Document Type : Original Research Paper

Authors

1 Shahrood university of technology

2 Shahrood University of Technology

3 Kharazmi University, Department of Geology

10.22044/jme.2024.14984.2855

Abstract

Karsts are important sources of groundwater, and it is crucial to determine their water volume and quality. The Ravansar Karst spring in the Kermanshah province is a significant water resource with a substantial water volume in the area. The source of this spring is the carbonate rock unit from the Cretaceous period and is affected by tectonic changes and faulting caused by movements related to the Zagros folding. In this work, geophysical methods of microgravity, electrical resistivity, and induced polarization have been utilized to identify the extent of karst development in the limestone units. The minimum residual gravity values are associated with karstification. The field dataset comprised two electrical profiles with the dipole- dipole and pole-dipole arrays. The resistivity and gravity data were inverted using a 2D algorithm based on the least square’s technique with a smoothing constraint. According to the processing and 3D modelling of gravity data; not only cavity-shaped voids and spacious cavity chambers were identified but also sub-structures and micro-karstification in carbonate rocks were detected. The most significant finding from the field survey is the detection of low gravimetric values, indicating relatively large holes and chambers that were previously unknown and inaccessible from ground level. These findings are consistent with known collapse and sediment infill features, as seen in surface sinkholes, cavities, and karstification systems. Geophysical surveys and field surveys show that the holes and karsts in the area are related to tectonic phenomena and faulting and are conduits for transporting water to the Ravansar spring.

Keywords

Main Subjects