[1]. Dominy, S. C., Platten, I. M., Xie, Y., & Minnitt, R. C. A. (2010). Underground grade control protocol design: Case study from the Liphichi gold project, Larecaja, Bolivia. Applied Earth Science, 119(4), 205–219.
[2]. Stanley, C. R., & Smee, B. W. (2007). Strategies for reducing sampling errors in exploration and resource definition drilling programmes for gold deposits. Geochemistry: Exploration, Environment, Analysis, 7(4), 329–340.
[3]. Pitard, F. F., & Pitard, F. F. (2019). Theory of sampling and sampling practice (3rd ed.). Taylor & Francis.
[4]. Lepistö, L. (2005). Rock image classification using color features in Gabor space. Journal of Electronic Imaging, 14(4), 040503.
[5]. Singh, V., & Mohan Rao, S. (2005). Application of image processing and radial basis neural network techniques for ore sorting and ore classification. Minerals Engineering, 18(15), 1412–1420.
[6]. Baykan, N. A., & Yilmaz, N. (2010). Mineral identification using color spaces and artificial neural networks. Computers & Geosciences, 36(1), 91–97.
[7]. Khorram, F., Memarian, H., & Tokhmechi, B. (2012). Limestone chemical components estimation using image processing and pattern recognition techniques. International Journal of Mining Science and Technology, 2(2), 126–135.
[8]. Keyvani, A., & Strom, K. (2013). A fully-automated image processing technique to improve measurement of suspended particles and flocs by removing out-of-focus objects. Computers & Geosciences, 52, 189–198.
[9]. Liu, C., Tang, C. S., Shi, B., & Bin Suo, W. (2013). Automatic quantification of crack patterns by image processing. Computers & Geosciences, 57, 77–80.
[10]. Gan, S. Q., & Scholz, C. A. (2013). Extracting paleoclimate signals from sediment laminae: An automated 2-D image processing method. Computers & Geosciences, 52, 345–3.
[11]. Patel, A. K., & Chatterjee, S. (2016). Computer vision-based limestone rock-type classification using probabilistic neural network. Geoscience Frontiers, 7(1), 53–60.
[12]. Chauhan, S., Kumar, P., Gupta, A., & Kumar, P. (2016). Processing of rock core microtomography images: Using seven different machine learning algorithms. Computers & Geosciences, 86, 120–128.
[13]. Maiti, A., Chakravarty, D., Biswas, K., & Halder, A. (2017). Development of a mass model in estimating weight-wise particle size distribution using digital image processing. International Journal of Mining Science and Technology, 27(3), 435–443.
[14]. Ramil, A., López, A. J., Pozo-Antonio, J. S., & Rivas, T. (2018). A computer vision system for identification of granite-forming minerals based on RGB data and artificial neural networks. Measurement, 117, 90–95.
[15]. Maitre, J., Bouchard, K., & Bédard, L. P. (2019). Mineral grains recognition using computer vision and machine learning. Computers & Geosciences, 130(February), 84–93.
[16]. Ran, X., Xue, L., Zhang, Y., Liu, Z., Sang, X., & He, J. (2019). Rock classification from field image patches analyzed using a deep convolutional neural network. Unpublished manuscript, 1–16.
[17]. Ouanan, H., & Abdelwahed, E. H. (2019). Image processing and machine learning applications in the mining industry: Mine 4.0. In Proceedings of the 2019 International Conference on Intelligent Systems and Advanced Computing (ISACS 2019) (pp. 1–5). IEEE.
[18]. Safari, H., Balcom, B. J., & Afrough, A. (2021). Characterization of pore and grain size distributions in porous geological samples – An image processing workflow. Computers & Geosciences, 156(June), 104895.
[19]. Liu, Y., Zhang, Z., Liu, X., Wang, L., & Xia, X. (2021). Deep learning-based image classification for online multi-coal and multi-class sorting. Computers & Geosciences, 157(August), 104922.
[20]. Fathi, M., Alimoradi, A., & Ahooi, H. H. (2021). Optimizing Extreme Learning Machine Algorithm using Particle Swarm Optimization to estimate iron ore grade. Journal of Mining and Environment, 12(2), 397–411.
[21]. Alimoradi, A., Maleki, B., Karimi, A., Sahafzadeh, M., & Abbasi, S. (2020). Integrating geophysical attributes with new cuckoo search machine-learning algorithm to estimate silver grade values: Case study at Zarshouran Gold Mine. Journal of Mining and Environment, 11(3), 865–879.
[22]. Farhadi, S., Tatullo, S., Boveiri Konari, M., & Afzal, P. (2024). Evaluating StackingC and ensemble models for enhanced lithological classification in geological mapping. Journal of Geochemical Exploration, 260(February), 107441.
[23]. Farhadi, S., Afzal, P., Konari, M. B., Saein, L. D., & Sadeghi, B. (2022). Combination of machine learning algorithms with concentration–area fractal method for soil geochemical anomaly detection in sediment–hosted Irankuh Pb–Zn deposit, Central Iran. Minerals, 12(6).
[24]. Afzal, P., Farhadi, S., Konari, M. B., Meigoony, M. S., & Saein, L. D. (2022). Geochemical anomaly detection in the Irankuh District using hybrid machine learning technique and fractal modeling. Geopersia, 12(1), 191–199.
[25]. Géron, A. (2017). Hands-on machine learning with Scikit-Learn and TensorFlow. O'Reilly Media, Inc.
[26]. Fu, Y., & Aldrich, C. (2020). Deep learning in mining and mineral processing operations: A review. IFAC-PapersOnLine, 53(2), 11920–11925.
[27]. Alzubaidi, L., et al. (2021). Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. Journal of Cloud Computing: Advances, Systems and Applications, 8(1).
[28]. Socher, R., et al. (2013). Recursive deep models for semantic compositionality over a sentiment treebank. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing (EMNLP).
[29]. Fang, W., Love, P. E. D., Luo, H., & Ding, L. (2020). Computer vision for behaviour-based safety in construction: A review and future directions. Advanced Engineering Informatics, 43(February), 100980.
[30]. Palaz, D., Magimai-Doss, M., & Collobert, R. (2019). End-to-end acoustic modeling using convolutional neural networks for HMM-based automatic speech recognition. Speech Communication, 108, 15–32.
[31]. Li, H. C., Deng, Z. Y., & Chiang, H. H. (2020). Lightweight and resource-constrained learning network for face recognition with performance optimization. Sensors (Switzerland), 20(21), 1–20.
[32]. Caggiano, A., Zhang, J., Alfieri, V., Caiazzo, F., Gao, R., & Teti, R. (2019). Machine learning-based image processing for on-line defect recognition in additive manufacturing. CIRP Annals, 68(1), 451–454.
[33]. Zhang, B., Jaiswal, P., Rai, R., Guerrier, P., & Baggs, G. (2019). Convolutional neural network-based inspection of metal additive manufacturing parts. Rapid Prototyping Journal, 25(3), 530–540.
[34]. Liu, Y., Guo, L., Gao, H., You, Z., Ye, Y., & Zhang, B. (2022). Machine vision based condition monitoring and fault diagnosis of machine tools using information from machined surface texture: A review. Mechanical Systems and Signal Processing, 164, 108068.
[35]. Bhowmick, S., Nagarajaiah, S., & Veeraraghavan, A. (2020). Vision and deep learning-based algorithms to detect and quantify cracks on concrete surfaces from UAV videos. Sensors, 20(21), 6299.
[36]. Fang, W., Love, P. E. D., Luo, H., & Ding, L. (2020). Computer vision for behaviour-based safety in construction: A review and future directions. Advances in Engineering Informatics, 43, 100980.
[37]. Cireşan, D., Meier, U., Masci, J., & Schmidhuber, J. (2012). Multi-column deep neural network for traffic sign classification. Neural Networks, 32, 333–338.
[38]. Li, Y., Zhang, T., Sun, S., & Gao, X. (2019). Accelerating flash calculation through deep learning methods. Journal of Computational Physics, 394, 153–165.
[39]. Han, W., Feng, R., Wang, L., & Gao, L. (2018). Adaptive spatial-scale-aware deep convolutional neural network for high-resolution remote sensing imagery scene classification. In IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium (pp. 4736–4739). IEEE.
[40]. Chen, H., Engkvist, O., Wang, Y., Olivecrona, M., & Blaschke, T. (2018). The rise of deep learning in drug discovery. Drug Discovery Today, 23(6), 1241–1250.
[41]. Benhammou, Y., Achchab, B., Herrera, F., & Tabik, S. (2020). BreakHis based breast cancer automatic diagnosis using deep learning: Taxonomy, survey and insights. Neurocomputing, 375, 9–24.
[42]. Wulczyn, E., et al. (2020). Deep learning-based survival prediction for multiple cancer types using histopathology images. PLoS ONE, 15(6), e0233678.
[43]. Esteva, A., et al. (2017). Dermatologist-level classification of skin cancer with deep neural networks. Nature, 542(7639), 115–118.
[44]. Jamshidi, M., et al. (2020). Artificial intelligence and COVID-19: Deep learning approaches for diagnosis and treatment. IEEE Access, 8, 109581–109595.
[45]. De Fauw, J., et al. (2018). Clinically applicable deep learning for diagnosis and referral in retinal disease. Nature Medicine, 24(9), 1342–1350.
[46]. Mohanty, S. P., Hughes, D. P., & Salathé, M. (2016). Using deep learning for image-based plant disease detection. Frontiers in Plant Science, 7.
[47]. Sladojevic, S., Arsenovic, M., Anderla, A., Culibrk, D., & Stefanovic, D. (2016). Deep neural networks based recognition of plant diseases by leaf image classification. Computational Intelligence and Neuroscience, 2016, 1–11.
[48]. Chen, Y., Lin, Z., Zhao, X., Wang, G., & Gu, Y. (2014). Deep learning-based classification of hyperspectral data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(6), 2094–2107.
[49]. Lee, S. H., Chan, C. S., Wilkin, P., & Remagnino, P. (2015). Deep-plant: Plant identification with convolutional neural networks. In 2015 IEEE International Conference on Image Processing (ICIP) (pp. 452–456). IEEE.
[50]. Bhattacharya, S., Tripathi, S. L., & Kamboj, V. K. (2023). Design of tunnel FET architectures for low power application using improved Chimp optimizer algorithm. Engineering Computations, 39(2), 1415–1458.
[51]. Bruno, D. R., & Osorio, F. S. (2017). Image classification system based on deep learning applied to the recognition of traffic signs for intelligent robotic vehicle navigation purposes. In 2017 Latin American Robotics Symposium (LARS) and 2017 Brazilian Symposium on Robotics (SBR) (pp. 1–6). IEEE.
[52]. Madan, R., Agrawal, D., Kowshik, S., Maheshwari, H., Agarwal, S., & Chakravarty, D. (2019). Traffic sign classification using hybrid HOG-SURF features and convolutional neural networks. In Proceedings of the 8th International Conference on Pattern Recognition Applications and Methods (pp. 613–620). SCITEPRESS - Science and Technology Publications..
[53]. He, Y., Zhang, L., Chen, Z., & Li, C. Y. (2022). A framework of structural damage detection for civil structures using a combined multi-scale convolutional neural network and echo state network. Engineering Computations
[54]. Alzubaidi, L., et al. (2021). Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. Journal of Big Data, 8(1). Springer International Publishing.
[55]. Rawat, W., & Wang, Z. (2017). Deep convolutional neural networks for image classification: A comprehensive review. Neural Computation, 29(9), 2352–2449.
[56]. Valizadeh, M., & Wolff, S. J. (2022). Convolutional neural network applications in additive manufacturing: A review. Advances in Industrial Engineering, 4, 100072.
[57]. Liu, S., McGree, J., Ge, Z., & Xie, Y. (2016). Computer vision in big data applications. In Computational and Statistical Methods for Analysing Big Data with Applications (pp. 57–85).
[58]. Gholamalinezhad, H., & Khosravi, H. (2020). Pooling methods in deep neural networks, a review. arXiv. Retrieved from http://arxiv.org/abs/2009.07485
[59]. Li, Z., Liu, F., Yang, W., Peng, S., & Zhou, J. (2022). A survey of convolutional neural networks: Analysis, applications, and prospects. IEEE Transactions on Neural Networks and Learning Systems, 33(12), 6999–7019.
[60]. LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324.
[61]. Hinton, G. E. (n.d.). Rectified linear units improve restricted Boltzmann machines.
[62]. Hagan, M. T., & Beale, M. H. (n.d.). Neural network design.
[63]. Shea, K. O., & Nash, R. (2015). An introduction to convolutional neural networks (pp. 1–11).
[64]. Dumoulin, V., & Visin, F. (2018). A guide to convolution arithmetic for deep learning (pp. 1–31).
[65]. Wang, Q., Ma, Y., Zhao, K., & Tian, Y. (2022). A comprehensive survey of loss functions in machine learning. Annals of Data Science, 9(2), 187–212.
[66]. Tian, Y., Su, D., Lauria, S., & Liu, X. (2022). Recent advances on loss functions in deep learning for computer vision. Neurocomputing, 497, 129–158.
[67]. Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on image data augmentation for deep learning. Journal of Big Data, 6(1), 60.
[68]. Hirahara, D., Takaya, E., Takahara, T., & Ueda, T. (2020). Effects of data count and image scaling on deep learning training. PeerJ Computer Science, 6, e312.
[69]. Saleh, A. M., & Hamoud, T. (2021). Analysis and best parameters selection for person recognition based on gait model using CNN algorithm and image augmentation. Journal of Big Data, 8(1), 1.
[70]. Metz, C. E. (1978). Basic principles of ROC analysis. Seminars in Nuclear Medicine, 8(4), 283–298.
[71]. Goutte, C., & Gaussier, É. (2005). A probabilistic interpretation of precision, recall and F-score, with implications for evaluation. In Advances in Information Retrieval (pp. 345–359).
[72]. Fränti, P., & Mariescu-Istodor, R. (2023). Soft precision and recall. Pattern Recognition Letters, 167, 115–121.
[73]. Taha, A. A., & Hanbury, A. (2015). Metrics for evaluating 3D medical image segmentation: Analysis, selection, and tool. BMC Medical Imaging, 15(1), 29.
[74]. Mollaei, F. (2014). Identification of promising mineral zones in relation to clay minerals using ETM+ and ASTER data (case study: Marand). In 8th National Specialized Conference of Geology, Arak.
[75]. Azad, M. F. (2007). Petrography, geochemistry of major elements and tectonic environment of the benmorite dike in the kaolin mine zone, north of Marand-Azerbaijan. In 7th Conference of the Iranian Economic Geology Society, Damghan