[1]. Wills, B. A., & Finch, J. (2015). Wills' mineral processing technology: an introduction to the practical aspects of ore treatment and mineral recovery. Butterworth-heinemann. Chapter 15. 417-439
[2[. Bahrami, A., Farajzadeh, S., & Eftekhari, M. (2019). Optimizing the dewatering process from the tailings of gold processing factories using hydrocyclone. Scientific Research Journal of Mining Engineering, 15 (46), 19 – 26.
[3]. Nematollahi, H. (2002). Mineral Processing (3rd ed). Tehran University Press. Chapter 14. 836-853
[4]. Mukiza, E., Zhang, L., Liu, X., & Zhang, N. (2019). Utilization of red mud in road base and subgrade materials: A review. Resources, conservation and recycling, 141, 187-199.
[5]. Rudman, M., Paterson, D. A., & Simic, K. (2010). Efficiency of raking in gravity thickeners. International Journal of Mineral Processing, 95 (1-4), 30-39.
[6]. Gálvez, E. D., Cruz, R., Robles, P. A., & Cisternas, L. A. (2014). Optimization of dewatering systems for mineral processing. Minerals Engineering, 63, 110-117.
[7]. Oruç, F., & Sabah, E. (2006). Effect of mixing conditions on flocculation performance of fine coal tailings. In XXIII International Mineral Processing Congress (pp. 3-8).
[8]. Sengupta, D. K., Kan, J., Al Taweel, A. M., & Hamza, H. A. (1997). Dependence of separation properties on flocculation dynamics of kaolinite suspension. International Journal of Mineral Processing, 49(1-2), 73-85.
[9]. O’Shea, J. P., Qiao, G. G., & Franks, G. V. (2010). Solid–liquid separations with a temperature responsive polymeric flocculant: effect of temperature and molecular weight on polymer adsorption and deposition. Journal of Colloid and Interface Science, 348(1), 9-23.
[10]. Aghajani, S., Soltani, A. R., Goharrizi. A., Qashlaghi, M. E., Mohebi, A., Sarafi, A., & Rouholamini, H. M., (2011). Investigating the influencing parameters on the solid-liquid separation process in Sarcheshme copper complex laboratory thickener. Journal of Separation Sciences and Engineering, 3(2), 43-56.
[11]. Feng, B., Peng, J., Zhu, X., & Huang, W. (2017). The settling behavior of quartz using chitosan as flocculant. Journal of Materials Research and Technology, 6(1), 71-76.
[12]. Lin, I. J. (1989). The effect of seasonal variations in temperature on the performance of mineral processing plants. Minerals Engineering, 2(1), 47-54.
[13]. Wang, D., Tao, H., Wang, K., Tan, X., & Liu, Q. (2022). The filterability of different types of minerals and the role of swelling clays in the filtration of oil sands tailings. Fuel, 316, 123395.
[14]. Nguyen, C. V., Nguyen, A. V., Doi, A., Dinh, E., Nguyen, T. V., Ejtemaei, M., & Osborne, D. (2021). Advanced solid-liquid separation for dewatering fine coal tailings by combining chemical reagents and solid bowl centrifugation. Separation and Purification Technology, 259, 118172.
[15]. Zhang, L., Min, F., Wang, L., & Shu, Q. (2022). Polymeric flocculants based on the interfacial characteristics of fine clay minerals: A review. Physicochemical Problems of Mineral Processing, 58(4).
[16]. Wu, A., Ruan, Z., Bürger, R., Yin, S., Wang, J., & Wang, Y. (2020). Optimization of flocculation and settling parameters of tailings slurry by response surface methodology. Minerals Engineering, 156, 106488.
[17]. Li, Y., & van Zyl, D. (2022). Hindered settling of flocculated multi-sized particle suspension, part I: Segregation mechanism of non-flocculated particles. Powder Technology, 407, 117683.
[18]. Zhang, L., Wang, H., Wu, A., Yang, K., Zhang, X., & Guo, J. (2023). Effect of flocculant dosage on the settling properties and underflow concentration of thickener for flocculated tailing suspensions. Water Science & Technology, 88(1), 304-320.
[19]. Heath, A. R., Bahri, P. A., Fawell, P. D., & Farrow, J. B. (2006). Polymer flocculation of calcite: Relating the aggregate size to the settling rate. AIChE journal, 52(6), 1987-1994.
[20]. Guo, B., Zhan, X., Jiang, K., Xie, H., & Deng, R. (2023). Flocculation Behavior of Ultrafine Silica Particles in Acid Leaching Pulp by Nonionic Polymeric Flocculants. Minerals, 13(4), 582.
[21]. Parsafer, G., & Benisi, S. (2013). Determining the dimensions and density of flocs formed in the tailing’s thickener of Gol-Ghar Sirjan magnetite processing plant. Scientific-Research Journal of Mining Engineering, 9(22), 75-84.
[22]. Besra, L., Sengupta, D. K., & Roy, S. K. (2000). Particle characteristics and their influence on dewatering of kaolin, calcite, and quartz suspensions. International Journal of Mineral Processing, 59(2), 89-112.
[23]. Muralidhara, H. S. (1986). Advances in solid-liquid separation. Battelle Press. Chapter 1. 10-17
[24]. Obeng, D. P., Morrell, S., & Napier-Munn, T. J. (2005). Application of central composite rotatable design to modelling the effect of some operating variables on the performance of the three-product cyclone. International Journal of Mineral Processing, 76(3), 181-192.
[25]. Martı́nez-L, A., & Ortiz, J. C. (2003). Study of celestite flotation efficiency using sodium dodecyl sulfonate collector: factorial experiment and statistical analysis of data. International Journal of Mineral Processing, 70(1-4), 83-97.
[26]. Kalyani, V. K., Pallavika, Gouri Charan, T., & Chaudhuri, S. (2005). Optimization of a laboratory-scale froth flotation process using response surface methodology. Coal Preparation, 25(3), 141-153.
[27]. Aslan, N. E. V. Z. A. T., & Fidan, R. (2008). Optimization of Pb flotation using statistical technique and quadratic programming. Separation and Purification Technology, 62(1), 160-165.
[28]. Mehrabani, J. V., Noaparast, M., Mousavi, S. M., Dehghan, R., & Ghorbani, A. (2010). Process optimization and modelling of sphalerite flotation from a low-grade Zn-Pb ore using response surface methodology. Separation and Purification Technology, 72(3), 242-249.
[29]. Zamanikherad, M., Montazeri, A., Gheibi, M., Fathollahi-Fard, A. M., & Behzadian, K. (2023). An efficient design of primary sedimentation tanks using a combination of the response surface, metaheuristic, and scenario building methods. International Journal of Environmental Science and Technology, 20(2), 1215-1246.
[30]. Taş, E., lkechukwu Ugwu, E., Sabah, E., & Arsoy, Z. (2023). Application of biopolymer in turbidity removal and sludge settling behaviour of travertine-processing wastewater: Performance optimization using response surface methodology (RSM). Water SA, 49(1), 19-25.
[31]. Zamzami, S. M., & Mehrabani, J. V. (2023). Investigation of Solid-Liquid Separation of the Final Tailing at Zonouz Kaolin Processing Plant. Journal of Mineral Resources Engineering, 8(2), 129-149.
[32]. Montgomery, D. C. (2017). Design and analysis of experiments (9rd ed). Arizona state University. Chapter 11. 478-540
[33]. Myers, R. H., Montgomery, D. C., & Anderson-Cook, C. M. (2016). Response surface methodology: process and product optimization using designed experiments. John Wiley & Sons. Chapter 8. 393-399
[34]. Anderson, M. J. (2017). DOE simplified: practical tools for effective experimentation. CRC press.
[35]. Bezerra, M. A., Santelli, R. E., Oliveira, E. P., Villar, L. S., & Escaleira, L. A. (2008). Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta, 76(5), 965-977. [36[ Nasser, M. S., & James, A. E. (2006). The effect of polyacrylamide charge density and molecular weight on the flocculation and sedimentation behavior of kaolinite suspensions. Separation and purification technology, 52(2), 241-252.
[37[. Guo, B., Zhan, X., Jiang, K., Xie, H., & Deng, R. (2023). Flocculation Behavior of Ultrafine Silica Particles in Acid Leaching Pulp by Nonionic Polymeric Flocculants. Minerals, 13(4), 582.
[38]. Li, Y., Xia, W., Wen, B., & Xie, G. (2019). Filtration and dewatering of the mixture of quartz and kaolinite in different proportions. Journal of colloid and interface science, 555, 731-739.
[39]. Ramos, J. J., Leiva, W. H., Castillo, C. N., Ihle, C. F., Fawell, P. D., & Jeldres, R. I. (2020). Seawater flocculation of clay-based mining tailings: Impact of calcium and magnesium precipitation. Minerals Engineering, 154, 106417.
[40[. Gregory, J., & O'Melia, C. R. (1989). Fundamentals of flocculation. Critical Reviews in Environmental Science and Technology, 19(3), 185-230.
[41[. Zhang, L., Wang, H., Wu, A., Yang, K., Zhang, X., & Guo, J. (2023). Effect of flocculant dosage on the settling properties and underflow concentration of thickener for flocculated tailing suspensions. Water Science & Technology, 88(1), 304-320.
[42[. Hosseininesab, M., Yahyai, M., & Benisi, S. (2008 October). The effect of initial pulp concentration on particle settling speed in different thickener areas. In 2nd Iran Mining Engineering Conference. University of Tehran
[43[. Moudgil, B. M. (1986). Selection of flocculants for solid-liquid separation processes. Advances in Solid-Liquid Separation.
[44[. Borchert, K. B., Steinbach, C., Schwarz, S., & Schwarz, D. (2021). A comparative study on the flocculation of silica and China clay with chitosan and synthetic polyelectrolytes. Marine drugs, 19(2), 102.