[1]. Bear, J. (2013). Dynamics of fluids in porous media. Courier Corporation.
[2]. Alejano, L. R., Arzúa, J., Bozorgzadeh, N., & Harrison, J. P. (2017). Triaxial strength and deformability of intact and increasingly jointed granite samples. International Journal of Rock Mechanics and Mining Sciences, 95, 87-103.
[3]. Li, J. H., Zhang, L. M., Wang, Y., & Fredlund, D. G. (2009). Permeability tensor and representative elementary volume of saturated cracked soil. Canadian Geotechnical Journal, 46(8), 928-942.
[4]. Pariseau, W. G., Puri, S., & Schmelter, S. C. (2008). A new model for effects of impersistent joint sets on rock slope stability. International Journal of Rock Mechanics and Mining Sciences, 45(2), 122-131.
[5]. Min, K. B., Jing, L., & Stephansson, O. (2004). Determining the equivalent permeability tensor for fractured rock masses using a stochastic REV approach: method and application to the field data from Sellafield, UK. Hydrogeology Journal, 12, 497-510.
[6]. Rong, G., Peng, J., Wang, X., Liu, G., & Hou, D. (2013). Permeability tensor and representative elementary volume of fractured rock masses. Hydrogeology journal, 21(7), 1655.
[7]. Kulatilake, P. H. S. W., & Panda, B. B. (2000). Effect of block size and joint geometry on jointed rock hydraulics and REV. Journal of Engineering Mechanics, 126(8), 850-858.
[8]. Wang, Z., Li, W., Bi, L., Qiao, L., Liu, R., & Liu, J. (2018). Estimation of the REV size and equivalent permeability coefficient of fractured rock masses with an emphasis on comparing the radial and unidirectional flow configurations. Rock Mechanics and Rock Engineering, 51, 1457-1471.
[9]. Wang, M., Kulatilake, P. H. S. W., Um, J., & Narvaiz, J. (2002). Estimation of REV size and three-dimensional hydraulic conductivity tensor for a fractured rock mass through a single well packer test and discrete fracture fluid flow modeling. International Journal of Rock Mechanics and Mining Sciences, 39(7), 887-904.
[10Chen, S. H., Feng, X. M., & Isam, S. (2008). Numerical estimation of REV and permeability tensor for fractured rock masses by composite element method. International journal for numerical and analytical methods in geomechanics, 32(12), 1459-1477.
[11]. Xia, L., Zheng, Y., & Yu, Q. (2016). Estimation of the REV size for blockiness of fractured rock masses. Computers and Geotechnics, 76, 83-92.
[12]. Chae, B. G., & Seo, Y. S. (2011). Homogenization analysis for estimating the elastic modulus and representative elementary volume of Inada granite in Japan. Geosciences Journal, 15, 387-394.
[13]. Li, Y., Chen, J., & Shang, Y. (2018). Determination of the geometrical REV based on fracture connectivity: a case study of an underground excavation at the Songta dam site, China. Bulletin of Engineering Geology and the Environment, 77, 1599-1606.
[14]. Esmaieli, K., Hadjigeorgiou, J., & Grenon, M. (2010). Estimating geometrical and mechanical REV based on synthetic rock mass models at Brunswick Mine. International Journal of Rock Mechanics and Mining Sciences, 47(6), 915-926.
[15]. Zhang, W., Chen, J. P., Liu, C., Huang, R., Li, M., & Zhang, Y. (2012). Determination of geometrical and structural representative volume elements at the Baihetan dam site. Rock Mechanics and Rock Engineering, 45, 409-419.
[16]. Ni, P., Wang, S., Wang, C., & Zhang, S. (2017). Estimation of REV size for fractured rock mass based on damage coefficient. Rock Mechanics and Rock Engineering, 50, 555-570.
[17Khani, A., Baghbanan, A., Norouzi, S., & Hashemolhosseini, H. (2013). Effects of fracture geometry and stress on the strength of a fractured rock mass. International Journal of Rock Mechanics and Mining Sciences, 60, 345-352.
[18]. Farahmand, K., Vazaios, I., Diederichs, M. S., & Vlachopoulos, N. (2018). Investigating the scale-dependency of the geometrical and mechanical properties of a moderately jointed rock using a synthetic rock mass (SRM) approach. Computers and Geotechnics, 95, 162-179.
[19]. JianPing, Y., WeiZhong, C., DianSen, Y., & JingQiang, Y. (2015). Numerical determination of strength and deformability of fractured rock mass by FEM modeling. Computers and Geotechnics, 64, 20-31.
[20]. Laghaei, M., Baghbanan, A., Hashemolhosseini, H., & Dehghanipoodeh, M. (2018). Numerical determination of deformability and strength of 3D fractured rock mass. International journal of rock mechanics and mining sciences, 110, 246-256.
[21]. Huang, H., Shen, J., Chen, Q., & Karakus, M. (2020). Estimation of REV for fractured rock masses based on Geological Strength Index. International Journal of Rock Mechanics and Mining Sciences, 126, 104179.
[22]. Min, K. B., & Jing, L. (2003). Numerical determination of the equivalent elastic compliance tensor for fractured rock masses using the distinct element method. International Journal of Rock Mechanics and Mining Sciences, 40(6), 795-816.
[23]. Bidgoli, M. N., Zhao, Z., & Jing, L. (2013). Numerical evaluation of strength and deformability of fractured rocks. Journal of Rock Mechanics and Geotechnical Engineering, 5(6), 419-430.
[24]. Bieniawski, Z. T. (1973). Engineering classification of jointed rock masses. Civil Engineering= Siviele Ingenieurswese, 1973(12), 335-343.
[25]. Hudson, J. A., & Priest, S. D. (1983). Discontinuity frequency in rock masses. In International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 20(2), 73-89.
[26]. Park, H. J., West, T. R., & Woo, I. (2005). Probabilistic analysis of rock slope stability and random properties of discontinuity parameters, Interstate Highway 40, Western North Carolina, USA. Engineering Geology, 79(3-4), 230-250.
[27]. Elmo, D. (2006). Evaluation of a hybrid FEM/DEM approach for determination of rock mass strength using a combination of discontinuity mapping and fracture mechanics modelling, with particular emphasis on modelling of jointed pillars (Doctoral dissertation, University of Exeter).
[28]. Rogers, S. F., Kennard, D. K., Dershowitz, W. S., & Van As, A. (2007, May). Characterising the in-situ fragmentation of a fractured rock mass using a discrete fracture network approach. In ARMA Canada-US Rock Mechanics Symposium (pp. ARMA-07). ARMA.
[29]. Ivanova, V., Yu, X., Veneziano, D., & Einstein, H. (1995). Development of stochastic models for fracture systems. In ARMA US Rock Mechanics/Geomechanics Symposium (pp. ARMA-95). ARMA.
[30]. Khani, A., Baghbanan, A., & Hashemolhosseini, H. (2013). Numerical investigation of the effect of fracture intensity on deformability and REV of fractured rock masses. International journal of rock mechanics and mining sciences, 63, 104-112.
[31]. Bidgoli, M. N., & Jing, L. (2014). Anisotropy of strength and deformability of fractured rocks. Journal of Rock Mechanics and Geotechnical Engineering, 6(2), 156-164.