[1]. Bahrani, N., & Hadjigeorgiou, J. (2017). Explicit reinforcement models for fully-grouted rebar rock bolts. Journal of Rock Mechanics and Geotechnical Engineering, 9(2), 267-280.
[2]. Ortlepp, W. D. (1994). Rockburst mechanisms in tunnels and shafts. Tunnelling and Underground Space Technology, 9(1), 59-65.
[3]. Kaiser, P. K., Tannant, D. D., & McCreath, D. R. (1996). Canadian Rockburst Support Hand-Book. Geomechanics Research Centre, Laurentian University, Sudbury, Ontario, Canada.
[4]. Ortlepp, W. D., & Stacey, T. R. (1998). Performance of tunnel support under large deformation static and dynamic loading. Tunnelling and Underground Space Technology, 13(1), 15-21.
[5]. Orelepp, W. D., Bornman, J. J., & Erasmus, N. (2001). The durabara yieldable support tendon-design rationale and laboratory results in Rock bursts and Seismicity in Mines. South African Inst of Mining and Metallurgy, Johannesburg, South Africa, 263-266.
[6]. Doucet, A. (2005). Laboratory testing of a new type of energy absorbing rock bolt. Tunnelling and Underground Space Technology, 20(4), 291-300.
[7]. St-Pierre, L., Hassani, F. P., & Radziszewski, P. H. (2009). Development of a dynamic model for a cone bolt. International Journal of Rock Mechanics and Mining Sciences, 46(1), 107-114.
[8]. Li, C. C. (2010). A new energy-absorbing bolt for rock support in high stress rock masses. International Journal of Rock Mechanics and Mining Sciences, 47(3), 396-404.
[9]. Li, C. C. (2011a). Performance of D-bolts under static loading. Rock Mechanics and Rock Engineering, 45(2), 183-192.
[10]. Li, C. C., & Doucet, C. (2011b). Performance of D-bolts under dynamic loading. Rock Mechanics and Rock Engineering, 45(2), 193-204.
[11]. Cai, M. (2012). Influence of bolt-grout bonding on MCB cone bolt performance. International Journal of Rock Mechanics and Mining Sciences, 49, 165-175.
[12]. Zhang, C. (2012). Case histories of four extremely intense rock bursts in deep tunnels. Rock Mechanics and Rock Engineering, 45(3), 275-288.
[13]. He, M., & Gong, W. (2014). Development of a novel energy-absorbing bolt with extraordinarily large elongation and constant resistance. International Journal of Rock Mechanics and Mining Sciences, 67, 29-42.
[14]. Zhou, H., & Meng, F. (2014). Analysis of rockburst mechanisms induced by structural planes in deep tunnels. Bulletin of Engineering Geology and the Environment, 74(4), 1435-1451.
[15]. Meng, F., & Wong, L. N. Y. (2019). Shear rate effects on the post-peak shear behaviour and acoustic emission characteristics of artificially split granite joints. Rock Mechanics and Rock Engineering, 33, 1-20.
[16]. Rezaei, M. (2020). Feasibility of novel techniques to predict the elastic modulus of rocks based on the laboratory data. International Journal of Geotechnical Engineering, 14(1), 25-34.
[17]. Asadizadeh, M., & Rezaei, M. (2021). Surveying the mechanical response of non-persistent jointed slabs subjected to compressive axial loading utilizing GEP approach. International Journal of Geotechnical Engineering, 15(10), 1312-1324.
[18]. Zhao, T., & Zhang, Y. (2018). Analysis on the creep response of bolted rock using bolted burgers model. Geomechanics and Engineering, An International Journal, 14(2), 98-111.
[19]. Kim, H. (2018). Anchorage mechanism and pullout resistance of rock bolt in water-bearing rocks. Geomechanics and Engineering, An International Journal, 15(3), 78-91.
[20]. Wang, H., & Li, S. (2019). Investigating the supporting effect of rock bolts in varying anchoring methods in a tunnel. Geomechanics and Engineering, An International Journal, 19(6), 81-100.
[21]. Zou, J., & Xia, Z. (2016). Theoretical solutions for displacement and stress of a circular opening reinforced by grouted rock bolt. Geomechanics and Engineering, An International Journal, 11(3), 99-111.
[22]. Doucet, A. (2005). Laboratory testing of a new type of energy absorbing rock bolt. Tunnelling and Underground Space Technology, 20(4), 291-300.
[23]. He, M., & Gong, W. (2014). Development of a novel energy-absorbing bolt with extraordinarily large elongation and constant resistance. International Journal of Rock Mechanics and Mining Sciences, 67, 29-42.
[24]. Li, C., & Stillborg, B. (1999). Analytical models for rock bolts. International Journal of Rock Mechanics and Mining Sciences, 36(8), 1013-1029.
[25]. Cai, Y. (2004a). An analytical model to predict axial load in grouted rock bolt for soft rock tunneling. Tunnelling and Underground Space Technology, 19(6), 607-618.
[26]. Cai, Y., Esaki, T., & Jiang, Y. (2004b). A rock bolt and rock mass interaction model. International Journal of Rock Mechanics and Mining Sciences, 41(7), 1055-1067.
[27]. Spang, K., & Egger, P. (1990). Action of fully-grouted bolts in jointed rock and factors of influence. Rock Mechanics and Rock Engineering, 23(3), 201-229.
[28]. Zhang, B., Li, S., & Xia, K. (2016). Reinforcement of rock mass with cross-flaws using rock bolt. Tunnelling and Underground Space Technology, 51, 346-353.
[29]. Ferrero, A. M. (1995). The shear strength of reinforced rock joints. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 32(6), 595-605.
[30]. Chen, Y., & Li, C. C. (2015). Experimental and three-dimensional numerical studies of the anchorage performance of rock bolts. Proceedings of the 13th International Congress of Rock Mechanics, Montreal, Canada.
[31]. Golewski, G. L. (2023a). Concrete composites based on quaternary blended cements with a reduced width of initial microcracks. Applied Sciences, 13(12), 7338.
[32]. Golewski, G. L. (2023b). Effect of coarse aggregate grading on mechanical parameters and fracture toughness of limestone concrete. Infrastructures, 8(8), 117. https://doi.org/10.3390/infrastructures8080117
[34]. Golewski, G. L. (2023d). Study of strength and microstructure of a new sustainable concrete incorporating pozzolanic materials. Structural Engineering and Mechanics, 86(4), 431-441.
[35]. Selvadurai, A. P. S., & Yu, Q. (2005). Mechanics of a discontinuity in a geomaterial. Computational Geotechnics, 32, 92-106.
[36]. Park, J. W., & Song, J. J. (2009). Numerical simulation of a direct shear test on a rock joint using a bonded-particle model. International Journal of Rock Mechanics and Mining Sciences, 46, 1315-1328.
[37]. Dugdale, D. S. (1960). Yielding of steel sheets containing slits. Journal of the Mechanics and Physics of Solids, 8, 100-104.
[38]. Qiao, P., & Chen, Y. (2008). Cohesive fracture simulation and failure modes of FRP-concrete bonded interfaces. Theoretical and Applied Fracture Mechanics, 49, 213-225.
[39]. Hawileh, R. A., Naser, M. Z., & Abdalla, J. A. (2013). Finite element simulation of reinforced concrete beams externally strengthened with short-length CFRP plates. Composites Part B: Engineering, 45, 1722-1730.
[40]. Su, X. T., Yang, Z. J., & Liu, G. H. (2010). Monte Carlo simulation of complex cohesive fracture in random heterogeneous quasi-brittle materials: A 3D study. International Journal of Solids and Structures, 47, 2336-2345.
[41]. Itasca Consulting Group Inc. (2014). Users’ Manual for Particle Flow Code (PFC), version 5.0. Minneapolis, Minnesota.
[42]. Potyondy, D. O., & Cundall, P. A. (2004). A bonded-particle model for rock. International Journal of Rock Mechanics and Mining Sciences, 41, 1329-1364.
[43]. Trent, B. C., Margolin, L. G., Cundall, P. A., & Gaffney, E. S. (1987). The micromechanics of cemented granular material. In Constitutive Laws for Engineering Materials: Theory and Applications, pp. 795-802. Amsterdam: Elsevier.
[44]. Jirasek, M., & Bazant, Z. P. (1993). Discrete element modeling of fracture and size effect in quasi-brittle materials: Analysis of sea ice. In Proceedings of the Second International Conference on Discrete Element Methods, pp. 357-368. Cambridge, MA: IESL Publications.
[45]. Donzé, F., & Magnier, S. A. (1995). Formulation of a 3-D numerical model of brittle behavior. Geophysical Journal International, 122, 790-802.
[46]. Bieniawski, Z. T. (1967). Mechanism of brittle fracture of rock: Part I–theory of the fracture process. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 4, 395-406.
[47]. Bobet, A., & Einstein, H. H. (1998). Fracture coalescence in rock-type materials under uniaxial and biaxial compression. International Journal of Rock Mechanics and Mining Sciences, 35, 863-888.
[48]. Fu, J., Haeri, H., Sarfarazi, V., Noshadi, A. H., Fatehi Marji, M., & Guo, M. (2022a). Investigating the failure behavior of gypsum specimens with non-persistent vertical notch under uniaxial compression. Strength of Materials, 54(1), 14-32.
[49]. Fu, J., Haeri, H., Sarfarazi, V., Asgari, K., & Fatehi Marji, M. (2022b). The shear behavior of concrete-gypsum specimens containing double edge cracks under four-point loading conditions. Theoretical and Applied Fracture Mechanics, 119, 103361.
[50]. Kristjánsson, G. (2014). Rock bolting and pull out test on rebar bolts. PhD thesis, Norwegian University of Science and Technology, Department of Geology and Mineral Resources Engineering.