Document Type : Original Research Paper

Authors

Faculty of Mining, Petroleum & Geophysics Engineering, Shahrood University of Technology, Shahrood, Iran

Abstract

In flotation, entrainment (ENT) affects the recovery of the concentrate, and the entrainment model is often supposed to be only a function of particle size in models. Some research shows that other variables may also significantly affect ENT. In this study, some flotation experiments executed using a mixture of pure quartz as the valuable mineral and a pure magnetite sample as the gangue mineral to investigate the effects of other variables, such as solid content, airflow rate, frother, and collector dosages, on ENT. The results showed ENT varied from 0.071 to 0.851 is different, while the entrainment recovery was between 0.006 to 0.23, which means that the difference is statistically significant. ENT affected by (1) collector dosage, (2) frother dosage, (3) solid content, (4) the interaction between airflow rate and solid content and, (5) the interaction between airflow rate and frother dosage. An empirical statistical model is presented based on operational parameters. As the present models for ENT incorporate just particle size, it is not enough to predict gangue recovery in industrial applications by keeping the operating conditions constant. This novel model can predict ENT based on different operational parameters. The developed model is presented based on the particle mass by changing the operation parameters.

Keywords

Main Subjects

[1]. Hoang, D. H., Heitkam, S., Kupka, N., Hassanzadeh, A., Peuker, U. A., & Rudolph, M. (2019). Froth properties and entrainment in lab-scale flotation: A case of carbonaceous sedimentary phosphate ore. Chemical Engineering Research and Design142, 100-110.
[2]. Norori-McCormac, A., Brito-Parada, P. R., Hadler, K., Cole, K., & Cilliers, J. J. (2017). The effect of particle size distribution on froth stability in flotation. Separation and Purification Technology184, 240-247.
[3]. Bhambhani, T., Farinato, R., Nagaraj, D. R., & Somasundaran, P. (2023). Effect of platy gangue minerals in sulfide flotation: Part I-transport rates. Minerals Engineering201, 108185.
[4]. Mathe, Z. T., Harris, M. C., O'Connor, C. T., & Franzidis, J. P. (1998). Review of froth modelling in steady state flotation systems. Minerals Engineering11(5), 397-421.
[5]. Mathe, Z. T., Harris, M. C., & O'Connor, C. T. (2000). A review of methods to model the froth phase in non-steady state flotation systems. Minerals Engineering13(2), 127-140.
[6]. Wang, D., & Liu, Q. (2021). Hydrodynamics of froth flotation and its effects on fine and ultrafine mineral particle flotation: A literature review. Minerals Engineering173, 107220.
[7]. Azizi, A. (2017). A study on the modified flotation parameters and selectivity index in copper flotation. Particulate science and technology35(1), 38-44.
[8]. Vieira, A. M., & Peres, A. E. (2007). The effect of amine type, pH, and size range in the flotation of quartz. Minerals Engineering20(10), 1008-1013.
[9]. Vera, M. A., Mathe, Z. T., Franzidis, J. P., Harris, M. C., Manlapig, E. V., & O'Connor, C. T. (2002). The modelling of froth zone recovery in batch and continuously operated laboratory flotation cells. International Journal of Mineral Processing64(2-3), 135-151.
[10]. Nakhaei, F., Mosavi, M. R., Sam, A., & Vaghei, Y. (2012). Recovery and grade accurate prediction of pilot plant flotation column concentrate: Neural network and statistical techniques. International Journal of Mineral Processing110, 140-154.
[11]. Finch, J. A., & Dobby, G. S. (1990). Column flotation. Flotation Science and Engineering, 291-329.
[12]. Xu, M., Finch, J. A., & Uribe-Salas, A. (1991). Maximum gas and bubble surface rates in flotation columns. International journal of mineral processing32(3-4), 233-250.
[13]. Reddy, P. S. R., Kumar, S. G., Bhattacharyya, K. K., Sastri, S. R. S., & Narasimhan, K. S. (1988). Flotation column for fine coal beneficiation. International Journal of Mineral Processing24(1-2), 161-172.
[14]. Dey, S., Pani, S., Singh, R., & Paul, G. M. (2015). Response of process parameters for processing of iron ore slime using column flotation. International Journal of Mineral Processing140, 58-65.
[15]. YANG, C. H., XU, C. H., Mu, X. M., & ZHOU, K. J. (2009). Bubble size estimation using interfacial morphological information for mineral flotation process monitoring. Transactions of Nonferrous Metals Society of China19(3), 694-699.
[16]. Bouaifi, M., Hebrard, G., Bastoul, D., & Roustan, M. (2001). A comparative study of gas hold-up, bubble size, interfacial area and mass transfer coefficients in stirred gas–liquid reactors and bubble columns. Chemical engineering and processing: Process intensification40(2), 97-111.
[17]. Shean, B. J., & Cilliers, J. J. (2011). A review of froth flotation control. International Journal of Mineral Processing100(3-4), 57-71.
[18]. Neethling, S. J., & Cilliers, J. J. (2002). The entrainment of gangue into a flotation froth. International Journal of Mineral Processing64(2-3), 123-134.
[19]. Engelbrecht, J. A., & ET, W. (1975). The effects of froth height, aeration rate, and gas precipitation on flotation.
[20]. Jowett, A. (1966). FLOTATION KINETICS.. GANGUE MINERAL CONTAMINATION OF FROTH. Brit Chem Eng11(5), 330-333.
[21]. Laplante, A. R., Kaya, M., & Smith, H. W. (1989). The effect of froth on flotation kinetics-A mass transfer approach. Mineral Procesing and Extractive Metallurgy Review5(1-4), 147-168.
[22]. Akdemir, Ü., & Sönmez, İ. (2003). Investigation of coal and ash recovery and entrainment in flotation. Fuel Processing Technology82(1), 1-9.
[23]. Wang, L., Peng, Y., & Runge, K. (2016). Entrainment in froth flotation: The degree of entrainment and its contributing factors. Powder Technology288, 202-211.
[24]. Cilek, E. C. (2009). The effect of hydrodynamic conditions on true flotation and entrainment in flotation of a complex sulphide ore. International Journal of Mineral Processing90(1-4), 35-44.
[25]. Wang, C., Sun, C., & Liu, Q. (2021). Entrainment of gangue minerals in froth flotation: mechanisms, models, controlling factors, and abatement techniques—a review. Mining, Metallurgy & Exploration38(2), 673-692.
[26]. Quintanilla, P., Neethling, S. J., & Brito-Parada, P. R. (2021). Modelling for froth flotation control: A review. Minerals Engineering162, 106718.
[27]. Anzoom, S. J., Bournival, G., & Ata, S. (2024). Coarse particle flotation: A review. Minerals Engineering206, 108499.
[28]. Yang, B., Yin, W., Zhu, Z., Wang, D., Han, H., Fu, Y., ... & Yao, J. (2019). A new model for the degree of entrainment in froth flotation based on mineral particle characteristics. Powder technology354, 358-368.
[29]. Zheng, X., Johnson, N. W., & Franzidis, J. P. (2006). Modelling of entrainment in industrial flotation cells: Water recovery and degree of entrainment. Minerals Engineering19(11), 1191-1203.
[30]. Wang, L., Peng, Y. and Runge, K., 2016. Entrainment in froth flotation: The degree of entrainment and its contributing factors. Powder Technology, 288, pp.202-211.
[31]. Wang, L., Runge, K., Peng, Y., & Vos, C. (2016). An empirical model for the degree of entrainment in froth flotation based on particle size and density. Minerals Engineering98, 187-193.
[32]. Vining, G. (2010). Technical advice: residual plots to check assumptions. Quality Engineering23(1), 105-110.
[33]. Melo, F., & Laskowski, J. S. (2007). Effect of frothers and solid particles on the rate of water transfer to froth. International Journal of Mineral Processing84(1-4), 33-40.
[34]. Wiese, J., & Harris, P. (2012). The effect of frother type and dosage on flotation performance in the presence of high depressant concentrations. Minerals Engineering36, 204-210.
[35]. Lima, N. P., de Souza Pinto, T. C., Tavares, A. C., & Sweet, J. (2016). The entrainment effect on the performance of iron ore reverse flotation. Minerals Engineering96, 53-58.
[36]. Wang, L., Xing, Y., & Wang, J. (2020). Mechanism of the combined effects of air rate and froth depth on entrainment factor in copper flotation. Physicochemical Problems of Mineral Processing56.
[37]. Ata, S. (2012). Phenomena in the froth phase of flotation—A review. International Journal of Mineral Processing102, 1-12.
[38]. Popli, K., Afacan, A., Liu, Q., & Prasad, V. (2018). Real-time monitoring of entrainment using fundamental models and froth images. Minerals Engineering124, 44-62.
[39]. Neethling, S. J., & Cilliers, J. J. (2002). The entrainment of gangue into a flotation froth. International Journal of Mineral Processing64(2-3), 123-134.
[40]. Yang, B., Yin, W., Zhu, Z., Wang, D., Han, H., Fu, Y., ... & Yao, J. (2019). A new model for the degree of entrainment in froth flotation based on mineral particle characteristics. Powder technology354, 358-368.
[41]. Amelunxen, P., LaDouceur, R., Amelunxen, R., & Young, C. (2018). A phenomenological model of entrainment and froth recovery for interpreting laboratory flotation kinetics tests. Minerals Engineering125, 60-65.
[42]. Kursun, H. (2017). The influence of frother types and concentrations on fine particles’ entrainment using column flotation. Separation Science and Technology52(4), 722-731.