[1]. Hoang, D. H., Heitkam, S., Kupka, N., Hassanzadeh, A., Peuker, U. A., & Rudolph, M. (2019). Froth properties and entrainment in lab-scale flotation: A case of carbonaceous sedimentary phosphate ore. Chemical Engineering Research and Design, 142, 100-110.
[2]. Norori-McCormac, A., Brito-Parada, P. R., Hadler, K., Cole, K., & Cilliers, J. J. (2017). The effect of particle size distribution on froth stability in flotation. Separation and Purification Technology, 184, 240-247.
[3]. Bhambhani, T., Farinato, R., Nagaraj, D. R., & Somasundaran, P. (2023). Effect of platy gangue minerals in sulfide flotation: Part I-transport rates. Minerals Engineering, 201, 108185.
[4]. Mathe, Z. T., Harris, M. C., O'Connor, C. T., & Franzidis, J. P. (1998). Review of froth modelling in steady state flotation systems. Minerals Engineering, 11(5), 397-421.
[5]. Mathe, Z. T., Harris, M. C., & O'Connor, C. T. (2000). A review of methods to model the froth phase in non-steady state flotation systems. Minerals Engineering, 13(2), 127-140.
[6]. Wang, D., & Liu, Q. (2021). Hydrodynamics of froth flotation and its effects on fine and ultrafine mineral particle flotation: A literature review. Minerals Engineering, 173, 107220.
[7]. Azizi, A. (2017). A study on the modified flotation parameters and selectivity index in copper flotation. Particulate science and technology, 35(1), 38-44.
[8]. Vieira, A. M., & Peres, A. E. (2007). The effect of amine type, pH, and size range in the flotation of quartz. Minerals Engineering, 20(10), 1008-1013.
[9]. Vera, M. A., Mathe, Z. T., Franzidis, J. P., Harris, M. C., Manlapig, E. V., & O'Connor, C. T. (2002). The modelling of froth zone recovery in batch and continuously operated laboratory flotation cells. International Journal of Mineral Processing, 64(2-3), 135-151.
[10]. Nakhaei, F., Mosavi, M. R., Sam, A., & Vaghei, Y. (2012). Recovery and grade accurate prediction of pilot plant flotation column concentrate: Neural network and statistical techniques. International Journal of Mineral Processing, 110, 140-154.
[11]. Finch, J. A., & Dobby, G. S. (1990). Column flotation. Flotation Science and Engineering, 291-329.
[12]. Xu, M., Finch, J. A., & Uribe-Salas, A. (1991). Maximum gas and bubble surface rates in flotation columns. International journal of mineral processing, 32(3-4), 233-250.
[13]. Reddy, P. S. R., Kumar, S. G., Bhattacharyya, K. K., Sastri, S. R. S., & Narasimhan, K. S. (1988). Flotation column for fine coal beneficiation. International Journal of Mineral Processing, 24(1-2), 161-172.
[14]. Dey, S., Pani, S., Singh, R., & Paul, G. M. (2015). Response of process parameters for processing of iron ore slime using column flotation. International Journal of Mineral Processing, 140, 58-65.
[15]. YANG, C. H., XU, C. H., Mu, X. M., & ZHOU, K. J. (2009). Bubble size estimation using interfacial morphological information for mineral flotation process monitoring. Transactions of Nonferrous Metals Society of China, 19(3), 694-699.
[16]. Bouaifi, M., Hebrard, G., Bastoul, D., & Roustan, M. (2001). A comparative study of gas hold-up, bubble size, interfacial area and mass transfer coefficients in stirred gas–liquid reactors and bubble columns. Chemical engineering and processing: Process intensification, 40(2), 97-111.
[17]. Shean, B. J., & Cilliers, J. J. (2011). A review of froth flotation control. International Journal of Mineral Processing, 100(3-4), 57-71.
[18]. Neethling, S. J., & Cilliers, J. J. (2002). The entrainment of gangue into a flotation froth. International Journal of Mineral Processing, 64(2-3), 123-134.
[19]. Engelbrecht, J. A., & ET, W. (1975). The effects of froth height, aeration rate, and gas precipitation on flotation.
[20]. Jowett, A. (1966). FLOTATION KINETICS.. GANGUE MINERAL CONTAMINATION OF FROTH. Brit Chem Eng, 11(5), 330-333.
[21]. Laplante, A. R., Kaya, M., & Smith, H. W. (1989). The effect of froth on flotation kinetics-A mass transfer approach. Mineral Procesing and Extractive Metallurgy Review, 5(1-4), 147-168.
[22]. Akdemir, Ü., & Sönmez, İ. (2003). Investigation of coal and ash recovery and entrainment in flotation. Fuel Processing Technology, 82(1), 1-9.
[23]. Wang, L., Peng, Y., & Runge, K. (2016). Entrainment in froth flotation: The degree of entrainment and its contributing factors. Powder Technology, 288, 202-211.
[24]. Cilek, E. C. (2009). The effect of hydrodynamic conditions on true flotation and entrainment in flotation of a complex sulphide ore. International Journal of Mineral Processing, 90(1-4), 35-44.
[25]. Wang, C., Sun, C., & Liu, Q. (2021). Entrainment of gangue minerals in froth flotation: mechanisms, models, controlling factors, and abatement techniques—a review. Mining, Metallurgy & Exploration, 38(2), 673-692.
[26]. Quintanilla, P., Neethling, S. J., & Brito-Parada, P. R. (2021). Modelling for froth flotation control: A review. Minerals Engineering, 162, 106718.
[27]. Anzoom, S. J., Bournival, G., & Ata, S. (2024). Coarse particle flotation: A review. Minerals Engineering, 206, 108499.
[28]. Yang, B., Yin, W., Zhu, Z., Wang, D., Han, H., Fu, Y., ... & Yao, J. (2019). A new model for the degree of entrainment in froth flotation based on mineral particle characteristics. Powder technology, 354, 358-368.
[29]. Zheng, X., Johnson, N. W., & Franzidis, J. P. (2006). Modelling of entrainment in industrial flotation cells: Water recovery and degree of entrainment. Minerals Engineering, 19(11), 1191-1203.
[30]. Wang, L., Peng, Y. and Runge, K., 2016. Entrainment in froth flotation: The degree of entrainment and its contributing factors. Powder Technology, 288, pp.202-211.
[31]. Wang, L., Runge, K., Peng, Y., & Vos, C. (2016). An empirical model for the degree of entrainment in froth flotation based on particle size and density. Minerals Engineering, 98, 187-193.
[32]. Vining, G. (2010). Technical advice: residual plots to check assumptions. Quality Engineering, 23(1), 105-110.
[33]. Melo, F., & Laskowski, J. S. (2007). Effect of frothers and solid particles on the rate of water transfer to froth. International Journal of Mineral Processing, 84(1-4), 33-40.
[34]. Wiese, J., & Harris, P. (2012). The effect of frother type and dosage on flotation performance in the presence of high depressant concentrations. Minerals Engineering, 36, 204-210.
[35]. Lima, N. P., de Souza Pinto, T. C., Tavares, A. C., & Sweet, J. (2016). The entrainment effect on the performance of iron ore reverse flotation. Minerals Engineering, 96, 53-58.
[36]. Wang, L., Xing, Y., & Wang, J. (2020). Mechanism of the combined effects of air rate and froth depth on entrainment factor in copper flotation. Physicochemical Problems of Mineral Processing, 56.
[37]. Ata, S. (2012). Phenomena in the froth phase of flotation—A review. International Journal of Mineral Processing, 102, 1-12.
[38]. Popli, K., Afacan, A., Liu, Q., & Prasad, V. (2018). Real-time monitoring of entrainment using fundamental models and froth images. Minerals Engineering, 124, 44-62.
[39]. Neethling, S. J., & Cilliers, J. J. (2002). The entrainment of gangue into a flotation froth. International Journal of Mineral Processing, 64(2-3), 123-134.
[40]. Yang, B., Yin, W., Zhu, Z., Wang, D., Han, H., Fu, Y., ... & Yao, J. (2019). A new model for the degree of entrainment in froth flotation based on mineral particle characteristics. Powder technology, 354, 358-368.
[41]. Amelunxen, P., LaDouceur, R., Amelunxen, R., & Young, C. (2018). A phenomenological model of entrainment and froth recovery for interpreting laboratory flotation kinetics tests. Minerals Engineering, 125, 60-65.
[42]. Kursun, H. (2017). The influence of frother types and concentrations on fine particles’ entrainment using column flotation. Separation Science and Technology, 52(4), 722-731.