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 Mineral prospectivity mapping (MPM) is a multi-step and complex process designed 
to narrow down the target areas for exploratory activities in subsequent stages. To 
pinpoint promising zones of porphyry copper mineralization in the Varzaghan district, 
NW Iran, various exploration evidence layers were employed in alignment with the 
conceptual model of these deposits. These layers encompass fault density, proximity 
to intrusive rocks, multi-element geochemical anomalies, and distances to phyllic and 
argillic alterations. The geochemical anomaly maps, recognized as the most effective 
layers, were generated through staged factor analysis (SFA) and the geochemical 
mineralization probability index (GMPI). Other layers were weighted using a logistic 
function, and their values were transformed into 0 -1 interval. Ultimately, to integrate 
the weighted layers, the fuzzy gamma operator and the geometric average method were 
applied. The normalized density index and prediction-area (P-A) plot were employed 
to evaluate the MPM models. The findings indicate that the developed models possess 
considerable validity and can be effectively utilized for planning future exploration 
endeavors. 
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1. Introduction 

Mineral exploration is inherently risky and 
expensive, requiring extensive research, geological 
investigations, and drilling. Sampling and data 
analysis are also a major factor leading to 
increasing uncertainty and rising exploration costs. 
Therefore, it is necessary to apply various 
exploration layers to recognize promising areas of 
mineralization, which enhance and improve the 
understanding of mineralization patterns. In other 
words, each exploration method has its advantages 
and disadvantages. Hence, combining exploration 
datasets derived from different sources such as 
geochemical [1], geophysical [2], and geological 
data [3] can dramatically increase the success in the 
exploration of undiscovered deposits [4]. In the 
primary stages of mineral explorations (known as 

the prospecting phase), mineral prospectivity 
mapping (MPM) can be adapted to reduce the areas 
covered by exploration operations [5]. MPM 
effectively integrates the results of different 
exploration layers to recognize promising areas [6-
9]. The four major branches of MPM are 
knowledge-driven, data-driven, continuous (based 
on the logistic function), and hybrid methods. They 
aim to integrate the weighted evidence maps for 
prospective map construction [10-15]. 

Data-driven methods such as machine learning 
are widely used in geosciences [16-19]. In these 
methods for MPM, the locations and characteristics 
of the known mineral occurrences (KMOs) of the 
type sought in the study area are utilized for 
defining the “training dataset” [9, 20-22]. 
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However, these methods therefore introduce 
exploration bias due to accessibility factors and 
exploration criteria as KMOs are used as training 
sites. Although these models can predict KMOs 
effectively, an essential question arises: How many 
KMOs in the study area are needed to sufficiently 
serve as training sites? In knowledge-driven MPM 
methods, there are exploration biases and 
uncertainties arising from expert judgment in the 
traditional discretization of continuous spatial 
values into some arbitrary classes. Indeed, these 
methods use the knowledge of multiple experts to 
determine the weights of the evidence maps [23, 
24]. This leads to different results because experts' 
opinions differ based on various factors [25]. Other 
MPM methods can assign weights to the evidence 
layer using a hybrid method. When it comes to 
weighting relevant classes of evidence layers and 
integrating them, these methods have the same 
disadvantages as data- and knowledge-driven 
methods. To address these issues, researchers have 
proposed continuous weighting methods based on 
logistic functions [10, 26].  In these methods, the 
location of KMOs is not applied as training points 
and the evidence values representing 
mineralization are not discretized using arbitrary 
intervals, resulting in a significant decrease in 
uncertainties. For these reasons, this method was 
applied in this research. 

 Different layers are utilized for MPM, among 
them, the geochemical anomaly map is considered 
the most important [27-30]. At the  regional scale 
for mineral exploration, geochemical data derived 
from stream sediment samples are typically used to 
examine the mineralization favorability of the area 
[31, 32]. To better understand the geochemical 
status of the study area, stream sediment data are 
mostly subjected to multivariate analysis methods  
such as staged factor analysis (SFA) to extract an 
anomalous geochemical signature linked to the 
mineral deposit-type sought. SFA is a statistical 
method that reduces a multivariate dataset to a few 
key factors endeavoring to find the hidden 
multivariate data structure. Therefore, SFA was 
utilized in this research to identify hidden 
relationships between geochemical elements and to 
produce an anomalous geochemical signature map. 
Subsequently, a logistic function called the 
geochemical mineralization probability index 
(GMPI) is then utilized to assign the optimal fuzzy 
weights. Due to this, assigning the appropriate 
weights to relevant classes of geochemical is a 
challenging issue. Modeling geochemical 
anomalies in stream sediment data presents another 
challenge because the materials of each stream 

sample come from upstream sources. Various 
methods are applied to map geochemical data from 
stream sediments. For example, methods such as 
the variety of interpolation techniques [26], sample 
catchment basin (SCB) mapping approach [33], 
point symbol maps and, weighted drainage 
catchment basin (WDCB) approach [34] can be 
mentioned. This study was conducted with two 
main objectives: 

1- The identification of key multi-element 
geochemical signatures and the modeling of 
geochemical anomalies related to porphyry 
copper deposits through the utilization of 
interpolation and SCB methods. 

2- Combining the obtained geochemical layers with 
other efficient exploration layers in the 
Varzaghan district northwest of Iran to achieve 
more accurate exploration targets of porphyry 
copper mineralization. 

Finally, the normalized density (Nd) index and 
prediction-area (P-A) plot are utilized to evaluate 
the different MPM models based on the locations 
of KMOs. Figure 1 shows the stages of the 
research. 

 
Figure 1. The multi-steps of MPM procedure in this 

research. 

2. Geology of Varzaghan region 

The Varzaghan area is situated in the northwest 
of the Cenozoic Urumieh–Dokhtar magmatic belt 
(UDMB), which is part of the collisional Alpine–
Himalayan orogenic belt that extends from western 
Europe to Turkey and across Iran to western 
Pakistan [35, 36]. There are numerous porphyry 
copper mineralization within the UDMB, including 
two large deposits, namely the Sarcheshmeh and 
Sungun deposits, as well as dozens of medium- to 
small-scale deposits [37, 38]. 

The Varzeghan area consists of metamorphic 
rocks and a cover of Cretaceous rocks, especially 
in the northern part of the study area. The 
Cretaceous sequence contains reefal limestone, 
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sandstone, marl, acidic to intermediate tuff and, 
andesitic lava flow [39]. Cenozoic rocks, covering 
extensive areas, comprise mainly porphyritic 
andesite, andesitic basalt, porphyritic dacite, 
trachyt, ignimbrite and, rhyolite that were intruded 
by acidic to intermediate stocks and dikes. The sub-
volcanic intrusive rocks include granites,  
granodiorites, microdiorite and monzonite-
micromonzonite of the Oligo-Miocene age. The 

mineralization and associated hydrothermal 
alteration were related temporally and spatially to 
the emplacement of these bodies [39, 40]. 
Quaternary intermediate volcanic rocks represent 
the youngest magmatic activity, succeeded by 
fluvial sediments and recent alluvium. The 
geological map of the studied area is presented in 
Figure 2. 

 
Figure 2. Geological map of Varzaghan district [41] 

Porphyry copper deposits are hydrothermal 
systems characterized by distinct geological 
features and geochemical signatures. Leveraging 
these geochemical markers can significantly 
enhance the success rate in identifying exploration 
targets. In the study region, the intense activity of 
intrusive masses has led to the formation of 
porphyry copper mineralization and hydrothermal 
alteration [35, 42, 43]. Various granitoids, dating 
from the Oligocene to Miocene ages, play a critical 
role in the mineralization of Cu ± Au ± Mo 
porphyry deposits, Cu ± Au skarn deposits, and 
epithermal gold deposits. Notably, deposits with 
magmatic affinities in this area are predominantly 
associated with Oligo-Miocene intrusive bodies 
[41]. Previous research in this region has 
highlighted the geochemical association of Cu, 
Mo, Au, and Bi as key proximal indicators of 
porphyry copper deposits, meaning these elements 
are spatially and genetically linked to the deposits 
[33, 44]. Additionally, the presence of As and Sb is 
recognized as an important geochemical footprint 
for porphyry copper systems and can often be 
detected in their vicinity. By integrating the 

geochemical characteristics of porphyry copper 
deposits with insights from earlier studies, a strong 
geochemical signature can be effectively 
established. Studies focused on the region have 
identified that elements such as Ag, As, Au, Bi, Cu, 
Fe, Mo, Pb, Sb, and Zn are geochemically closely 
related to porphyry copper deposits. These 
elements serve as significant tracers and indicators, 
aiding in the exploration and identification of 
mineralization within the area [44, 45]. 

3. Materials: 
3.1. Deposit model  

MPM relies heavily on the creation of a 
conceptual model for target deposits. A conceptual 
model of a specific type of mineral deposit based 
on the KMOs serves as a guide for finding regions 
with the same characteristics. The information 
layers for MPM are selected according to the 
descriptive model of the target deposits. Thus, it is 
of utmost importance to create an accurate 
conceptual model with complete details. Based on 
studies conducted on porphyry copper deposits, the 
following features can be employed for MPM: 
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 These deposits are linked to subduction zones 
and are associated with intrusive rocks such as 
granodiorite, quartz diorite and, monzonite [46]. 
These deposits form in proximity to these 
intrusive rocks, representing a spatial and genetic 
relationship[47].  

 During the formation of porphyry copper 
deposits, metal-rich fluids such as copper are 
transported through fractures and faults. These 
geological structures provide the necessary 
pathways and structural control for the 
movement of hydrothermal fluids [8]. Thus, the 
faults are one of the key factors in the exploration 
of porphyry systems around the world as well as 
in Iran. 

 Based on geochemical studies conducted on 
porphyry copper deposits, these deposits were 
found to be associated with trace elements such 
as As, Au, Ag, Bi, Cu, Mo, Pb, Sb and, Zn or their 
halo in rocks, sediments and, soil [48].  By 
leveraging these elements, a significant 
multivariate geochemical signature can be 
developed to construct porphyry copper 
prospectivity models. As will be demonstrated in 
the following sections, utilizing this elemental 
data in conjunction with appropriate methods has 
resulted in the geochemical anomaly evidence 
layer generation as the most essential evidence 
layer in this region. 

 Hydrothermal fluid processes can change the 
mineralogy and chemical composition of rocks 

in porphyry copper deposits [49]. As a result, 
these deposits are often associated with 
hydrothermal alteration zones, including 
potassic, argillic, phyllic, and propylitic 
alterations, which typically occur in patterns 
from the center outward [50]. The presence and 
extent of these hydrothermal alterations are 
commonly regarded as indicators of the scale and 
intensity of ore enrichment. 

3.2. Stream sediment geochemical data 

In 2012, a regional-scale geochemical survey 
was carried out in the Varzaghan area by the 
Geological Survey of Iran. As part of this 
exploration program, a total of 1067 stream 
samples were collected at a sampling density of 
one sample per 2 km2. These samples were 
analyzed using inductively coupled plasma optical 
emission spectrometry (ICP-OES) and fire assay 
methods. The ICP-OES and fire assay methods 
were applied to analyze and determine 40 elements 
and Au, respectively. In this study, 10 trace 
elements (Ag, As, Au, Bi, Cu, Fe, Mo, Pb, Sb, and 
Zn) were utilized for further geochemical 
investigations. These elements are utilized in the 
exploration of hydrothermal deposits such as 
porphyry copper mineralization [40]. This study 
used data from 792 samples collected for 
geochemical studies. The locations of the collected 
samples are shown in Figure 3. 

 
Figure 3. Stream sediment samples in Varzaghan region and their distribution 

4. Methods: 
4.1. Sigmoid logistic function 

In MPM, exploration data is initially collected 
and processed based on the conceptual model of 

the target deposit [10]. Since these layers have 
different value ranges, they cannot be directly 
compared or used to create prospect maps [20]. To 
address this, the values of the evidence layers 
should be transferred to a new space, for example, 
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0-1 [25]. For this purpose, an optimized logistic 
function can be employed that does not rely on 
expert opinions to calculate parameters. Therefore, 
the exploration bias is significantly reduced 
because this function is not based on expert 
judgment. 

ாܨ =
1

1 + ݁ି௦(ாି) (1) 

where FE is the value of the fuzzy membership, 
assigned fuzzy score, s, is the slope of the logistic 
function, i is the inflection point of the logistic 
function and E is weighted fuzzy evidence falling 
in the domain [0,1]. Also, the values of i and s are 
obtained from the equations 2 and 3, respectively: 

݅ =
௫ܧ + ܧ

2
 (2) 

ݏ =
9.2

௫ܧ − ܧ
 (3) 

4.2. Geometric average method 

Various methods are used to combine the 
exploratory layers of evidence, one of them is the 
geometric average [51]. The geometric average for 
n values is defined as the n root of their product. 
This function is determined for a dataset using 
Equation 4: 

)ܩ ଵܸ, ଶܸ, . . . ܸ) = ඥ ଵܸ. ଶܸ. . . ܸ
  (4) 

Where Vn is the ith evidential layer.  
The geometric average method is used only for 

positive values. So, if the evidential layers have 
negative values, they must first be transferred to 
positive space [52]. The logistic function (Equation 
1) can be used for this, which transfers the negative 
values into positive space. 

4.3. Fuzzy Gamma 

Fuzzy logic can be applied to integrate fuzzy 
evidence layers [53]. This logic is determined 
based on a membership function. It measures the 
degree to which a given element is a member of a 
set.  The membership function can take any value 
between 0 and 1. To create a prospectivity map for 
detection exploration target zones for further 
exploration, fuzzy MPM combines fuzzy evidence 
maps. For integration, various fuzzy operators can 
be used to integrate the fuzzy evidence layers. In 
this regard, any existing fuzzy operator can be 
utilized, taking into account the type of 
mineralization sought and the purpose of the 
integration. The fuzzy gamma operator was used to 
integrate weighted evidence maps in this study. 

This operator is defined using the fuzzy algebra 
product and the fuzzy algebra sum by the following 
representation: 

ߤ = (ෑ ߤ
ଵି௬



ୀଵ

) × (1 − ෑ(1 − )௬ߤ


ୀଵ

) (5) 

where ߛ is a parameter chosen in the range (0, 
1). When ߛ is 1 the combination is the same as the 
fuzzy algebraic sum, and when ߛ is 0 the 
combination is equal to the fuzzy algebraic 
product. 

4.4. SFA 

The multi-element geochemical layer is one of 
the most important layers in the MPM [54, 55]. The 
use of regional-scale stream sediment geochemical 
data plays a crucial role in comprehending the 
migration patterns of various elements and 
identifying promising areas for further exploration  
[34, 56, 57]. Stream sediments contain extensive 
mineralization information and may form 
geochemical secondary halos [58]. Accordingly, 
geochemical anomalies identified in stream 
sediments are considered important geochemical 
indicators and are one of the most effective tools 
for regional geochemical studies [59]. Processing 
the geochemical data always faces challenges  due 
to its complex nature [60]. Thus, before modeling 
the geochemical anomalies, some statistical 
techniques must be carried out. Statistical methods 
include several univariate and multivariate (Such 
as PCA-FA-MAD- തܺ ±  methods. Multivariate (ܵݐ
statistical methods can provide better results than 
univariate methods due to the intensification of 
multi-element geochemical halos [61, 62]. One of 
the most widely used multivariate statistical 
methods is factor analysis (FA), which has been 
frequently used by many researchers for processing 
geochemical data and identifying promising areas 
[63, 64]. This method can reveal the hidden 
structure between the chemical elements by 
reducing the dimensions of the data into several 
factors with appropriate quality [63]. Despite the 
widespread use of FA, this method still presents 
challenges. One of the most important questions is 
how many representative factors to extract and 
which elements to represent in each factor? In 
addition, FA utilizes the entire data matrix, so the 
presence of chemical elements unrelated to 
mineralization can introduce noise and cause factor 
values to deviate greatly from actual values. To 
solve the mentioned problems, Yousefi et al.(2014) 
proposed SFA[65]. This methodology is used to 
categorize and reduce the number of geochemical 
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variables and determine the paragenesis of ore 
elements step by step [61]. This method applies a 
combination of variables rather than a single 
variable. This can increase the probability of 
detecting of geochemical halos around the ore body 
and identifying anomalies associated with 
mineralization. In addition, the impact of random 
errors can be reduced by using multi-element. 
Principal component analysis and varimax rotation 
were utilized to extract the relevant factors and 
rotation in the SFA. In addition, factors with 
eigenvalues greater than 1 are retained. Finally, the 
elements with thresholds ≥ 0.6 within each factor 
are considered efficient. 

4.5. GMPI 

In some cases, multiple mineralization-related 
factors are identified at the end of the SFA, raising 
the issue of which factor or factors should be used 
as representative of mineralization. Using one 
factor and ignoring others can result in the loss of 
valuable information, which may ultimately lead to 
the loss of some important exploration targets. To 
address this issue, Yousefi et al. (2012) introduced 
the GMPI, a new method for continuous weighting 
of geochemical layers[26]. The GMPI is a powerful 
method to assign appropriate fuzzy weight to 
stream sediment geochemical data, enhancing the 
detailed identification of geochemical anomalies 
[26, 66, 67]. This index is determined by using a 
logistic function and converting the obtained factor 
values into the range [0-1]. Compared to linear 
transformations, the logistic function provides 
clearer and more distinct boundaries for the 
separation and classification of different 
communities. Figure 4 shows the comparison of 
the transition to 0 and 1 between nonlinear 
(logistic) versus linear transformations. To 
calculate the GMPI, the logistic function has been 
used to fuzzify the factor score of each sample as 
follows:  

ܫܲܯܩ =
݁ி௦

1 + ݁ி௦ (6) 

4.6. Prediction-area (P-A) plot 

In the various MPM approaches, each layer of 
evidence is generated from a specific exploration 
dataset (or source) and the role of each layer is 
different in the formation of a mineral deposit. 
Therefore, it is necessary to examine whether each 
evidence map can demonstrate the potential for a 
specific type of mineralization. In this regard, 
Yousefi et al. [68] developed the P-A plot, in which 

the percentage of KMOs (prediction rate) expected 
by prospect classes and the occupied areas of the 
corresponding prospect classes is helpful to 
quantify the relative importance of different 
prospect models. Moreover, the P-A plot can be 
applied to evaluate the performance of different 
prospectivity models. This process creates two 
curves, the intersection of which is an evaluation 
criterion [69]. Also, based on the parameters 
obtained from the P-A plot, it is possible to 
calculate the Nd, which is a criterion for evaluating 
various maps [70]. 

 
Figure 4. Schematic illustration of the comparison 

between logistic transformation and linear 
transformation for classification of different 

geochemical communities [65]. 

5. Results: 
5.1. Weighted evidence layers 

Based on the conceptual model for porphyry 
copper deposits and the available dataset from the 
Varzaghan district, this study considered four 
targeting criteria and five weighted layers of 
evidence to create a Cu-porphyry prospectivity 
map. These criteria include the multivariate 
geochemical signature, the geological and 
structural map, and the hydrothermal alterations 
criteria. To create the Cu-porphyry prospectivity 
maps, the spatial evidence values of the five layers 
(multi-element geochemical layer of SFA, 
geological layer of granodiorites, fault density 
layer and, alteration layers of phyllic and argillic) 
were transformed into a fuzzy range using logistic 
function. 
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5.2. Geochemical layer 

Before applying the SFA method, the 
distribution of the geochemical data must be 
approximated to a normal distribution. The 
common approach for this work is a logarithmic 
transformation based on Natural (or Napierian) 
Logarithms (so-called Ln). The SFA was used to 
extract important factors based on the 
concentration data of 10 ln-transformed elements. 
Principal component analysis (PCA) was utilized 
to extract factors based on the concentration data of 
10 elements, and also Varimax rotation of factors 

was applied. In the first step, FA scores greater than 
0.6 were selected (Table 1). Pb, Fe and, Ag were 
discarded in this stage, as shown in Table 1. In the 
second stage, Zn was removed (Table 1). 
Therefore, the FA was repeated and two final 
factors were created.  The factors created in this 
step are called clean factors. Factor 1 shows the 
aggregation of Au-Cu-Mo-Bi elements and factor 2 
shows the aggregation of Sb-As, which can be 
suitable traces for identifying porphyry copper 
deposits in this area. Figure 5 shows the factor plot 
in rotational space as a more detailed 
representation of extracted factors. 

Table 1. The values of factor score in the SFA method for the first, second and third steps 

 
Figure 5. Component plots in rotated space in A) first, B) second and C) third step of SFA 

SFA 
First step second stage Third stage 

element F1 F2 F3 element F1 F2 element F1 F2 
Zn -0.078 0.247 0.820 Zn 0.178 0.382 Cu 0.869 0.168 
Pb 0.359 0.104 0.566 Cu 0.867 0.182 As 0.193 0.906 
Ag 0.352 0.328 0.599 As 0.175 0.891 Sb 0.246 0.888 
Cu 0.854 0.100 0.241 Sb 0.226 0.882 Au 0.641 0.443 
As 0.233 0.860 0.093 Au 0.636 0.437 Mo 0.870 0.161 
Sb 0.264 0.856 0.133 Mo 0.866 0.180 Bi 0.770 0.242 
Au 0.658 0.395 0.155 Bi 0.760 0.273 Var 43.581 31.963 
Mo 0.826 0.188 0.164 Var 37.099 29.265 Cum.Var 43.581 75.544 
Fe 0.248 -0.156 0.516 Cum.Var 37.099 66.364    
Bi 0.711 0.268 0.176       

Var. 27.945 19.469 17.837       
Cum. var. 27.945 47.439 65.275       
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From Table 1 it can be seen that both factors 
presented in the third step of the SFA contain 
important exploratory information. Therefore, both 
of them can be used as geochemical representatives 
to explore porphyry copper deposits in this area. A 
logistic sigmoid function called GMPI was used to 

generate a fuzzy layer of geochemical signatures 
for the deposit type sought. Then, using Equation 
7, the desired processing was performed. After 
processing the results to model the geochemical 
data, the inverse distance weighted (IDW) and 
SCB methods were utilized (Figure 6). 

 

GMPI(porphyry Cu) = 

 

௨ି௨ିெିܫܲܯܩ  if ܫܲܯܩ௨ି௨ିெି> = 0.72 and ܫܲܯܩ௦ିௌ<0.71 
 ௨ି௨ିெି<=0.72ܫܲܯܩ ௦ିௌ> = 0.71 andܫܲܯܩ ௦ିௌ ifܫܲܯܩ
Average (ܫܲܯܩ௨ି௨ିெି,ܫܲܯܩ௦ିௌ) if ܫܲܯܩ௨ି௨ିெି> = 0.72 and ܫܲܯܩ௦ିௌ  > =0.71 
Average (ܫܲܯܩ௨ି௨ିெି, ܫܲܯܩ௦ିௌ) if ܫܲܯܩ௨ି௨ିெି< = 0.72 and  ܫܲܯܩ௦ିௌ< = 0.71 

(7) 

 

 
Figure 6. GMPI values converted from F1 and F2 factor scores obtained in the third step of the SFA 

accompanied by KMOs locations a) interpolated model b) SCB model. 
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Figure 7 . P-A plot for GMPI map a) interpolated model b) SCB model 

The criterion for assessing and comparing the 
ability of the predicted rate of geochemical 
evidence layers is an intersection point between 
two curves in Figures 7a and 7b. If an intersection 
point appears at a higher location on the P-A plot 
for a model, it means that there are more mineral 
deposits in a smaller area of the model.  Therefore, 
it is easier and more reliable to find the type of 
undiscovered reserves in a model that has higher 
prediction rates. The risk of identifying exploration 
targets is reduced by decreasing the area of 
promising regions and simultaneously increasing 
KMOs in these districts. For example, even if the 
area of the prospective area is reduced by just a few 
square kilometers, this can prevent an error in 
defining a geochemical project at a scale of 1:5000, 
which is approximately a few kilometers.  
According to the obtained curves, the intersection 
point of the P-A plot for the IDW model (Figure 7a) 
is drawn higher than the intersection point of the P-
A plot for the SCB model (Figure 7b).   Based on 
the intersection points in Figures 7a, 79% of the 
KMOs are delineated in 21% of the study area as 
shown in Figure 6. (a) interpolated model. In the 
SCB model, 72% of KMOs are identified in 28% 
of the studied area (Figure 7b). The observed 
improvement in the IDW model can be attributed 
to several factors, with sampling density being one 
of the most significant. In regions with high 
sampling point density, interpolation methods such 
as IDW may be more effective due to their 
dependence on sample density. Higher sampling 

density provides a more accurate representation of 
spatial patterns, reducing the likelihood of 
interpolation errors or over-smoothing that can 
occur in areas with sparse data. This detailed 
representation is crucial for generating models that 
accurately reflect regional heterogeneity, 
especially in complex geological settings where 
mineralization patterns may be highly localized. 

5.3. Fault density (FD) layer 

Structural controls play a significant role in the 
formation of mineral deposits.  One of the major  
criteria for the formation and existence of 
hydrothermal deposits such as porphyry copper is 
the presence of structural systems [8]. Faults 
facilitate the passage of magma and the circulation 
of hydrothermal fluids. Thus, faults can be a 
suitable place for the exploration of all types of 
mineral deposits, especially those related to metals, 
and there are such structural geological features 
that indicate permeability. Regions with a high 
density of faults or places where faults intersect 
represent promising areas for porphyry copper 
deposits. These faults were extracted and digitized 
from the Varzaghan geological map at a scale of 
1:100,000. Thus, the fuzzified FD layer was 
created to be contributed in MPM (Figure 8). The 
intersection point of the P–A plot for the fuzzified 
prospectivity model (Figure 9) shows 58% of the 
mineral occurrences predicted in 42% of the 
studied area. 
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Figure 8 . fault density layer of the studied area 

 
Figure 9 . P-A plot for fault density layer 

5.4. Geological layer 

The 1:100,000 scale geological map of 
Varzaghan was created by GSI. This map is useful 

for extracting rock units related to porphyry copper 
deposits. The porphyry copper deposits on the 
UDMB are genetically and spatially related to the 
Oligo-Miocene intrusive rocks, which means that 
areas close to these rocks have a higher probability 
of porphyry copper mineralization than more 
distant areas. Hence, as part of this study, a 
weighted map of the distance to the intrusive rocks 
was created (Figure 10). After generating a 
weighted map of the distance to the intrusive rocks, 
the locations of KMOs in the study area were used 
as testing points in a P–A plot to evaluate it. 
Therefore, based on the intersection in Figure 10, 
70% of the KMOs are predicted in 30% of the study 
area. 

 
Figure 10 . Distance to the intrusive rocks map. 



Saremi et al. Journal of Mining & Environment, Vol. 16, No. 4, 2025 

 

1427 

 
Figure 11. P-A plot for distance from the intrusive 

rocks 

5.5. Hydrothermal alteration layers 

Hydrothermal fluid processes can change the 
mineralogy and chemical composition of rocks 
leading formation of hydrothermal alterations [49]. 
Porphyry copper deposits are often associated with 
hydrothermal alteration zoning that includes 
potassic, argillic, phyllic and, propylitic 
alteration[50]. The presence and extent of 

hydrothermal alterations are often indicators of the 
scale and intensity of ore enrichment. Therefore, 
areas of phyllic and argillic alterations were 
identified using Aster images in this study. The 
maps of distance these two alterations were then 
created and their values were transferred into the 
fuzzy space using the logistic function of Equation 
1 (Figure 12). According to Figure 12, it can be 
seen that the locations of KMOs display high 
association with phyllic and argillic alterations. 
One main reason can be the presence of intrusive 
rocks as well as many volcanic rocks in the region. 
Based on the intersection point in Figure 13a for 
the distance to argillic alteration, 75% of the KMOs 
are predicted in 25% of the study area whereas 
based on the intersection in Figure 13b for the 
distance to phyllic alteration, 71% of the KMOs are 
predicted in 29% of the study area. The P-A plot 
relevant to these alteration maps shows that the 
alteration layer of argillic (Figure 12a) 
demonstrated a higher prediction rate than that of 
phyllic alteration (Figure 12b). 

 

  
 

Figure 12. Alteration maps of the distance to a) argillic and b) phyllic in the study area. 

  
Figure 13 . P-A plot for distance to a) argillic b) phyllic alterations. 

6. Cu-porphyry prospectivity mapping  

Several mathematical functions can be utilized 
to integrate the fuzzy evidence layers. For 
comparison, we used the geometric average 

method and the fuzzy gamma operator in this study. 
These two methods are relatively simple and easy 
to implement in the GIS framework.  In addition, 
these methods do not use the location of KMOs, so 
the uncertainty of exploration can be reduced. 
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Therefore, the locations of 17 KMOs were only 
utilized to evaluate the prediction rate of MPM 
maps. In this research, first, the existing layers 
were combined using the geometric average 
method and their P-A plot was created (Figures 14 
and 15). The same layers were then combined 
using the fuzzy gamma operator (Figures 16 and 
17) and the results obtained using this method were 
compared with the geometric average method. 
From the P-A plots obtained for the four models 
constructed (Figures 15 and 17), it can be seen that 
almost all four models had relatively good 
predictions. Among these four models, the model 
made by fuzzy gamma using the interpolation map 
of geochemistry, fault density, distance to intrusive 
rocks, and distance to phyllic and argillic 
alterations has a higher prediction rate than other 
models (76%). In addition to the P-A plot, the Nd 

index was also used to evaluate the produced 
models. The parameters of the intersection point of 
the two curves (i.e. prediction rate and occupied 
area) were extracted from the P-A plot and used to 
calculate the Nd. Values greater than 1 indicate that 
the model is appropriate. In Figure 18, the Nd for 
all  models obtained in this research and also for the 
layers used for integration are given. Based on the 
calculated parameters, the value of Nd for model 
produced by the fuzzy gamma using the 
interpolation map of geochemistry, fault density, 
distance to intrusive rocks and distance to phyllic 
and argillic alterations were determined to be 3.16, 
indicating that this model performs well in terms of 
predicting mineral deposit locations. It can be seen 
that models produced by the fuzzy gamma operator 
have a higher prediction rate than other models 
produced by the geometric average. 

 
Figure 14 . Mineral prospectivity model produced by combination of a) interpolated values of GMPI, fault 

density, distance to intrusive rocks and distance to argillic and phyllic alterations; b) SCB model of GMPI, fault 
density, distance to intrusive rocks and distance to argillic and phyllic alterations using geometric average 
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Figure 15 . P-A plot for produced models by combination of a) interpolated values of GMPI, fault density, 

distance to intrusive rocks and distance to argillic and phyllic alterations; b) SCB model of GMPI, fault density, 
distance to intrusive rocks and distance to argillic and phyllic alterations using geometric average 

 
Figure 16 . Mineral prospectivity model produced by combination of a) interpolated values of GMPI, fault 

density, distance to intrusive rocks and distance to argillic and phyllic alterations b;) SCB model of GMPI, fault 
density, distance to the intrusive rocks and distance to argillic and phyllic alterations using gamma fuzzy 
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Figure 17 . P-A plot for produced models by combination of a) interpolated values of GMPI, fault density, 

distance to intrusive rocks and distance to argillic and phyllic alterations b;) SCB model of GMPI, fault density, 
distance to the intrusive rocks and distance to argillic and phyllic alterations using gamma fuzzy  

 
Figure 18. Nd for manufactured models 

7. Discussions 

The geochemical anomaly layer plays a crucial 
role in modeling the mineral potential of porphyry 
copper deposits, particularly at a regional scale. 
This study investigates the effects of two 
geochemical anomaly mapping methods on the 
MPM of porphyry copper deposits in the 
Varzaghan area. The findings indicate that the IDW 
model has a greater impact on the predictive 
accuracy of the final models compared to the SCB 
model, making it more efficient for MPM. One 
reason for the IDW model's effectiveness over the 
SCB model could be attributed to sampling density. 

Various factors influence the distribution 
patterns of geochemical elements across different 
regions, making it essential to accurately analyze 
and identify significant geochemical signatures 
associated with the target deposits. In this context, 
the SFA method was employed to identify multi-
element associations within the study area. The 
relationship between Cu, Mo, Au, and Bi in Factor 
1, and the relationship between As and Sb in Factor 
2, serve as reliable indicators for the exploration of 

porphyry copper deposits. Following the 
identification of these two factors, the GMPI was 
utilized to integrate information from both factors, 
creating a reliable geochemical layer for MPM. 
The results of the quantitative analysis 
demonstrated that this layer constitutes a strong 
geochemical signature for porphyry copper 
deposits in the region. Furthermore, the high 
prospectivity values associated with this layer are 
correlated with intrusive rocks and fault units in the 
area, underscoring the effectiveness of 
geochemical layers generated using SFA and 
GMPI. 

The creation of efficient evidence layers, 
particularly the geochemical anomaly layer, 
enhances the predictive performance and reliability 
of prospectivity models in identifying promising 
areas. Analysis of the P-A plot and Nd values 
reveals that all layers, especially those related to 
geochemical anomalies, exhibit high efficiency. 
Subsequently, four final models were generated, all 
of which demonstrate strong predictive accuracy. 
Notably, the models integrating the geochemical 
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anomaly evidence layer (interpolated model) with 
other layers show a higher prediction rate than the 
others. Additionally, the areas identified by these 
models exhibit a strong correlation with KMOs and 
intrusive units, highlighting their success in 
identifying exploration targets.  

8. Conclusions 

In the present study, weighted evidence layers 
of fault density, distance to intrusive rocks, 
geochemical anomaly, and distance to phyllic and 
argillic alterations were used to identify 
exploration targets by two MPM models, including 
the geometric average method and the fuzzy 
gamma operator. In this article, two methods for 
MPM were used because depending on the 
geological complexity, at least two prospective 
models should be created using two different 
methods to determine more precise exploration 
targets. MPM techniques based on these 
approaches can provide a rapid way of defining 
exploration targets for porphyry copper 
mineralization in the study area. According to the 
models obtained, the results of this research are as 
follows: 

 Interpolation and SCB methods were employed 
to create the multi-element geochemical model. 
Evaluation results indicated that the interpolated 
model exhibited higher validity than the SCB 
method in this context. This outcome could be 
attributed to various factors, including sampling 
density. In areas with high sampling point 
density, interpolation methods like IDW may 
prove more effective due to their reliance on 
sample density. 

 The approaches presented in this study 
effectively mitigate exploration biases by 
assigning fuzzy weights without relying on 
KMO locations or expert opinions. 

 The four generated models demonstrated good 
agreement KMOs in the region, suggesting the 
utility of the diverse MPM models employed. 
This implies that both greenfield and brownfield 
exploration areas can benefit from the MPM 
approaches outlined in this article. In each region 
type, KMO locations can serve as test points for 
evaluating the generated model and for 
visualizing P-A plots. 

 The findings of this study demonstrate that the 
prediction rate of KMOs applying fuzzy gamma 
operator prospectivity modeling for MPM is 
higher than that applying the geometric average 
prospectivity modeling method. 
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  چکیده:

  یاکتشـاف  اتیمختلف، منطقه تحت پوشـش عمل یاکتشـاف  يهامجموعه داده قیو تلف  لیاسـت که با تحل  دهیچیو پ  ياچندمرحله يندیفرآ  یمعدن  لیپتانس ـ  يمدلسـاز
ورزقان واقع در  هیدر ناح يریمس پورف  يســازیکان  دبخشیمناطق ام  نییتع  ي. در مطالعه حاضــر، براپردازدیم  دبخشیمناطق ام  ییرا محدود کرده و به شــناســا

مال غرب ا اف يهاهیلا  ران،یشـ اهد اکتشـ اس مدل مفهوم  یشـ ارها ته نیا  یمختلف بر اسـ د. ا هیکانسـ امل چگال  هاهیلا نیشـ له از توده نفوذ یشـ ل، فاصـ   یآنومال   ،يگسـ
ان  ره،یچندمتغ  ییایمیژئوش ـ شـناخته شـدند،   هاهیلا  نیاز مؤثرتر یکیکه به عنوان   ،ییایمیژئوش ـ  يناهنجار يهابودند. نقشـه کیلیو آرژ  کیلیف  يهایو فاصـله از دگرسـ
ا  ییایمیژئوش ـ  يسـازیو شـاخص احتمال کان يامرحله  يفاکتور  لیتحل قیاز طر اخته شـدند. سـ به بازه  نه،یبه  کیتابع لجسـت کیو با اسـتفاده از    دیتول  زین هاهیلا ریسـ

دند. در نها 1تا   0 اه يهاهیلا قیتلف  يبرا ت،یانتقال داده شـ د. برا یهندس ـ  نیانگیو روش م  يفاز  يدار، از عملگر گاماوزن  دشـ تفاده شـ   دی تول  يهامدل یابیارز ياسـ
ده، از شـاخص چگال ده و نمودار نرخ پ یشـ تفاده گرد-ینیبشینرمال شـ ان م  نیا  يهاافتهی.  دیمسـاحت اسـ اخته شـده دارا  يهاکه مدل  دهندیپژوهش نشـ اعتبار   يسـ

 .رندیمورد استفاده قرار گ یآت یاکتشاف يهااتیعمل يزیربرنامه يبه طور موثر برا توانندیهستند و م یتوجهقابل

 لیپتانس ـ  يمدلسـاز  ،ییایمیژئوش ـ  يسـازیکان  ی، شـاخص احتمال يامرحله  يفاکتور  لیتحل  ،يارسـوبات آبراهه یمیژئوش ـ  ،يریمس پورف  يهاکانسـار کلمات کلیدي:
  .یمعدن

 

 

 

 


