Document Type : Original Research Paper

Authors

Department of Mineral Processing, Faculty of Mining Engineering, Sahand University of Technology, Sahand New Town, Tabriz, Iran

Abstract

In this research, solid phase settling process from the liquid phase were optimized simultaneously on the different responses, using the response surface methodology (RSM). The effect of solid percentage, flocculant dosage, temperature, and pulp pH were evaluated on the responses of solid settling velocity, water turbidity, viscosity and density of settled pulp. The results showed that by increasing the flocculant dosage from 0.5 to 3.5 g/ton, settled pulp viscosity decreases from 49.05 cSt to 17.54 cSt. The higher values of pulp pH as well as low amount of solid percentage resulted in high water turbidity, which shows the lack of contact between flocs and suspended particles. The results indicated that the pulp solid percentage and the flocculants dosage are the most significant parameters on the responses. Optimum test conditions were obtained in industrial mode by using 5 g/t flocculant, solid percentage 23.96%, pH=7.5 temperature of the pulp 21.5°C in which condition, settling rate, pulp viscosity, pulp density and water turbidity were predicted to be 13.23 cm/min, 5.1 cSt, 1.61 g/cm3 and 15.7 NTU respectively. Repetition test in the model predicted optimum condition was carried out and verified the predicted optimized condition.

Keywords

Main Subjects

[1]. Wills, B. A., & Finch, J. (2015). Wills' mineral processing technology: an introduction to the practical aspects of ore treatment and mineral recovery. Butterworth-heinemann. Chapter 15. 417-439
[2[. Bahrami, A., Farajzadeh, S., & Eftekhari, M. (2019). Optimizing the dewatering process from the tailings of gold processing factories using hydrocyclone. Scientific Research Journal of Mining Engineering, 15 (46), 19 – 26.
[3]. Nematollahi, H. (2002). Mineral Processing (3rd ed). Tehran University Press. Chapter 14. 836-853
[4]. Mukiza, E., Zhang, L., Liu, X., & Zhang, N. (2019). Utilization of red mud in road base and subgrade materials: A review. Resources, conservation and recycling, 141, 187-199.
[5]. Rudman, M., Paterson, D. A., & Simic, K. (2010). Efficiency of raking in gravity thickeners. International Journal of Mineral Processing, 95 (1-4), 30-39.
[6]. Gálvez, E. D., Cruz, R., Robles, P. A., & Cisternas, L. A. (2014). Optimization of dewatering systems for mineral processing. Minerals Engineering, 63, 110-117.
[7]. Oruç, F., & Sabah, E. (2006). Effect of mixing conditions on flocculation performance of fine coal tailings. In XXIII International Mineral Processing Congress (pp. 3-8).
[8]. Sengupta, D. K., Kan, J., Al Taweel, A. M., & Hamza, H. A. (1997). Dependence of separation properties on flocculation dynamics of kaolinite suspension. International Journal of Mineral Processing, 49(1-2), 73-85.
[9]. O’Shea, J. P., Qiao, G. G., & Franks, G. V. (2010). Solid–liquid separations with a temperature responsive polymeric flocculant: effect of temperature and molecular weight on polymer adsorption and deposition. Journal of Colloid and Interface Science, 348(1), 9-23.
[10]. Aghajani, S., Soltani, A. R., Goharrizi. A., Qashlaghi, M. E., Mohebi, A., Sarafi, A., & Rouholamini, H. M., (2011). Investigating the influencing parameters on the solid-liquid separation process in Sarcheshme copper complex laboratory thickener. Journal of Separation Sciences and Engineering, 3(2), 43-56.
[11]. Feng, B., Peng, J., Zhu, X., & Huang, W. (2017). The settling behavior of quartz using chitosan as flocculant. Journal of Materials Research and Technology, 6(1), 71-76.
[12]. Lin, I. J. (1989). The effect of seasonal variations in temperature on the performance of mineral processing plants. Minerals Engineering, 2(1), 47-54.
[13]. Wang, D., Tao, H., Wang, K., Tan, X., & Liu, Q. (2022). The filterability of different types of minerals and the role of swelling clays in the filtration of oil sands tailings. Fuel, 316, 123395.
[14]. Nguyen, C. V., Nguyen, A. V., Doi, A., Dinh, E., Nguyen, T. V., Ejtemaei, M., & Osborne, D. (2021). Advanced solid-liquid separation for dewatering fine coal tailings by combining chemical reagents and solid bowl centrifugation. Separation and Purification Technology, 259, 118172.
[15]. Zhang, L., Min, F., Wang, L., & Shu, Q. (2022). Polymeric flocculants based on the interfacial characteristics of fine clay minerals: A review. Physicochemical Problems of Mineral Processing, 58(4).
[16]. Wu, A., Ruan, Z., Bürger, R., Yin, S., Wang, J., & Wang, Y. (2020). Optimization of flocculation and settling parameters of tailings slurry by response surface methodology. Minerals Engineering, 156, 106488.
[17]. Li, Y., & van Zyl, D. (2022). Hindered settling of flocculated multi-sized particle suspension, part I: Segregation mechanism of non-flocculated particles. Powder Technology, 407, 117683.
[18]. Zhang, L., Wang, H., Wu, A., Yang, K., Zhang, X., & Guo, J. (2023). Effect of flocculant dosage on the settling properties and underflow concentration of thickener for flocculated tailing suspensions. Water Science & Technology, 88(1), 304-320.
[19]. Heath, A. R., Bahri, P. A., Fawell, P. D., & Farrow, J. B. (2006). Polymer flocculation of calcite: Relating the aggregate size to the settling rate. AIChE journal, 52(6), 1987-1994.
[20]. Guo, B., Zhan, X., Jiang, K., Xie, H., & Deng, R. (2023). Flocculation Behavior of Ultrafine Silica Particles in Acid Leaching Pulp by Nonionic Polymeric Flocculants. Minerals, 13(4), 582.
[21]. Parsafer, G., & Benisi, S. (2013). Determining the dimensions and density of flocs formed in the tailing’s thickener of Gol-Ghar Sirjan magnetite processing plant. Scientific-Research Journal of Mining Engineering, 9(22), 75-84.
[22]. Besra, L., Sengupta, D. K., & Roy, S. K. (2000). Particle characteristics and their influence on dewatering of kaolin, calcite, and quartz suspensions. International Journal of Mineral Processing, 59(2), 89-112.
[23]. Muralidhara, H. S. (1986). Advances in solid-liquid separation. Battelle Press. Chapter 1. 10-17
[24]. Obeng, D. P., Morrell, S., & Napier-Munn, T. J. (2005). Application of central composite rotatable design to modelling the effect of some operating variables on the performance of the three-product cyclone. International Journal of Mineral Processing, 76(3), 181-192.
[25]. Martı́nez-L, A., & Ortiz, J. C. (2003). Study of celestite flotation efficiency using sodium dodecyl sulfonate collector: factorial experiment and statistical analysis of data. International Journal of Mineral Processing, 70(1-4), 83-97.
[26]. Kalyani, V. K., Pallavika, Gouri Charan, T., & Chaudhuri, S. (2005). Optimization of a laboratory-scale froth flotation process using response surface methodology. Coal Preparation, 25(3), 141-153.
[27]. Aslan, N. E. V. Z. A. T., & Fidan, R. (2008). Optimization of Pb flotation using statistical technique and quadratic programming. Separation and Purification Technology, 62(1), 160-165.
[28]. Mehrabani, J. V., Noaparast, M., Mousavi, S. M., Dehghan, R., & Ghorbani, A. (2010). Process optimization and modelling of sphalerite flotation from a low-grade Zn-Pb ore using response surface methodology. Separation and Purification Technology, 72(3), 242-249.
[29]. Zamanikherad, M., Montazeri, A., Gheibi, M., Fathollahi-Fard, A. M., & Behzadian, K. (2023). An efficient design of primary sedimentation tanks using a combination of the response surface, metaheuristic, and scenario building methods. International Journal of Environmental Science and Technology, 20(2), 1215-1246.
[30]. Taş, E., lkechukwu Ugwu, E., Sabah, E., & Arsoy, Z. (2023). Application of biopolymer in turbidity removal and sludge settling behaviour of travertine-processing wastewater: Performance optimization using response surface methodology (RSM). Water SA, 49(1), 19-25.
[31]. Zamzami, S. M., & Mehrabani, J. V. (2023). Investigation of Solid-Liquid Separation of the Final Tailing at Zonouz Kaolin Processing Plant. Journal of Mineral Resources Engineering, 8(2), 129-149.
[32]. Montgomery, D. C. (2017). Design and analysis of experiments (9rd ed). Arizona state University. Chapter 11. 478-540
[33]. Myers, R. H., Montgomery, D. C., & Anderson-Cook, C. M. (2016). Response surface methodology: process and product optimization using designed experiments. John Wiley & Sons. Chapter 8. 393-399
[34]. Anderson, M. J. (2017). DOE simplified: practical tools for effective experimentation. CRC press.
[35]. Bezerra, M. A., Santelli, R. E., Oliveira, E. P., Villar, L. S., & Escaleira, L. A. (2008). Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta, 76(5), 965-977. [36[ Nasser, M. S., & James, A. E. (2006). The effect of polyacrylamide charge density and molecular weight on the flocculation and sedimentation behavior of kaolinite suspensions. Separation and purification technology, 52(2), 241-252.
[37[. Guo, B., Zhan, X., Jiang, K., Xie, H., & Deng, R. (2023). Flocculation Behavior of Ultrafine Silica Particles in Acid Leaching Pulp by Nonionic Polymeric Flocculants. Minerals, 13(4), 582.
[38]. Li, Y., Xia, W., Wen, B., & Xie, G. (2019). Filtration and dewatering of the mixture of quartz and kaolinite in different proportions. Journal of colloid and interface science, 555, 731-739.
[39]. Ramos, J. J., Leiva, W. H., Castillo, C. N., Ihle, C. F., Fawell, P. D., & Jeldres, R. I. (2020). Seawater flocculation of clay-based mining tailings: Impact of calcium and magnesium precipitation. Minerals Engineering, 154, 106417.
[40[. Gregory, J., & O'Melia, C. R. (1989). Fundamentals of flocculation. Critical Reviews in Environmental Science and Technology, 19(3), 185-230.
[41[. Zhang, L., Wang, H., Wu, A., Yang, K., Zhang, X., & Guo, J. (2023). Effect of flocculant dosage on the settling properties and underflow concentration of thickener for flocculated tailing suspensions. Water Science & Technology, 88(1), 304-320.
[42[. Hosseininesab, M., Yahyai, M., & Benisi, S. (2008 October). The effect of initial pulp concentration on particle settling speed in different thickener areas. In 2nd Iran Mining Engineering Conference. University of Tehran
[43[. Moudgil, B. M. (1986). Selection of flocculants for solid-liquid separation processes. Advances in Solid-Liquid Separation.
[44[. Borchert, K. B., Steinbach, C., Schwarz, S., & Schwarz, D. (2021). A comparative study on the flocculation of silica and China clay with chitosan and synthetic polyelectrolytes. Marine drugs, 19(2), 102.