivariate 

statistical approach used to evaluate landslide 

susceptibility by analyzing the relationship 

between the spatial distribution of landslides and 

various contributing factors [84,99]. This method 

calculates the ratio of the probability of landslide 

occurrence to the probability of non-occurrence for 

different factor classes. The formula for the FR 

method is: 

FR = (Si/Ni)/(S/N) 

Where: Si is the number of landslide pixels in a given 

factor class, 

Ni is the total number of pixels in that factor class, 

S is the total number of landslide pixels in the entire 

study area and 

N is the total number of pixels in the study area. 

A FR value greater than 1 indicates a higher 

likelihood of landslide occurrence in that particular 

factor class, while a FR value less than 1 suggests 

a lower likelihood [7,20–22]. In the study area, the 

FR method was applied to various 

geomorphological, topographical, and 

hydrological factors. For instance, highly dissected 

hills and valleys showed an FR of 1.5711, 

indicating a high susceptibility, while glacial 

terrain had an FR of 0.0000, indicating low 

susceptibility. Similarly, land use types like bare 

ground and aspect classes such as southeast-facing 

slopes had higher FR values of 1.1421 and 1.5668, 

respectively. Other factors such as soil type, 

rainfall, stream density, road density, slope, terrain 

ruggedness index (TRI), plan curvature, 

topographic wetness index (TWI), earthquake 

intensity, normalized difference vegetation index 

(NDVI), elevation, distance from roads, faults, and 

streams were also analyzed, and their FR values 

were calculated (see Table 2). 

These FR values were then used to interpret the 

thematic layers with a lookup tool. By combining 

these data in ArcGIS Pro 3.3 with the help of raster 

calculation, an FR-based landslide susceptibility 

zoning (LSZ) model was prepared. This model 

categorizes the landscape into five susceptibility 

classes: Low, Moderate, High, Very High, and 

Extremely High. This classification provides a 

detailed and concise representation of landslide 

susceptibility, aiding in effective land-use planning 

and disaster management. 

4.2. Information Value (IV) 

IV method is also a spatial bivariate statistical 

approach for predicting landslide events by 

analyzing the relationship between landslide 

occurrences and various Conditioning factors 

[2,3,16]. This method calculates the information 

value for each factor class based on the presence of 

landslides. The IV for a given factor class is 

computed using the formula: 

IV = log((Si/Ni)/(S/N)),  

Where, Si is the number of landslide pixels in the 

factor class, 

Ni is the area of the factor class,  

S is the total number of landslide pixels in the entire 

study area and 

N is the total number of pixels in the entire study area. 

An IV greater than 0 indicates a positive 

correlation with landslide occurrence, while an IV 

less than 0 indicates a negative correlation [3,4]. In 

this study, the IV method was applied to various 

geomorphological, topographical, and 

hydrological factors. For example, highly dissected 

hills and valleys had an IV of 0.4518, indicating a 

strong correlation with landslide occurrence, while 

glacial terrain had an IV of 0, showing no 

correlation. Other factors like land use, soil type, 

rainfall, stream density, road density, slope, TRI, 

plan curvature, TWI, earthquake intensity, NDVI, 

elevation, and distances from roads, faults, and 

streams were also analyzed (see Table 2). The IV 

values helped determine the intensity of each 

factor’s contribution to landslide susceptibility. 

These IV values were then used to interpret the 

thematic layers using a lookup tool. By combining 

these data in ArcGIS Pro 3.3 with the help of raster 

calculation, an IV-based landslide susceptibility 

zoning (LSZ) model was prepared. This model 
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categorized the study area into five susceptibility 

classes: Low, Moderate, High, Very High, and 

Extremely High. This classification aids in 

understanding the spatial distribution of landslide 

risk, thus facilitating effective land-use planning 

and disaster management in the study area. 

 

 
Figure 10. LSZ of IV and FR models. 
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Table 2. LS factors and its FR and IV value 

ID LS Factors Class Ni Ni% Si Si% FR IV 

1 GU 

FluOri - Piedmont Alluvial Plain 82749 1.03% 28 1.00% 0.9673 -0.0333 

GlaOri - Snow Cover 1732879 21.60% 4 0.14% 0.0066 -5.0209 

StrOri - Highly Dissected Hills 

and Valleys 
2956700 36.86% 1625 57.91% 1.5711 0.4518 

FluOri - Active Flood plain 53993 0.67% 2 0.07% 0.1059 -2.2454 

WatBod - River 85278 1.06% 24 0.86% 0.8045 -0.2175 

DenOri - Piedmont Slope 643974 8.03% 529 18.85% 2.3483 0.8537 

GlaOri - Glacial Terrain 1069665 13.34% 0 0.00% 0.0000 0.0000 

StrOri - Moderately Dissected 

Hills and Valleys 
1375161 17.14% 590 21.03% 1.2265 0.2041 

FluOri - Younger Alluvial plain 20981 0.26% 4 0.14% 0.5450 -0.6070 

N = 8021380 S = 2806    

2 LULC 

Water 4058 0.05% 1 0.04% 0.7044 -0.3503 

Trees 3 0.00% 0 0.00% 0.0000 0.0000 

Flooded Vegetation 303 0.00% 0 0.00% 0.0000 0.0000 

Crop 60 0.00% 0 0.00% 0.0000 0.0000 

Built Area 1980 0.02% 0 0.00% 0.0000 0.0000 

Bare Ground 5494088 68.49% 2195 78.23% 1.1421 0.1329 

Snow/Ice 738423 9.21% 0 0.00% 0.0000 0.0000 

Range Land 1782465 22.22% 610 21.74% 0.9783 -0.0219 

3 Aspect 

North (0-22.5) 771956 9.62% 325 11.58% 1.2035 0.1852 

NorthEast (22.5-67.5) 1088866 13.57% 308 10.98% 0.8086 -0.2124 

East (67.5-112.5) 1152517 14.37% 424 15.11% 1.0517 0.0504 

SouthEast (112.5-157.5) 863008 10.76% 473 16.86% 1.5668 0.4490 

South (157.5-202.5) 832469 10.38% 349 12.44% 1.1984 0.1810 

SouthWest (202.5-247.5) 1009328 12.58% 440 15.68% 1.2462 0.2201 

West (247.5-292.5) 1048447 13.07% 274 9.76% 0.7471 -0.2916 

NorthWest (292.5-337.5) 835413 10.41% 141 5.02% 0.4825 -0.7288 

North (337.5-360) 419376 5.23% 72 2.57% 0.4908 -0.7118 

4 Soil Type 
Loam 6540023 81.53% 2691 95.90% 1.1762 0.1623 

UWB 1481357 18.47% 115 4.10% 0.2219 -1.5054 

5 Rainfalls 

40 - 50 mm 1487060 18.54% 431 15.36% 0.8285 -0.1881 

50 - 60 mm 2581797 32.19% 706 25.16% 0.7817 -0.2463 

60 - 70 mm 3414948 42.57% 1568 55.88% 1.3126 0.2720 

70 - 74 mm 537575 6.70% 101 3.60% 0.5371 -0.6216 

6 
Stream 

Density 

0.00 - 0.25 4582242 57.13% 623 22.20% 0.3887 -0.9450 

0.25 - 0.50 2225370 27.74% 1029 36.67% 1.3218 0.2790 

0.50 - 0.75 972672 12.13% 776 27.66% 2.2806 0.8245 

0.75 - 0.95 184239 2.30% 335 11.94% 5.1979 1.6482 

0.95 - 1.20 56857 0.71% 43 1.53% 2.1620 0.7710 

7 
Road 

Density 

0.00-0.16 6592199 82.18% 2050 73.06% 0.8890 -0.1177 

0.16-0.35 843897 10.52% 518 18.46% 1.7547 0.5623 

0.35-0.50 257922 3.22% 151 5.38% 1.6736 0.5150 

0.50-0.64 178003 2.22% 42 1.50% 0.6745 -0.3938 

0.64-0.83 149359 1.86% 45 1.60% 0.8613 -0.1493 

8 Slope 

0 - 10 3996096 49.82% 1867 66.54% 1.3356 0.2894 

10 - 20 1308725 16.32% 284 10.12% 0.6203 -0.4775 

25 - 40 1198875 14.95% 268 9.55% 0.6390 -0.4478 

40 - 55 851741 10.62% 187 6.66% 0.6276 -0.4658 

55 - 70 665943 8.30% 200 7.13% 0.8585 -0.1525 

9 TRI 

0.0 - 0.2 19610 0.24% 0 0.00% 0.0000 0.0000 

0.2 - 0.4 1015901 12.66% 261 9.30% 0.7344 -0.3087 

0.4 - 0.6 6324654 78.85% 2334 83.18% 1.0549 0.0535 

0.6 - 0.8 659898 8.23% 211 7.52% 0.9140 -0.0899 

0.8 - 1.0 1317 0.02% 0 0.00% 0.0000 0.0000 

10 Pln_C 

Cuncave 1194233 14.89% 542 19.32% 1.2974 0.2604 

Flat 3360253 41.89% 890 31.72% 0.7571 -0.2782 

Convex 3466894 43.22% 1374 48.97% 1.1329 0.1248 
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Continues of Table 2. LS factors and its FR and IV value 

ID LS Factors Class Ni Ni% Si Si% FR IV 

11 TWI 

4 - 6 462 0.01% 0 0.00% 0.0000 0.0000 

6 - 12 7028860 87.63% 2401 85.57% 0.9765 -0.0238 

12 - 18 719205 8.97% 207 7.38% 0.8228 -0.1951 

18 - 25 260136 3.24% 190 6.77% 2.0879 0.7362 

25 - 32 12717 0.16% 8 0.29% 1.7983 0.5869 

12 EQ 

0 - 2 1030619 12.85% 216 7.70% 0.5991 -0.5123 

2 - 3 583458 7.27% 150 5.35% 0.7349 -0.3080 

3 - 4 1737986 21.67% 366 13.04% 0.6020 -0.5075 

4 - 5 4468189 55.70% 1914 68.21% 1.2245 0.2026 

5 - 6 201128 2.51% 160 5.70% 2.2741 0.8216 

13 NDVI 

<0.0 5566623 69.40% 890 31.72% 0.4570 -0.7830 

0.0 - 0.2 2453650 30.59% 1916 68.28% 2.2323 0.8030 

0.2 - 0.4 1057 0.01% 0 0.00% 0.0000 0.0000 

0.4 - 0.6 35 0.00% 0 0.00% 0.0000 0.0000 

0.6 - 1.0 15 0.00% 0 0.00% 0.0000 0.0000 

14 Elevation 

2325m - 3500m 85847 1.07% 117 4.17% 3.8960 1.3600 

3500m - 4200m 755049 9.41% 985 35.10% 3.7293 1.3162 

4200m - 4900m 2439116 30.41% 1274 45.40% 1.4931 0.4009 

4900m - 5600m 3957721 49.34% 429 15.29% 0.3099 -1.1716 

5600m - 6558m 783647 9.77% 1 0.04% 0.0036 -5.6136 

15 
Distance 

from Road 

<100m 127351 1.59% 43 1.53% 0.9652 -0.0354 

100m - 500m 344923 4.30% 276 9.84% 2.2874 0.8274 

500m - 1000m 337309 4.21% 300 10.69% 2.5425 0.9331 

1000m - 1500m 295424 3.68% 391 13.93% 3.7835 1.3306 

>1500m 6916373 86.22% 1796 64.01% 0.7423 -0.2980 

16 
Distance 

from Faults 

<500m 475492 5.93% 209 7.45% 1.2565 0.2283 

500m - 1000m 504357 6.29% 256 9.12% 1.4510 0.3722 

1000m - 1500m 490937 6.12% 118 4.21% 0.6871 -0.3753 

1500m - 2500m 946937 11.81% 363 12.94% 1.0958 0.0915 

>2500m 5603657 69.86% 1860 66.29% 0.9489 -0.0525 

17 

Distance 

from 

Stream 

<300m 673312 8.39% 863 30.76% 3.6640 1.2986 

300m - 500m 404235 5.04% 331 11.80% 2.3408 0.8505 

500m - 1000m 1004906 12.53% 636 22.67% 1.8092 0.5929 

1000m - 1500m 951172 11.86% 400 14.26% 1.2022 0.1841 

>1500m 4987755 62.18% 576 20.53% 0.3301 -1.1083 

 

4.3. Validation 

The validation of the landslide susceptibility 

models was conducted using two primary methods: 

Receiver Operating Characteristic (ROC) 

curves/Area Under the Curve (AUC) values and 

the Landslide Density Index (LDI) method. These 

approaches ensured a comprehensive assessment 

of the model's predictive accuracy and reliability. 

Among the 1,313 landslide locations, there were 

4,007 pixels (30x30). There was no strict rule for 

the training and testing ratio in this study; 70% of 

training data (2,806 pixels) was taken for model 

prediction, and 30% of testing data (1,199 pixels) 

was taken for validation. Both the Frequency Ratio 

(FR) and Information Value (IV) models were 

evaluated using these methods, yielding high AUC 

values that demonstrated their strong predictive 

performance. The AUC values obtained were 84.1 

for the FR model and 83.9 for the IV model, 

indicating strong predictive performance for both 

models. The Landslide Density Index (LDI) 

method provided additional validation by 

examining the spatial distribution of landslides 

across different susceptibility zones. The LDI is 

calculated by overlaying the landslide inventory on 

the susceptibility maps and determining the density 

of landslides within each susceptibility class. 

Higher landslide densities in high-susceptibility 

zones indicate better model performance. For the 

FR model, the LDI values ranged from 0.75 in low-

susceptibility zones to 1.80 in extremely high-

susceptibility zones. For the IV model, the LDI 

values ranged from zero in low-susceptibility 

zones to 3.20 in extremely high-susceptibility 

zones. These results indicate that the low landslide 

susceptibility zones have low or zero LDI values, 

while the extremely high susceptibility zones have 

high LDI values. This pattern confirms that both 

the FR and IV methods are correct and validate the 

models effectively. By combining ROC/AUC 
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analysis and LDI evaluation, the validation 

framework robustly confirmed the accuracy and 

reliability of the FR and IV models. High AUC 

values and significant LDI values in predicted 

high-susceptibility zones underscored the models' 

effectiveness. These validated models are crucial 

for effective disaster risk management and land-

use planning, aiding in the identification of 

vulnerable zones and guiding mitigation efforts. 

(refer Table 3 for LDI calculation details). 

  
(a) (b) 

Figure 11. Validation Chart of a) AUC Curve and b) LDI Index of different susceptibility class charts. 

Table 3. LDI index for Landslide susceptibility maps of FR and IV model 

Model Class LSI_Pix LS_T_Pix LSI_Pix % LS_T_Pix% LDI Class 

FR 

Low 474018 53 5.91% 4.42% 0.75 

Moderate 1368344 121 17.06% 10.09% 0.59 

High 2530896 270 31.55% 22.52% 0.71 

Very High 2366498 410 29.50% 34.20% 1.16 

Extreme High 1281624 345 15.98% 28.77% 1.80 

IV 

Low 1087812 0 13.56% 0.00% 0.00 

Moderate 1655520 8 20.64% 0.67% 0.03 

High 2195255 131 27.37% 10.93% 0.40 

Very High 2016248 550 25.14% 45.87% 1.82 

Extreme High 1066545 510 13.30% 42.54% 3.20 

 

5. Conclusions  

In conclusion, this study has successfully 

developed and validated landslide susceptibility 

maps using Frequency Ratio (FR) and Information 

Value (IV) models within a GIS framework. Both 

models exhibited strong predictive capabilities, 

with the FR model demonstrating slightly better 

performance in this specific dataset and study area, 

as evidenced by an AUC value of 84.1 compared 

to 83.9 for the IV model. The classification into 

five susceptibility categories—Low, Moderate, 

High, Very High, and Extremely High—was 

validated using Landslide Density Index (LDI) 

values, with the FR model showing an LDI value 

of 1.8 and the IV model showing an LDI value of 

3.2, confirming higher landslide densities in the 

identified high-susceptibility zones.  

Future research directions should focus on 

integrating advanced machine learning techniques 

such as XGBoost, Random Forest (RF), Naive 

Bayes (NB), and K-Nearest Neighbors (KNN) to 

further enhance the reliability and accuracy of 

landslide susceptibility mapping. The current 

models, Frequency Ratio (FR) and Information 

Value (IV), have limitations, particularly their 

inability to handle complex, non-linear interactions 

between causative factors. Advanced machine 

learning techniques are known for their ability to 

manage these complex interactions and non-linear 

relationships, potentially improving model 

performance compared to traditional statistical 

methods. 

Neural Networks (NNs) can significantly 

enhance predictive capability by learning complex 

patterns through multiple layers of interconnected 

neurons, allowing them to model intricate 

relationships between input features and landslide 

occurrences. This deep learning approach enables 
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NNs to capture high-level abstractions and subtle 

dependencies within the data, which traditional 

methods might overlook. Support Vector Machines 

(SVMs) improve predictive accuracy by finding 

the optimal hyperplane that separates different 

classes in the feature space. SVMs are particularly 

effective in high-dimensional spaces and can 

handle non-linear boundaries through the use of 

kernel functions. This capability allows SVMs to 

model complex decision boundaries, capturing 

intricate patterns in the data that contribute to 

landslide susceptibility. 

Incorporating these advanced algorithms could 

also facilitate feature selection and optimization, 

which are crucial for developing robust and 

transferable landslide susceptibility models. By 

addressing the limitations of FR and IV models, 

these techniques can significantly contribute to the 

improvement of landslide susceptibility mapping, 

providing more accurate and reliable predictions. 

Additionally, exploring the temporal dynamics 

of landslide susceptibility and incorporating real-

time monitoring data would provide valuable 

insights into the evolving nature of landslide 

hazards. Developing robust early warning systems 

based on these advanced models would 

significantly contribute to proactive disaster risk 

management and mitigation strategies. 

Furthermore, future studies should prioritize 

assessing the transferability and generalizability of 

the developed landslide susceptibility models to 

other regions with similar geological and 

environmental characteristics. This would 

facilitate broader applications of the models in 

different geographic contexts, thereby enhancing 

their utility for land-use planning, infrastructure 

development, and disaster preparedness at regional 

and global scales. 
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 چکیده:

 ن ی کند. هدف ایم  جاد ی ا  ا یمالیمانند ه  یشناس   نی زم  داریدر مناطق ناپا   ژهی به و  ستیز  ط یها و محرساختی انسان، ز  یزندگ  یبرا  یلغزش خطرات قابل توجه  نیزم

است. استفاده  GIS( در چارچوب  IV( و ارزش اطلاعات )FR) ینسبت فراوان  یهالغزش با استفاده از مدل نی زم تیحساس  یهانقشه یمطالعه توسعه و اعتبار سنج

( و  DEMsبا وضوح بالا )  تالیجی د  یارتفاع  یهابه دست آمده از مدل  یکیدرولوژی و ه  ،یتوپوگراف  ،یکیبا وضوح بالا، از جمله عوامل ژئومورفولوژ   ی مکان   ی هااز داده

ها با استفاده از فهرست شدند. مدل  یطبقه بند  ادی ز  اریو بس  اد یز   ار یبس  اد،ی به پنج دسته کم، متوسط، ز   ت یحساس  یها. نقشهیمکان   ی هاداده  ی هامجموعه  ر ی سا

ها با  مدل  کنندهینیب شیشدند. عملکرد پ  ی ها آموزش و اعتبارسنجمجموعه داده  ش یآموزش و آزما   ی برا  70:30  میلغزش، با تقس  ن یزم  دادی رو  1313لغزش    نیزم

به دست  IVمدل  یبرا 83.9و  FRمدل  یبرا AUC 84.1 ریشد، که مقاد  یاب ی ( ارزROCرنده )یگ یاتیمشخصه عمل ی( منحنAUC) یمنحن ریز  هیاستفاده از ناح

 ینیب  شیبالا پ  ت یلغزش بالاتر در مناطق با حساس نی کرد، که نشان دهنده تراکم زم  د ییتا   شتریها را ب مدل  نان یاطم  ت ی( قابلLDIلغزش ) نیآمد. شاخص تراکم زم

دقت    ها افتهیآن هستند.    ی لغزش و اعتبارسنج  ن یزم  تی حساس  یبردارنقشه  یبرا  یمؤثر  یابزارها  IVو    FRهر دو مدل    که  دهد یمطالعه نشان م  ن یشده است. ا 

ا  FRبرتر مدل    ینیب شیپ  XGBoost  ،Randomمانند    ینیماش  ی ریادگی  شرفته یپ  یهاکیاز تکن  دی با  ندهیآ  قات ی. تحقکنندیخاص برجسته م  نهیزم  ن ی را در 

Forest (RF) ،Naive Bayes (NB)  وK-Nearest Neighbors (KNN) لغزش استفاده کند.   نیزم ت یحساس  یهاو دقت مدل نانیاطم  تیقابل  شیافزا   یبرا 

 .(LDI)لغزش    نیشاخص تراکم زم  ،یمکان   لی(، تحلIV(، ارزش اطلاعات )FR(، نسبت فرکانس )LSMلغزش ) نیبه زم  تینگاشت حساس کلمات کلیدی:

 

 

 

 


