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 Discrimination of geochemical anomalies from background is a challenge in that 
elemental dispersion patterns are affected by a variety of geological factors, which vary 
from one to another area. While statistical and fractal methods are commonly employed 
for anomaly detection, they struggle with selecting optimal thresholds. This study 
proposes the Grey Wolf Optimizer (GWO) algorithm as a novel approach for 
identifying the optimal boundary between anomalies and background. Stream sediment 
geochemical data from a copper-mineralized area of the Sarduiyeh-Baft sheets in 
southeast Iran were utilized for analysis. The Geochemical Mineralization Probability 
Index (GMPI) was first calculated for Cu-Au, Mo-As, Pb-Zn, and porphyry 
distributions. Subsequently, fractal methods were used to identify anomalous 
populations within each GMPI. The GWO algorithm was then applied to these 
distributions to determine the optimal thresholds. Risk analysis, calculated as the ratio 
of covered copper occurrences to the covered area, revealed superior reliability for the 
GWO-derived limit compared to those obtained using fractal methods. For porphyry 
GMPI values, while the fractal reliability indices are 0.127, 0.44, and 0.5, the GWO 
limit achieved a value of 0.66. Risk analysis for Cu-Au distribution also caused more 
desired result for GWO limit rather that fractal ones. This demonstrates the enhanced 
performance and superior reliability of the GWO algorithm for optimizing anomaly 
detection thresholds in GMPI data. 
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1. Introduction 

Mineral exploration is carried out using a 
combination of different methods and techniques. 
The choice of methods and techniques depends on 
the goal of the study and the conditions of the 
studied area such as geology, topography, type of 
mineralization, etc. [1,2]. While stream sediments, 
as a substantial geochemical investigation, are one 
of the most important steps in the exploration of 
metal deposits, the definition of an appropriate 
boundary between anomaly and background has 
remained challenging yet [3-7]. It has become more 
important and requires more attention to select an 
appropriate approach to separate anomaly from 
background. Accordingly, scientists have done a 
lot of research to solve this dilemma by obtaining 

different characteristics of geochemical data such 
as statistical parameters and their spatial variability 
[8-10]. For example, classical statistical methods 
are widely used to identify anomalies and 
background values, but they impose some 
assumptions on the data, such as a normal 
distribution or removing outlier data, which may 
not lead to the desired results [11-13]. A number of 
proposed techniques have been made and 
developed to overcome the problems associated 
with the classical statistical framework [14-19]. 
Following includes, but not limit, some efforts in 
this regard: 

Using multi-fractal method for geochemical; 
anomaly separation in the copper-molybdenum 
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porphyry deposit of Kahang [20], utilizing fractal 
modeling and staged factor analysis for Cr and Fe 
mineralization in Balvard, SE Iran [21], 
combination and comparison of U-spatial and C-A 
fractal models for anomaly detection in Varzeghan, 
Iran [22], separation of geophysical anomaly by 
fractal methods [23], geochemical anomaly 
detection by novel genetic K-means clustering 
algorithm [24], using a hybrid technique for 
anomaly recognition in geochemical exploration, 
Dehsalm, Iran [25], improving geochemical 
prospectivity mapping using power spectrum-area 
fractal modeling [26], determination of Mo and Au 
distribution variances in Iranian copper porphyry 
deposits by the fractal methods [27], and detecting 
REEs anomalies using fusion fractal-wavelet 
model in Tarom metallogenic zone, Iran [28]. In 
addition, the neural network methods have been 
used for anomaly separation [29-33]. 

The principal focus of this research is to reduce 
errors in geochemical data analysis to make it more 
consistent with mineralization facts. The GMPI, as 
an ideal methodology, tries to settle deficiencies 
[34]. The GMPI focuses on a precise anomaly 
detection and seeks to reduce the statistical error 
level in stream sediment analysis as much as 
possible. It has been the objective of countless 
studies that led to outstanding results [35-39].  

Metaheuristic algorithm are increasingly 
applicable to a wide range of scientific problems, 
including geological ones. These algorithms mimic 
strategies that living organisms use to fulfill their 
needs, such as hunting, nesting, etc. They can solve 
complex problems by gaining fast and logical 
solutions [40,41]. Swarm intelligence algorithms 
rely on distinctive features such as self-
organization, parallel processing, and high 
flexibility to estimate different parameters in robot 
control, transportation, communication networks, 
etc. [42-44]. Gray Wolf Optimizer (GWO) 
algorithm has been applied to geo-related 
problems: geoelectrical data inversion [45], solving 
engineering design problems [46], network and 
wireless [47], feature selection [48], lidar signal 
noise reduction [49], and mineral prospectivity 
mapping [50]. 

In the mentioned previous researches with 
fractal methods, geochemical data were divided 
into some groups by different limits that we should 
select the anomaly group by determining anomaly 
limits. This paper proposes a novel approach to the 
elimination of expert opinion in the separation of 
geochemical anomalies. Also, a new application of 
swarm intelligence in geochemical analysis is 
presented in this research. 

 The objective of the study is to conduct a 
geochemical analysis leading to a binary map that 
only contains anomalous and non-anomalous zones 
within the Sarduiyeh-Baft area, which has a high 
potential for copper porphyry mineralization in 
Iran. According to the prepared GMPI spatial 
distribution for Cu-Au, Mo-As, Pb-Zn, and 
porphyry index through of the area, separation 
limits between statistical populations were 
measured by fractal analysis. Finally, the GWO 
algorithm was applied to obtain the optimized 
value among the GMPI values using derived fractal 
limits. Validation and risk analysis of our findings 
confirm that GWOs actions were in line with the 
research objective. 

2. The study area and data 

The case study is located in Kerman Province, 
Iran. The study area includes parts of two 100,000 
geological sheets called Sarduiyeh and Baft 
(provided by the Geological Survey of Iran). This 
area is a part of the Urumieh-Dokhtar belt and 
(Figure 1). The Urumieh-Dokhtar volcanic belt is a 
result of the subduction of the Arabian plate 
beneath central Iran during the Alpine orogeny [51-
53]. 

 Regionally speaking, volcanic and pyroclastic 
rocks belong to the Eocene epoch and mostly 
consist of andesite, basalt, rhyolite flows, Algoma, 
and different tuff types through the study area [54]. 
These units got altered by abysmal Oligocene 
intrusive body leading to metamorphism and 
mineralization. During intrusion phase, magmatic 
segregation occurred within intrusive bodies and 
their composition transferred to quartz-diorites and 
quartz-monzonite from a granodiorite origin. The 
final derived phase was enormously affected by 
rich-silicate and ore-bearing solutions caused to the 
extension of silicic veins and veinlets. The area is 
in a tectonically active region and most fractures 
result of fault activation and dominant dykes are 
micro-diorite ones that occasionally reach 1 
kilometer in length [51,55].  

There are four main lithological groups in this 
area, based on the geological map of the study area, 
including intrusive rocks, volcanic rocks, 
sedimentary rocks, and colored mélange (Figure 2). 
There are many copper porphyry deposits in this 
volcanic belt, including 37 known Cu porphyry 
deposits in the study area, which were used for 
validation. The porphyry occurrence in the study 
area is related to subduction of Arabian and Central 
Iran plates [51,52]. The main host rocks are quartz-
monzonite, monzonite, granodiorite and quartz-
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diorites where mineralization is mainly occurred at 
the contact of these rock types with volcanic rocks 
[36,52]. Hydrothermal alteration, including 
argillic, phyllic and iron-oxide alteration, is present 
at the surface of most of the copper porphyry 
deposits that can be detected by remote sensing 
[57,58]. Gold, copper and molybdenum are the 

main elements in these porphyry deposits [34,59]. 
1478 stream sediment data were used for 
geochemical analysis to generate the GMPI maps 
[9]. It is noteworthy that the samples were 
subjected to chemical analysis for 49 elements 
using the ICP-MS methods by geological survey of 
Iran.  

 
Figure 1. Structural map of iron [60] and study area position 

 
Figure 2. A simplified geological map of the study area was prepared by the Geological Survey of Iran [61]  
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3. Methods 
3.1. Geochemical Mineralization Probability 
Index (GMPI) 

Anomaly detection is the primary objective of 
geochemical data analysis. The GMPI is a new 
method that was developed by Yousefi et al., 2012 
to improve the production of the geochemical 
evidence maps for stream sediment samples [34]. 
This method is a weighting method that can be 
mapped and can be used as the main layer in 
Mineral Prospectivity Mapping (MPM) studies for 
mineral exploration.  

In the analysis of geochemical data, factor 
analysis is usually performed, factor scores are 
calculated, and then geochemical maps are 
produced based on the scores that show the 
probability of mineralization upstream of each 
sample [62]. The GMPI method is the application 
of the logistic function on the factor scores 
obtained from stepwise factor analysis, which is 
referred to as fuzzy weight. To calculate the GMPI 
values equation 1 is used [34]. 

ܫܲܯܩ =
݁ி௦

1 + ݁ி௦ (1) 

Where Fs is each sample’s factor score per 
indicator component from factor analysis.  

3.2. Gray Wolf Optimization (GWO) Algorithm  

The GWO algorithm simulates the social 
behavior of gray wolves in nature and their hunting 
method [63,43]. This meta-heuristic algorithm has 
developed according to swarm intelligence and 
includes the following stages: a) Observing, 
tracking, and chasing prey, b) approaching and 
surrounding prey leading to prey’s confusion and 
stops moving, and c) attacking prey. 

In this algorithm, wolves are divided into four 
groups: alpha or leader, beta, delta, and omega 
wolves. The main directors of the algorithm are 
alpha wolves. Beta and delta assist alpha wolves 
and omega wolves follow others [43]. In the first 
step of the algorithm, gray wolves surround the 
prey. Following describes the mathematical model 
for surrounding prey: 

ሬሬ⃗ܦ = ห⃗ܥ. ܺ⃗(ݐ) − ܺ⃗(௧)ห (2) 

ܺ⃑(௧ାଵ) = ܺ⃗(ݐ) − .ܣ⃗ ሬሬ⃗ܦ  (3) 
In the aforementioned equations, X(t) refers to 

the position of the prey at time t, ܺ (ݐ) is the 
position of the wolf at time t, and D implies to the 
distance between the wolf and the prey. A and C 

are vectors of coefficients that are defined as 
equation 3 and 4: 

ܣ⃗ = 2ܽ⃗. ଵݎ⃗ − ܽ⃗ (4) 

ܥ⃗ = 2.  ଶ (5)ݎ⃗
Where ܽ is a variable, whose value decreases 

linearly from 2 to 0, ݎଵand ݎଶ are random values 
[63].  

The gray wolves attack on prey during the 
hunting phase, which is led by the alpha. 
Sometimes beta and delta wolves participate in the 
hunt. This process can also come to mathematical 
relation, within an assumption that assumes alpha, 
beta, and delta wolves have better knowledge of the 
potential location of the prey. Therefore, the 
obtained solutions for selection are saved and the 
rest of the search agents update their position 
according to the position of the best solutions 
[43,50]. The following equations quantify this 
process: 

ሬሬ⃗ܦ ఈ = ห⃗ܥଵ. ܺ⃗ఈ − ܺ⃗ห 

ሬሬ⃗ܦ (6) ఉ = ห⃗ܥଶ. ܺ⃗ఉ − ܺ⃗ห 

ሬሬ⃗ܦ ఋ = ห⃗ܥଷ. ܺ⃗ఋ − ܺ⃗ห 

ܺ⃗ଵ = ܺ⃗ఈ − .ଵܣ⃗ ሬሬ⃗ܦ ఈ  

(7) ܺ⃗ଶ = ܺ⃗ఉ − .ଵܣ⃗ ሬሬ⃗ܦ ఉ  

ܺ⃗ଷ = ܺ⃗ఋ − .ଵܣ⃗ ሬሬ⃗ܦ ఋ  

Xሬሬ⃗ (୲ାଵ) =
Xଵሬሬሬሬ⃗ + Xଶሬሬሬሬ⃗ + Xଷሬሬሬሬ⃗

3
 

(8) 

Through the searching for prey, the wolves 
move apart to search different points of the solution 
space. Hence, a random vector with a value greater 
than 1 or less than -1 represents the mathematical 
model in this regard. When the prey stops, gray 
wolves attack and the hunting ends. To model the 
attack on the prey the (a) parameter is reduced [43]. 

4. Results and discussion 
4.1. GMPI maps 

The main data used in this study is stream 
sediment data. In addition, the objective is to 
determine the area of porphyry copper 
mineralization potential in the study area based on 
the stream sediment data. Based on the data, some 
elements have a strong correlation that were 
selected for this study. The Au and Cu as the main 
mineralization elements were selected. Also the 
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Mo, As, Pb and Zn have good correlation with 
mineralization as trace and paragenesis elements. 

For this purpose, the GMPI maps of 
geochemical signature were created. In the first, the 
GMPI for Cu-Au, Mo-As, and Pb-Zn based on the 
eq.1, and then based on the [34] GMPI map for 
copper porphyry were prepared and presented in 
Figure 3. In these maps, the value of the 
mineralization index is shown between 0 and 1and 

indicates the possibility of mineralization. Values 
with mineralization potential are marked with a red 
spectrum color (yellow to red) on the generated 
maps. Thus, the more toward red, the greater the 
mineralization potential. The main challenge is 
considering a value as an anomaly. There are 
several methods for determining the anomaly 
separation limit, each with its own advantages and 
disadvantages.  

 

 

 
Figure 3. GMPI maps of Cu-Au (a), Mo-As (b), Zn-Pb (c), and Porphyry (d) in study area. 

4.2. Anomaly Determination  

This paper attempts to place an appropriate 
boundary on the GMPI map to properly identify 
high potential mineralized zones. Fractal is one of 
the most powerful and widely used techniques in 
geochemical data analysis. Therefore, in this 
research, fractal methods were first used with 
Concentration-Area (C-A) technique to classify 
GMPI maps and the generated maps were 
classified (Figure 4). 

Obviously, it would be an arduous task to 
consider which of these limits as optimized one and 
this is where optimization algorithm, gray wolf 
optimization particularly, changes the story, makes 
the selection process easy and eliminate any 

misinterpretation. The Gray wolf algorithm applied 
on GMPI maps within the MATLAB software. 
Running the algorithm needs to define some 
specific parameters including data range, iteration 
number, and gray wolf number. For this study, the 
number of iteration and wolf’s pack size were set 
at 100 and 50, respectively. Equation (9) implies to 
cost function used in this investigation: 

(ݔ)݂ =  ݔ ⎹ − ⎹ݔ


ୀଵ

 (9) 

Where x =optimized separation value, xi= 
fractal limit values and the spectrum’ upper bound, 
and n= number of fractal limits. The optimal point 
occurs where the cost function possesses the lowest 
possible value (Figure 5). 
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Figure 4. Fractal log(C-A) plots of Cu-Au (a), Mo-As (b), Zn-Pb (c), and Porphyry (d) 

  

  
Figure 5. the trend WGO algorithm for GMPIs, a) Cu-Au, b) Mo-As, c) Pb-Zn, and d) Porphyry 

The GMPI map of Cu-Au is divided into three 
classes according to the fractal C-A method. 
Therefore, we have three classification limits: 
L1=0.304, L2=0.677, and L3=0.896. Based on 
these values, an anomaly map was created for each 
boundary by green color (Figure 6. a, b, and c). 
This makes it difficult to identify a particular group 

as an anomaly and can lead to misinterpretation. It 
is therefore not possible to comment accurately on 
the separation of anomalies from background. 
GWO algorithm is powerful and useful tools to 
overcome this difficulty. The optimal separation 
limit of 0.737 was obtained by applying the GWO 
algorithm (Figure 6. d). 
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Figure 6. GMPI map classification by fractal: a) L1, b) L2, c) L3, and d) optimal boundary by GWO for Cu-Au 

As mentioned above, the GMPI map of Mo-As 
was prepared because it is an indicator of porphyry 
copper mineralization. Classification of GMPI 
(Mo-As) map was done using fractal methods (C-
A). Based on the fractal results, the map values 
were classified into four population, resulting in 
three separation limits: L1=0.284, L2=0.56 and 
L3=0.755. Anomaly maps were generated using 
the obtained separation limits (Figure 7 a, b, and c) 
and anomalies were colored green. In the 
following, based on the results of the GWO 
algorithm, the optimal separation limit has been 
determined, its value is 0.693. This is how the 
classified GMPI map of Mo-As with its boundary 
was created (Figure 7 d).  

The GMPI of Pb-Zn has been mapped as 
another indicator of porphyry copper deposits. For 
this reason, its classification was carried out based 
on the fractal C-A methods. Based on the fractal 
results, this map was divided into four groups and 
their separation limits were obtained, the values of 
which are L1=0.323, L2=0.571 and L3=0.779. 
Anomaly maps based on the obtained separation 
limits are presented in Figure 8. a, b and c. Using 

the GWO algorithm, the optimal value for 
separating the anomaly from the background was 
found to be 0.671, and GMPI anomaly map was 
generated based on this (Figure 8. d). On these 
maps (Figure 6) the anomaly area is marked by a 
green color.  

As mentioned, a porphyry GMPI map has been 
produced taking into account the effects of all the 
above index elements. Now we need to identify the 
anomaly areas based on the map we have prepared 
(Fig3.d). Therefore, the classification of the map 
was done based on the fractal method, and based 
on the results, three limits for the separation of 
anomaly values were identified, which are 0.308, 
0.754 and 0.896. The anomaly maps were 
generated and the anomaly boundary was 
determined in each of them (Fig9.a, b and c). Then, 
through the application of the GWO algorithm, the 
optimal limit of the separation of the anomalies was 
determined, which is 0.839, and its map was 
created (Figure 9.d). The boundary of the anomaly 
is marked and the anomalous areas are highlighted 
in green on the prepared map.  
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Figure 7. GMPI map classification by fractal: a) L1, b) L2, c) L3, and d) optimal boundary by GWO for Mo-As 

 
Figure 8. GMPI map classification by fractal: a) L1, b) L2, c) L3, and d) optimal boundary by GWO for Pb-Zn 
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Figure 9. Porphyry GMPI map classification by fractal: a) L1, b) L2, c) L3, and d) optimal boundary by GWO 

5. Validation by Risk analysis  

In this research we used fractal method and 
GWO algorithm for detection of anomalous values 
from prepared GMPI maps. Using these methods, 
anomaly classification was performed and anomaly 
boundaries were established with the obtained 
limits. However, which limit to choose and based 
on which limit the anomaly boundary should be 
determined is the main discussion and challenge 
here. The fractal method tends to produce multiple 
classes, making the decision about the anomaly 
boundary difficult and controversial. It is a 
challenge to select each of the boundaries obtained 
by the fractal method. This is because a very large 
area is defined as anomaly and target area if we 
choose the initial limits (low values). If the target 
area is large, a lot of time and cost has to be spent 
on exploration, which is virtually impossible for 
technical and economic reasons. The target area 
becomes very small and the possibility of losing 
potential areas increases if we choose the upper 
limits (higher values). Therefore, as a result, the 
risk of an exploratory operation is increased. One 
obvious difference, however, is that the use of 
GWO produces only two categories; anomaly and 
background. This leads to the avoidance of relying 
on the judgment of experts.  

 The location of known deposits was used to 
further investigation and validation of the results. 
The area covered and the number of the detected 

Cu occurrences were calculated by selecting 
different boundaries. As mentioned, the general 
rule in exploration studies is that the more deposits 
you can find in a smaller area, the better it is. 
Therefore, the validation was done according to 
this point. We introduce the risk of boundary 
selection by detection of Cu occurrence and 
covered area per each selected limit. The amount of 
risk associated with each of the selected limits was 
then calculated using Equation 10. 

݇ݏܴ݅ =
ܰ
ܵ

 (10) 

Where, N represents the percentage of known 
Cu occurrence, and S is the percentage of area 
covered.  

The reliability index was obtained based on the 
eq.10, as defined in equation 11: 

Reliability index=1-Risk (11) 

The value of this index, ranges between [0-1], 
with the values closer to one, the better. In other 
words, it is more efficient because it has identified 
more deposits in a smaller area. A risk analysis was 
done on the anomaly separation limits and a 
reliability index was calculated for the GMPI maps 
in used (Figure 10).  
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Figure 10. The results of risk analysis 

The reliability index of the Cu-Au and porphyry 
GMPI maps for the GWO anomaly boundary is 
higher than that of the fractal boundaries, meaning 
that the efficiency of the algorithm is much better 
in determining the anomaly of these maps. As 
mentioned before, the porphyry GMPI map is a 
combination of other GMPI maps, based on which 
the target zone is introduced. The reliability index 
of the porphyry GMPI is 0.13, 0.45, and 0.5 for L1, 
L2, and L3, respectively, by fractal methods, while 
this value is 0.67 for the GWO limit. Thus, the 
choice of the GWO’s limit will have the effect that 
more deposits will be detected in less area.  

6. Conclusions 

This study aimed to address challenges of 
geochemical anomaly detection by introducing the 
Grey Wolf Optimizer (GWO) algorithm as a novel 
approach for binary geochemical anomaly 
detection and separation in stream sediment data. 
While the initial application of fractal analysis on 
GMPI distributions resulted in several anomalous 
classes, making limit selection difficult, the GWO 
algorithm provided a unique and optimized value 
for each distribution . 

Risk analysis, performed via a reliability index 
calculation, demonstrated the superiority of the 
GWO-derived limit compared to those obtained 
using fractal methods. The reliability index of the 
porphyry GMPI, as the main criteria for detecting 
target areas, is 0.67 by selecting the GWO 
boundary, while this value is 0.13, 0.45, and 0.5 for 
L1, L2, and L3, respectively, for fractal methods. 
These results suggest that the GWO algorithm can 
be a valuable tool for anomaly detection and 
optimal threshold selection in geochemical 
exploration studies .  

This framework is still under development and 
requires further refinement and application by 
geoscientists to solve problems in mineral 

exploration, environmental investigations, and 
remote sensing. Given the continuous 
advancements in swarm intelligence algorithms, 
future research exploring the application of 
alternative algorithms for anomaly detection is 
highly recommended. 
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  چکیده:

شــناســی قرار گرفته که از یک هاي ژئوشــیمیایی از زمینه همواره یک چالش اســت زیرا الگوهاي پراکندگی عناصــر تحت تاثیر عوامل مختلف زمینتفکیک آئومالی
ت. معمولا از روشناحیه تا ناحیه خیص آنومالیهاي آماري و  اي دیگر متفاوت اسـ تفاده میفرکتالی براي تشـ شـود که در تعیین حد آسـتانه بهینه دچار جالش  ها اسـ

هاي  ژئوشیمی رسوبات کند. از دادهباشند. این مطالعه الگوریتم گرگ خاکستري را به عنوان یک رویکرد جدید در تعیین حد بهینه آنومالی و زمینه پیشنهاد میمی
ابتدا شـاخص باشـد به عنوان مطالعه موردي جهت تجزیه و تحلیل اسـتفاده شـد. سـازي مس میبافت در جنوب شـرق ایران که داراي کانی-سـاردوئیهاي منطقه آبراهه

هاي فرکتالی براي روي و پورفیري  محاسـبه شـده و نقشـه آنها تهیه شـد. در ادامه از روش-آرسـنیک سـرب-طلا، مولیبدن-سـازي ژئوشـیمیایی براي مساحتمال کانی
ه د. تعیین جوامع آنومالی در هر کدام از نقشـ تفاده شـ تري براي تعیین حدهاي بهینه نتایج فرکتالی اسـ پس از الگوریتم گرگ خاکسـ د. سـ تفاده شـ ده اسـ هاي تهیه شـ

ریتم گرگ  آنالیز ریسـک براسـاس نسـبت تعداد اندیس شـناسـایی شـده نسـبت به مسـاحت تحت پوشـش انجام شـده و نتایچ نشـان داد که حد بدسـت آمده از روش الگو
ه با تري در مقایسـ اخص احتمال کانی خاکسـ تري دارد. براي شـ ت آمده از روش فرکتال قابلیت اطمینان بیشـ ایر حدهاي بدسـ یمیایی پورفیري مقادیر  سـ ازي ژئوشـ سـ

باشـد این مقدار براي حد بدسـت آمده از الگوریتم گرگ خاکسـتري  می  5/0و    44/0،  127/0شـاخص قابلیت اطمینان براي حدهاي فرکتالی به ترتیب عبارتند از : 
ه مسمی  66/0 ت آمده براي نقشـ د. همچنین نتایج بدسـ ان می-باشـ تري نتایج بهتري دارد. بنابراین نتایج طلا نشـ ت آمده از الگوریتم گرگ خاکسـ دهد که حد بدسـ

سـازي ژئوشـیمیایی عملکرد موفقی  هاي شـاخص احتمال کانیدهد که الگوریتم گرگ خاکسـتري در تعیین حد بهینه تفکیک آنومالی از زمینه در نقشـهنشـان می
  داشته است.
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