Document Type : Original Research Paper

Authors

Research Scholar, Civil Department, Chandigarh University, Mohali, Punjab, India

Abstract

This study investigates the application of the Rapid Mass Movement Simulation (RAMMS) tool in assessing and mitigating various types of landslides. The research encompasses comprehensive field visits to diverse landslide-prone areas, capturing detailed photographic evidence to document pre- and post-landslide conditions. Utilizing the field data, RAMMS simulations were conducted to model the dynamics of different landslide scenarios, including rockfalls, debris flows, and avalanches. The simulations provided insights into the potential impact zones, flow velocities, and deposition patterns of landslides under varying environmental conditions. The results highlight the efficacy of RAMMS in predicting landslide behavior and guiding mitigation strategies. By comparing the simulation outputs with field observations, we validated the accuracy of RAMMS models, demonstrating their utility in real-world applications. Furthermore, the study identifies key factors influencing landslide susceptibility and proposes targeted mitigation measures to enhance community flexibility. This research underscores the importance of integrating advanced simulation tools like RAMMS with empirical field data to develop strong landslide risk management frameworks.

Keywords

Main Subjects

  • Choi, S. K., Park, J. Y., Lee, D. H., Lee, S. R., Kim, Y. T., & Kwon, T. H. (2021). Assessment of barrier location effect on debris flow based on smoothed particle hydrodynamics (SPH) simulation on 3D terrains. Landslides18, 217-234.
  • Schmidtner, K., Sailer, R., Bartelt, P., Fellin, W., Fischer, J. T., & Granig, M. (2018). Evaluating approaches to assess avalanche hazards from the user point of view. In International Snow Science Workshop, Innsbruck, Austria.
  • Shihabudheen, K. V., & Peethambaran, B. (2017). Landslide displacement prediction technique using improved neuro-fuzzy system. Arabian Journal of Geosciences, 10, 1-14.
  • Dash, R. K., Kanungo, D. P., & Malet, J. P. (2021). Runout modelling and hazard assessment of Tangni debris flow in Garhwal Himalayas, India. Environmental Earth Sciences, 80, 1-19.
  • Zhang, K., Wang, S., Bao, H., & Zhao, X. (2019). Characteristics and influencing factors of rainfall-induced landslide and debris flow hazards in Shaanxi Province, China. Natural hazards and earth system sciences, 19(1), 93-105.
  • Huang, T., Ding, M. T., She, T., Tian, S. J., & Yang, J. T. (2017). Numerical simulation of a high-speed landslide in Chenjiaba, Beichuan, China. Journal of Mountain Science, 14(11), 2137-2149.
  • Christen, M., Bühler, Y., Bartelt, P., Leine, R., Glover, J., Schweizer, A., ... & Volkwein, A. (2012, April). Integral hazard management using a unified software environment. In 12th Congress Interpraevent (pp. 77-86).
  • Schraml, K., Thomschitz, B., McArdell, B. W., Graf, C., & Kaitna, R. (2015). Modeling debris-flow runout patterns on two alpine fans with different dynamic simulation models. Natural Hazards and Earth System Science, 15(7), 1483-1492.
  • Liu, B., Hu, X., Ma, G., He, K., Wu, M., & Liu, D. (2021). Back calculation and hazard prediction of a debris flow in Wenchuan meizoseismal area, China. Bulletin of Engineering Geology and the Environment, 80, 3457-3474.
  • Mikos, M., & Bezak, N. (2021). Debris flow modelling using RAMMS model in the alpine environment with focus on the model parameters and main characteristics. Frontiers in Earth Science, 8.
  • Braun, A., Cuomo, S., Petrosino, S., Wang, X., & Zhang, L. (2018). Numerical SPH analysis of debris flow run-out and related river damming scenarios for a local case study in SW China. Landslides, 15, 535-550.
  • Rai, P. K., Singh, P., Mishra, V. N., & Resilience, S. C. (2021). Recent technologies for disaster management and risk reduction. Springer International Publishing.
  • Corsini, A., Ciccarese, G., & Giovanni, T. (2019). Unusual becoming Usual: recent persistent-rainstorm events and their implications for debris flow risk management in the northern Apennines of Italy. In Proceedings of the 4th Regional Symposium on Landslides in the Adriatic Balkan Region, 23-25 October 2019, Sarajevo, Bosnia and Herzegovina. Geotechnical Society of Bosnia and Herzegovina.
  • Abraham, M. T., Satyam, N., Reddy, S. K. P., & Pradhan, B. (2021). Runout modeling and calibration of friction parameters of Kurichermala debris flow, India. Landslides, 18, 737-754.
  • Chattoraj, S. L., & Ray, P. K. (2015). Simulation and modeling of debris flows using satellite derived data: a case study from Kedarnath Area. International Journal of Geomatics and Geosciences, 6(2), 1498-1511.
  • Kakavas, M. P., & Nikolakopoulos, K. G. (2021). Digital elevation models of rockfalls and landslides: a review and meta-analysis. Geosciences, 11(6), 256.
  • Kumar, A., Sharma, R. K., & Mehta, B. S. (2020). Slope stability analysis and mitigation measures for selected landslide sites along NH-205 in Himachal Pradesh, India. Journal of Earth System Science, 129(1), 135.
  • Dwivedi, D. K., Saraf, A. K., & Das, J. D. (2023). Geoinformatics-based investigation of slope failure and landslide damming of Chenab River, Lahaul-Spiti, Himachal Pradesh, India. Natural Hazards Research, 3(2), 186-195.
  • Peethambaran, B., Anbalagan, R., Shihabudheen, K. V., & Goswami, A. (2019). Robustness evaluation of fuzzy expert system and extreme learning machine for geographic information system-based landslide susceptibility zonation: A case study from Indian Himalaya. Environmental earth sciences, 78, 1-20.
  • Peethambaran, B., Nandakumar, V., & Sweta, K. (2023). Engineering geological investigation and runout modelling of the disastrous Taliye landslide, Maharashtra, India of 22 July 2021. Natural Hazards, 117(3), 3257-3272.
  • Cesca, M., & D’Agostino, V. (2008). Comparison between FLO-2D and RAMMS in debris-flow modelling: a case study in the Dolomites. WIT Transactions on Engineering Sciences, 60, 197-206.
  • Bertolo, P., & Bottino, G. (2008). Debris-flow event in the Frangerello Stream-Susa Valley (Italy)—calibration of numerical models for the back analysis of the 16 October, 2000 rainstorm. Landslides, 5, 19-30.
  • Hutter, K., Svendsen, B., & Rickenmann, D. (1994). Debris flow modeling: A review. Continuum mechanics and thermodynamics, 8, 1-35.
  • Takahashi, T. (2009). A review of Japanese debris flow research. International Journal of Erosion Control Engineering, 2(1), 1-14.
  • Widjaja, B., & Prakoso, J. S. (2017, October). Mass Movement Using the Bingham Fluid Model and the Voellmy Fluid Friction Model. (Case Study of Songan Village, Kintamani, Bali). In International Conference on Engineering and Technology Development (ICETD).
  • Thouret, J. C., Antoine, S., Magill, C., & Ollier, C. (2020). Lahars and debris flows: Characteristics and impacts. Earth-Science Reviews201, 103003.
  • Hürlimann, M., Coviello, V., Bel, C., Guo, X., Berti, M., Graf, C., & Yin, H. Y. (2019). Debris-flow monitoring and warning: Review and examples. Earth-Science Reviews199, 102981.