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Abstract 

Defining Oil-Water Contact (OWC) is essential for detail petrophysical evaluations and reservoir volumetric 
calculations. This paper presents Bayesian decision making tool as a sophisticated technique in OWC 

detecting from well log data. The proposed method is applied to data related to three wells of an oil field of 

the Southwestern Iran. The method’s performance is evaluated based on well testing reports and also through 
comparisons with the results of conventional approach based on permeability prediction. Results indicate 

that the proposed method is more accurate than conventional approach and may improve the results about 

5% on average. In addition, using this method, any variation of water saturation (Sw) log and reservoir fluid 
types may be detectable. 
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1. Introduction 

Determining Oil-Water Contact (OWC) is a 

challenging issue in the characterization of the 
carbonate reservoirs and important for detailed 

petrophysical calculations. Gravity segregation of 

fluids puts oil on top of water in most reservoirs. 
The OWC is commonly a bounding surface or 

transition zone that above which gradually oil 

occurs and below which gradually water occurs 

[1]. The reservoir’s vertical interval can be 
subdivided by fluid type to account for differences 

in the average fluid saturation as follow: 

a. Clean oil production zone: located at the 
top of the transition zone. Perforations 

above this depth should produce mostly oil. 

b. Transition zone: is a region where water is 

produced along with oil. Perforations below 
this point will produce oil with some water. 

Water saturation in this zone may still be 

quite low and may pass economic cutoffs. 
c. Water production zone: This zone is located 

at the base of the transition zone and is the 

top of Free Water Level (FWL). 

Perforations below this point will produce 

100% water. 
The OWC may usually be picked on the resistivity 

and permeability logs in a clean, porous reservoir 

[2]. However, top of transition zone may be 
masked by shaliness, changes in pore geometery, 

and residual oil. In general, there are two methods 

for fluids detection: direct and indirect 

approaches. In direct methods such as well 
testing, reservoir fluids are identified through the 

reservoir liquid observation; while in indirect 

methods, those fluids will be detected by 
interpretation of geophysical data [3-10]. 

In this paper, we are going to develop a decision 

making tool based on Bayes theorem algorithm 

for detecting OWC in a carbonate reservoir from 
well log data. The presented method can be 

utilized in several applications of reservoir 

characterization. 
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2. Methodology 

2.1. Conventional method 

The position taken by each of reservoir fluids 

inside an oil trap is directly related to the 
reservoir’s permeability. The studies show that oil 

moves through a path in which it has higher 

relative permeability than water [11]. 
Consequently, if permeability (K) is plotted 

versus depth, the OWC can be picked on the 

permeability log where pemeability reaches its 
lowest values. In contrast to permeability log, the 

water saturation log reaches its highest value. 

Based on the above issues, conventionally, 

detecting the OWC will be possible by following 
the bellow steps [11]: 
 

a. Estimating water saturation log 
b. Calculating the permeability through the 

wells 

c. Determining OWC by applying proper cut 

off values on K and Sw. 

2.2. Bayesian decision making 

The Bayesian decision making tool is an effective 

probabilistic algorithm, assigns the most likely 
class to a given data. Bayes’ formula allows us to 

express the probability of a particular class given 

an observed x as ([12, 13]): 
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P w x
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Where wi, with i =l,...,n denotes the n different 

classes. P(x│wi) is “priory knowledge” of a 

particular class before having observed any x. 
Also, P(wi│x) known as “posterior probability”, 

can be estimated from the training data [12]. For 

the case of n=2, in order to make a right decision 

about assigning the depth under study to an 

appropriate corresponding class, the logic of 

decision making could be represented as follows: 

If P(w1׀x)×P(w1) > P(w2׀x)×P(w2)→ w1 is 

optimum decision 
If P(w2׀x)×P(w2) > P(w1׀x)×P(w1)→ w2 is 

optimum decision 

2.3. Back– Propagation artificial neural 

network 

Multi-layer Perceptron (MLP) is an effective type 

of neural networks frequently used in different 
fields of engineering as well as science. This type 

of neural networks consists of three layers; 

namely input layer, output layer and hidden 

layer(s). One of the most paramount issues related 
to ANN is learning. In this regard, Back-

propagation is the common supervised learning 

method used for the training of feed-forward 
multi-layer networks [14]. 

3. Data set 

To conduct this study, four well logs including 
DT, LLD, RHOB and NPHI related to three wells 

of an oil field of Southwestern Iran were used. 

Permeability and water saturation measured from 

core analysis and well test reports were also 
employed to verify the proposed algorithm. In 

term of Lithology, the formation under study 

(Sarvak Formation) mainly consists of carbonates. 
Based on Alavi [15] and Abdollahi fard et al. [16], 

the formation, deposited in marine environments, 

consists of shallow marine sediments of the 

Cenomanian. Table 1 summarizes some 
characteristics of studied reservoir. The sections 

in this table are abbreviated as follows: 

a) R stands for Reservoir 
b) N.R for Non Reservoir 

c) M.R for Mid Reservoir 

Table1. Some characteristics of reservoir under study. 

Well No.3 Well No.2 Well No.1 

Remark Section Permeability 

(md) 

Porosity 

(%) 

Permeability 

(md) 

Porosity 

(%) 

Permeability 

(md) 

Porosity 

(%) 

16.78 16 16.31 15.7 4.6 9.2 R. S1 

2.24 3.6 2.88 3.9 2.14 5.3 N.R S2 
23.36 19.5 107.58 27.9 114.06 28.5 R S3 

10.09 12.4 3.26 5.1 4 9.2 N.R.–M.R. S4 

6.38 10.4 4.56 9.4 8.85 17.7 M.R S5 

4.56 9.4 2.61 3 2.61 3 N.R S6 

23.36 19.5 23.36 19.5 8.48 11.5 R. S7 

6.61 10.5 4.56 9.4 5.64 8.5 N.R.– M.R. S8 

56.50 22.8 16.82 16 66.32 23.8 R. S9 

3.55 7.1 3.04 4.4 2.56 5.4 N.R. S10 

20.99 18.2 21.65 18.6 17.05 16.1 R. S11 

3.36 5.5 2.95 4.1 2.90 4 N.R. S12 
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4. Implementing process 

The following sections describe the 

implementation process and results of the 

employed approaches. It is noted that, to verify 
the results obtained from both conventional and 

proposed approaches, well test results were used. 

For that reason, the reservoir under study was 
divided into three different classes by a coding 

system as follows: for intervals which produce 

water, the zone value is considered 1, if the 
corresponding interval produces water along with 

oil then the zone value is 2 and finally if that 

specific interval produces oil, the zone value is 3. 

4.1. Detecting oil-water contact using 

conventional method 

In order to predict the permeability and water 

saturation logs, two different three-layer MLP 
neural networks were designed. For Sw predictor, 

the inputs were four well logs including DT, LLD, 

RHOB and NPHI and Sw measured from core 
analysis considered as output. Similarly, 

permeability was predicted by the help of same 

logs as inputs and relative K measured from core 

as output of predictor model. Implementation 

steps were as follows: 

a. Existing wells were divided into two 
groups: two wells for model construction 

(including wells 1 and 2); and one for 

generalization investigation of the model 
(well No.3). 

b. Model construction data set were randomly 

subdivided into two data sets; namely 
training data, with 70% of the data points, 

and testing data with the remaining 30%. 

A trial and error approach was utilized since the 

optimization of the number of neurons in hidden 
layer still doesn’t have a specific rule. In this way, 

the number of neurons was changed and RMSE 

was measured. The optimum number of neurons is 
the one that minimizes the error (Figure 1). In 

addition, to optimize the weights, a Lenvenberg-

Marquardt training method was employed for both 
water saturation and permeability predictor 

models. The results of this stage are summarized 

in Table 2. 

 
Figure 1. Measured error versus number of neurons for Sw predictor. 

 
Table 2. ANN predictor models explanations. 

Model 
Transfer function 

in hidden layer 

Transfer function 

in output 

Number of neurons in 

hidden layer 
R

2
 RMSE 

Water Saturation Predictor TANSIG PURELIN 15 0.81 0.12 

Permeability Estimator TANSIG PURELIN 24 0.89 0.08 

Figure 2 shows the determination coefficient (R
2
) 

between predicted and measured water saturation 

(a) and permeability (b) in well No 3, which is not 
incorporated in the model development. The value 

of R
2
 for Sw is 0.81 and for relative K is 0.86. The 

measured RMSE for these parameters are 0.12 

and 0.08, respectively. 
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(a) (b) 

Figure 2. Cross plot between measured and predicted Sw (a) and K (b) using ANN model. 

 

As seen, the slope of fitted regression line for both 

Sw and K is lower than the best linear fit. This 
means that the models underestimate their target 

values. Figure 3 displays the plot of permeability 

and water saturation prediction in well No.3 along 

with LLD log. As shown in this figure, applying 

proper cut offs (i.e. limit of 20% water on water 

saturation log (water bearing zone) and 15 md on 
permeability) the OWC can be considered at 

depth of 2789 m. As it is clear in this case, the 

OWC is mainly dependent on permeability and 

water saturation cut offs. 

 
Figure 3. Results obtained from prediction of permeability and water saturation in well No.3. 

 

Similar to the above mentioned steps, the OWC 
was determined for the two remaining wells. In 

order to have a quantitative basis for comparing 

the results of two methodologies, confusion 
matrix was used. Since the conventional method 

serves the crisp (sharp) results (a binary coding 

system of 0 and 1 which indicate water bearing 
and oil bearing zones, respectively) confusion 

matrix is a 2×3 in this case, the rows and columns 

of which represent decision and actual classes, 
respectively (Figure 4). 
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Figure 4. Confusion matrix used for explanation of conventional method’s results. 

 

The Classification Correctness Rate (CCR) was 
also calculated by dividing summation of trace of 

confusion matrix by number of classes. Table 3 

shows the confusion matrices and CCR values of 
OWC determination using conventional method. 

Table 3. Results of conventional method in three studied well. 

Well No. 1 2 3 

Confusion matrix 
0.53 0.46 0.51

0.47 0.54 0.49

 
 
 

 0.59 0.45 0.44

0.41 0.55 0.56

 
 
 

 0.62 0.46 0.48

0.38 0.54 0.52

 
 
 

 

Trace of confusion matrix 1.58 1.70 1.68 

CCR (%) 52.7 57 56 

4.2. Detecting oil-water contact using Bayesian 

decision making tool 
In order to implement the proposed algorithm, the 

following steps were followed: 

a. Water saturation log was estimated from 
wire line logs using MLP artificial neural 

network. 

b. By implementing two cut offs, one below 

the limit of 20% water (class of oil) and the 
other over 55% water (class of water), the 

studied reservoir was divided into three 

classes. The class between 20% and 55% 
water saturation was named oil-water (or 

mixture zone which is a region where water 

is produced along with oil). 

c. A Bayesian decision making tool was 
designed to classify the data in each well. 

The algorithm was performed in two main stages. 

At the first attempt, capability of proposed method 

in identifying different classes was examined in 

each individual well separately (single well 
analysis). At the second attempt, the 

generalization capability of the method was 

investigated, where input data from two wells 
were used as training data to identify the classes 

in the 3th well (multi-well analysis). 

4.2.1. Single well analysis 

The main idea of this step is examining the 
capability of the method in detecting the OWC in 

each well, individually. For this purpose, 70% of 

data of each well was randomly selected as 
training data and the Bayesian decision making 

tool was tested against the rest 30% of the data. 

Table 4 shows the decisions, made by Bayesian 

rule on wells under study. 

Table 4. Results of proposed method in three studied well. 

Well No. 1 2 3 

Confusion matrix 

0.29 0.38 0.33

0.29 0.66 0.05

0.14 0.08 0.78

 
 
 
  

 0.37 0.03 0.6

0.12 0.80 0.18

0.12 0.2 0.68

 
 
 
  

 0.75 0 0.15

0.08 0.61 0.31

0.32 0.23 0.45

 
 
 
  

 

Trace of Confusion matrix 1.73 1.85 1.81 

CCR (%) 58.3 62 60.3 

Based on this table, the general accuracy of 

decision process for class of oil-water (with 
average accuracy of 69%) and class of oil (with 

average accuracy of 63.7%) is higher than the 

class of water and is satisfactory. 

 

4.2.2. Generalization capability of the method 

To examine the generalization capability of the 
proposed method (multi-well analysis), one well 

was selected as test and data related to the 

remaining two wells as train. The results are 

shown in Table 5. 
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Table 5. Results of generalization investigation. 

Test well No. 1 

Training well No. 2 3 

Trace of confusion matrix 1.57 1.7 

CCR (%) 52.3 56.7 

Test well No. 2 

Training well No. 1 3 

Trace of confusion matrix 1.76 1.61 

CCR (%) 58.7 53.7 

Test well No. 3 

Training well No. 1 2 

Trace of confusion matrix 1.78 1.57 

CCR (%) 59.3 52.3 

As it can be seen, the technique is able to identify 

OWC in other wells and reconstruct the true 

distribution of reservoir fluids with accuracy 

between 52.3% and 59.3%. Although CCR in this 

case (generalization step) is lower than the single 

well case, it is still worthy of acceptance, 
regarding the CCR obtained from conventional 

method. The lower ranges of accuracies belong to 

the training wells with further data (depth of 
penetration) from the target well. Figure 5 

compares the results obtained from two discussed 

methodologies in well No. 3, schematically. As 
shown, there is an appreciable difference between 

these two approaches, considering the well test 

results. In this case water producer zones can be 

considered in depths higher than 2785 m that 
means OWC is at this depth. 

 
Figure 5. Results of detecting OWC through two different approaches in well No.3. 

5. Discussion 

A comparison of the two presented methodologies 

reveals that the most important advantage of the 
new method is that by employing Bayesian 

algorithm, all Sw variations are detectable and it 

helps to have a more actual image of reservoir 

under study. In contrast to Bayesian method, 
conventional methods can only find one major 

contact between two reservoir fluids and divide 

reservoir crisply into two (or three in case of 
existing gas) class of fluids, as a result. Therefore, 

transition zone as one important section in an oil 

column is not recognizable by conventional 

methods. According to Figure 5, the conventional 

method overestimates in detecting oil bearing 
zones and classifies nearly all the mixture zone as 

oil bearing zone. Considering the CCRs values of 

both conventional and Bayesian approaches 

discloses that, Bayesian method can improve the 
results up to 4.97%. Besides, based on outputs of 

Bayesian method shown in Figure 5, overall, the 

transition zone can be considered in range from 
about 2760 m to 2785 m. 
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6. Conclusions 

Detecting reservoir fluid contact is one of the 

primary tasks in reservoir characterization and 

determining hydrocarbon in place. It also plays an 
important role in determining net pay zones and 

depth in which perforation operation must be 

done. This paper presents a new approach based 
on Bayes theorem and compares its performance 

with conventional ones. Conventional methods are 

usually suffering some difficulties in finding 
OWC. Because OWC is actually a transition zone 

and considering a sharp line as OWC is far from 

reality. Using well logs related to three wells of a 

carbonate reservoir, the proposed algorithm was 
performed in two stages: Single well and multi-

well analysis. It has been shown that the 

suggested method can effectively model all Sw 
variations and specify transition zone. Besides, the 

accuracy of reservoir fluid type identification has 

been improved about 5% in comparison to 
employed conventional approach. 
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 چکیذٌ:

تکٌیکی خبرزُ برزای    عٌَاى بِگیز بیش را تصوینّبی پتزٍفیشیکی ٍ هحبسببت حجوی هخشى ضزٍری است. ایي هقبلِ ابشار ًفت بزای ارسیببی -تعییي هزس توبس آة

ّبی هزبَط بِ سِ چربُ اس هیرذاًی در جٌرَة  رزة     رٍش پیطٌْبدی بز رٍی دادُ کٌذ.ًوَدار هعزفی هیّبی چبًُفت بب استفبدُ اس دادُ -ضٌبسبیی هزس توبس آة

آسهبیص چبُ ٍ ًیش هقبیسِ بب رٍش سٌتی تخویي تزاٍایی هَرد ارسیببی قرزار گزفترِ    یّب گشارشکبرایی رٍش پیطٌْبدی بب استفبدُ اس  .ضذُ است سبسی یبدُپکطَر 

درصذ ببلاتز است. علاٍُ بز ایي، رٍش ارائِ ضذُ قربدر   5هتَسط تب  طَر بِاس رٍش سٌتی جَاة دادُ ٍ دقت آى  تز یقدقاست. ًتبیج حبکی اس آى است کِ ایي رٍش 

 کزدُ ٍ ًَع سیبل هخشًی را تطخیص دّذ. سبسیاست تغییزات درجِ اضببع آة را هذل

 .گیز بیشیًوَدار، ابشار تصوینّبی چبًُفت، ارسیببی پتزٍفیشیکی، دادُ -هزس توبس آة کلمات کلیذی:

 


