Document Type : Original Research Paper

Authors

1 Ph. D candidate; Faculty of Mining Eng., Petroleum and Geophysics, Shahrood University of Technology

2 Shahrood University of Technology

10.22044/jme.2024.14677.2774

Abstract

Unlike the mechanical properties of intact rock, which can be obtained on a laboratory scale, estimating the mechanical properties of the jointed rock mass is very difficult due to the presence of different joints and the complexity of the joints. Therefore, to calculate the mechanical parameters of the jointed rock mass and use the continuous media theory of the jointed rock mass, it is necessary to calculate the Representative Element Volume (REV) of the rock mass. In this study, the Discrete Element Method (DEM) and the mechanical index of strength were used to investigate the effect of persistent and non-persistent joint angles, as well as model size on the REV in x, y, and z directions. The numerical results showed that by changing the joint angles and side length, both the strength and the REV of the rock mass were affected. The maximum representative side length for the persistent joint in the x and z directions occurred at angles of 60° and 75°, respectively. The minimum strength was obtained for joints in the x and z directions at a 45° angle. Finally, the REV for persistent and non-persistent joints is calculated as 10*0.5*8m and 4*0.5*4m, respectively.

Keywords

Main Subjects