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 Anomaly detection is the process of recognizing patterns in data that differ from the 
typical behavior. In geochemistry, this involves identifying hidden patterns and 
unusual components within the context of exploratory target identification. This issue 
is particularly significant when limited information is available about the area of 
interest. Therefore, employing methods that can aid in the exploration process under 
such conditions and with limited data is highly valuable. In this study, the Deep-
Embedded Self-Organizing Map (DE-SOM), an unsupervised deep learning 
approach, was used to detect geochemical anomalies. The research focused on 
identifying multivariate geochemical anomalies in the Moalleman region. After 
detecting the region's geochemical anomalies, the effectiveness of the algorithm was 
assessed alongside two other types of SOM algorithms. For this purpose, the 
prediction area plot was utilized. The intersection points for DE-SOM, Batch SOM, 
and standard SOM were found to be 0.75, 0.67, and 0.65, respectively. The 
multivariate geochemical anomaly in the Moalleman area shows a good correlation 
with known mineral occurrences and the andesite and dacite units. Based on this, it 
can be stated that the DE-SOM method is a useful tool for identifying anomalies and 
patterns associated with mineralization. 
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1. Introduction  

Anomaly detection involves identifying 
patterns in data that differ from what is typically 
expected. These unconventional patterns are 
commonly mentioned to as anomalies, unique 
features, or contaminants across various fields. 
Anomaly detection finds applications in a wide 
range of domains such as computer networks, 
biomedical engineering, geology, and 
geochemistry. For example, in geochemistry, 
identifying hidden patterns and anomalous 
components can lead to the detection of anomalies 
that are useful for distinguishing exploratory 
targets [1]. Furthermore, locating these exploratory 
targets is one of the most critical aspects of 
regional-scale geochemical exploration. In recent 
years, the processing of the geochemical data and 
the detection of anomalies associated with 
mineralization zones have received significant 

attention [2]. The outcome of these studies has been 
the introduction and development of various 
classical and modern methods for anomaly 
detection, each with its own specific advantages 
and disadvantages [3–11]. 

The use of classical methods is prevalent due to 
their user-friendliness, lack of reliance on complex 
mathematics, and widespread availability [12]. 
However, they have certain limitations such as 
dependence on prior assumptions and a focus on 
the linear and low-order properties. Alternatively, it 
is well-known that the distribution of geochemical 
patterns is often multifaceted and complex due to 
intricate geological processes, posing significant 
challenges for classical methods [13]. Therefore, 
identifying geochemical anomalies requires 
methods capable of detecting their complex and 
hidden patterns link to mineralization. According 
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to the recent studies, artificial intelligence-based 
methods, which have been developed in the recent 
years, have shown a more effective performance in 
uncovering the hidden relationships between the 
variables. Among these, machine learning and deep 
learning methods have demonstrated superior 
effectiveness in anomaly detection compared with 
the traditional approaches [14–20]. Learning 
methods, based on the nature of the data, are 
generally categorized into supervised and 
unsupervised learning. Supervised learning relies 
on the labeled data, whereas unsupervised learning 
tackles the tasks without requiring the labeled data. 
Unsupervised learning is extensively applied in the 
areas such as feature extraction, dimensionality 
reduction, and clustering [13].   

Clustering is fundamentally a task where the 
data points are grouped into homogeneous classes 
or clusters. Homogeneous refers to the presence of 
similar items within the same class, which are as 
similar as possible. Clustering is a popular 
technique for unsupervised pattern classification, 
dividing the input space into several regions based 
on certain similarity/dissimilarity criteria, so that 
similar elements are placed in one cluster, and 
dissimilar elements are grouped into separate 
clusters [21]. Clustering thus helps us gain an 
overview of the data, making it easier to detect 
anomalies by identifying natural patterns within the 
data. The core concept of employing clustering for 
anomaly detection involves understanding the 
normal patterns within the data, and then using this 
knowledge to determine if a data point is an outlier. 

One of the clustering methods widely accepted 
for detecting geochemical patterns is the S-O-
SOM, which is a distinct form of unsupervised 
learning algorithm that maps the distribution 
characters of input samples onto topographically 
organized node levels, effectively achieving 
clustering by reducing dimensionality [22]. SOM is 
distinguished from many techniques within the 
broader class of clustering algorithms by its 
inherent non-linear mapping capabilities on its 
low-dimensional neural surface. These advantages 
have led to SOM being applied in various ways 
including as a tool for visualizing the non-linear 
data relationships, conducting topology-based 
cluster analysis, mapping multidimensional data, 
and vector quantization. Additionally, in the field 
of geochemistry, SOM is widely used for detecting 
and clustering geochemical anomalies. [23,24]. For 
instance, in [25], the SOM algorithm was used to 
cluster the content of the REE samples of Fe-REE 
deposits of Choghart in the Bafaq region in the 
center of Iran (112 lithological samples). Using the 

Silhouette criterion, the optimal number of clusters 
was determined. As a result, the studied area was 
divided into four zones using the self-organization 
map. In this work [26], the two methods of factor 
analysis and self-organizing maps were used to 
identify the geochemical associations. Although 
there were some differences, FA and SOM 
produced similar results. The findings indicate that 
SOM is effective in handling the variables that are 
not normally distributed or even categorical in 
nature. In study [27], to identify the geochemical 
anomalies in the Pangxidong area, the three 
methods Hierarchical clustering, Singularity 
mapping, and Kohonen neural network were 
employed. Stream sediment samples from the 
region were utilized in the analysis. The findings 
suggest that the HC method is effective for 
uncovering the relationships between rock-forming 
elements and their connection to the Ag-Au-Pb-Zn 
polymetallic mineralization. The SOM method 
highlighted the significant local variations in the 
enrichment and depletion. The KNN approach was 
useful in classifying the α values of these elements, 
aiding in the identification of the related 
mineralization. A combined approach using the 
HC, SM, and KNN methods provides a practical 
strategy for identifying prospective exploration 
targets for undiscovered mineral reserves. In 
mineral potential mapping [28] adopted a hybrid 
approach to cluster the areas susceptible to apatite 
magnetite mineralization in the Esfordi sheet. The 
optimal number of clusters was determined using a 
data-driven method and a fractal model, with SOM 
being one of the clustering methods employed in 
this work. 

In the aforementioned studies, SOM has often 
been used with satisfactory results. However, SOM 
is not always ideal for anomaly detection. It is well-
known that due to the adaptability of SOM, its 
application range is quite broad, extending from 
image processing and biomedical engineering to 
robotics and pattern recognition. One of the 
challenges in pattern recognition is the presence of 
a large number of features that do not contribute to 
the identification of patterns. As a result, the 
effectiveness of learning methods is influenced by 
the choice of features to which they are applied. 
Therefore, choosing a robust algorithm for 
extracting effective features can significantly 
influence the learning outcome. Many algorithms 
have been developed for this purpose, with 
autoencoders being one of them. Autoencoders are 
a type of artificial neural network designed to 
reconstruct the input data. The primary goal of an 
autoencoder is to reduce the dimensionality of the 
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data, or compress it in a way that preserves the 
essential information, and then reconstruct the data 
using that compressed representation [17]. 

Considering that geochemical patterns are often 
complex and multifaceted due to the intricate 
nature of geological processes, using classical 
methods for feature extraction, and clustering 
might not produce the best results. Therefore, in 
this work, SOM was embedded within the layers of 
a deep learning algorithm to enhance its 
performance, and detect hidden multivariate 
patterns. To test the efficiency of this algorithm, 
both traditional and modern approaches to 
multivariate geochemical anomaly detection were 
considered. The results of the algorithm were then 
compared with those of SOM and Batch SOM, and 
validation was carried out using the prediction area 
plot. 

2. Geological Setting 

The Moalleman region, located in northeastern 
Iran in the Semnan Province, is part of the Taroud 
magmatic zone, and is recognized as a 
metallogenic province within the Central Iranian 
zone. This region contains numerous mineral 
deposits of both epithermal and hydrothermal 
types. These deposits include enrichments of Au, 
Cu, Pb, Zn, Fe, and Rare Earth Elements (REEs) 
[29], with the focus of this work being on copper-
gold mineralization. Volcanic and intrusive rocks 
from the middle to late Eocene, and volcanic rocks 
from the Oligocene to Miocene are present in the 
region, which include andesitic, dacitic, and 
basaltic rocks. In addition, granitic masses are 
found in the northern part of the region [30,31]. The 
widespread presence of Eocene pyroclastic rocks, 
especially andesitic tuff and tuffs, has been 
reported in the studied area. Furthermore, 
sedimentary rocks such as limestones, marls, and 
shales have also been identified in the region. From 
an alteration perspective, the area exhibits 
intermediate and advanced argillic alteration, along 
with iron oxides, kaolinite, hectorite, hematite-
limonite, alunite, and jarosite. Notably, the east-
west trending Alborz Mountain range and the 
north-south oriented waterways, with a high stream 
density, suggest a relationship between clay 
minerals, and other sediments with felsic 
intrusions, particularly granitoid and volcanic 
rocks in the region [32]. 

The Moalleman region is structurally situated 
within the Central Iran structural zone, specifically 
in its northern part. This area also lies in the 
northern half of the Central Iran tectono-

sedimentary unit, and falls within the Central 
Magmatic sub-zone. The northern half of the map, 
known as the Torud-Chah Shirin Mountain range, 
is named due to its location between two major 
faults, the Torud and Anjilu faults, and its position 
along the northern edge of the Great Kavir 
depression. The area can be divided into two 
structural sub-zones: the Torud-Chah Shirin sub-
zone, and the shallow Neogene sedimentary basin. 
The Torud-Chah Shirin sub-zone consists of 
Paleozoic and Mesozoic metamorphic rocks, as 
well as early Tertiary (Paleogene) volcanic-
sedimentary deposits, which exhibit the highest 
magmatic activity in the region, and are primarily 
located in the northern half of the map. In this sub-
zone, the geological structures and the general 
orientation of the layers trend approximately east-
west, aligning relatively closely with the direction 
of the Torud fault zone in the region (Figure 1). 
This area also includes part of the Jandagh 
sedimentary basin, which is located in the southern 
portion of the map. In this basin, very shallow 
marine, and evaporitic deposits from the Miocene-
Pliocene period are present [19,20,33,34]. 

3. Materials and Methods 
3.1. Sampling 

The regional geochemical exploration project 
aimed at collecting the geochemical data for the 
Semnan-Kashmar-Torbat Heydarieh area was 
executed through an agreement between a foreign 
geochemical-geophysical exploration company and 
the National Geological (NG) and mineral 
exploration organization's plan to enhance the 
quantity and quality of the geological and mineral 
data in the country. A systematic grid with 
approximate dimensions of 1.5 x 1.5 kilometers was 
established for sampling (Figure 2). The sampling 
density was set at three to four geochemical samples 
per 2 square kilometers. Subsequently, samples from 
each 2-square-kilometer area were combined to 
create a composite sample, which was then assigned 
to the center of the sampling cell. Efforts were made 
to collect the stream sediment samples from the 
headwaters during this sampling process. All samples 
were analyzed for 29 elements including Ag, As, Au, 
B, Ba, Be, Bi, Co, Cr, Cs, Cu, F, Hg, Li, Na, Nb, Mo, 
Ni, P, Pb, Rb, Sb, Sn, Sr, Th, U, V, W, and Zn. In the 
Moalleman sheet, covering an area of 1,650 square 
kilometers, a total of 806 composite samples were 
collected, resulting in a sampling density of 1.64 
square kilometers per sample. These samples were 
analyzed using the Inductively Coupled Plasma-Mass 
Spectrometry (ICP-MS) technique by AMDEL 
(Australia) [32,33]. 
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Figure 1. Geological map of the studied area. 

 
Figure 1. Sampling position in the Moalleman sheet. 

3.2. Self-organizing map 

Self-organizing neural networks, also known as 
the Kohonen networks, are an unsupervised 
method; despite their simplicity, they have 
demonstrated a considerable capability [22,24] 
These networks are particularly useful for 
analyzing complex data and identifying patterns, as 
they can map the high-dimensional data onto a 
lower-dimensional space, while maintaining the 
topological structure of the original data. The 
structure of a self-organizing network consists of 
two layers (input and output). The output layer is 
typically organized as a 2D grid of neurons, similar 
to a matrix. Each neuron in the output layer is 
associated with a weight vector. The neurons are 

arranged in such a way that their neighborhood 
relationships in the output grid reflect their 
neighborhood relationships in the input data space. 
The training process involves presenting the input 
data to the network [22,24] For each input data 
point, the neuron whose weight vector most closely 
matches the input data is selected as the "winning" 
neuron. In the following step, the weights of the 
winning, and its neighboring neurons are adjusted 
to move the closer to the input data. This process 
was repeated for all the training data. By iteratively 
adjusting the weights in this manner, the network 
learns to represent the input data's topological 
relationships in a lower-dimensional output space, 
making it a powerful tool for pattern recognition 
and data analysis [22]. 

The collection of the input data samples is 
shown by X = {xi}1 ≤ I ≤ N, where xi ∈ RD. A 
SOM is made up of K units, each linked to a group 
of prototype vectors {mk}1 ≤ k ≤ K. In a typical 
SOM, the prototype vectors are located within the 
same space as the input data, i.e. RD. A data point 
is assigned to the nearest prototype vector on the 
map based on the Euclidean distance [35]. The 
corresponding map unit is referred the BMU [35]. 
The BMU is defined as the point xi by bi: 

ܾ = min݃ݎܽ


ܠ‖  ‖ଶଶ (1)ܕ−

The network topology enables the 
determination of distances between various units, 
δ(k,l). The topological distance between units k and 
l on the map is represented, and typically measured 
using the Manhattan distance, which is the shortest 
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path between the two units on the map. The 
neighborhood function of the map is defined, and a 
temperature parameter (T) is introduced, which 
determines the size of the neighborhood area 
surrounding a unit [35]. In this work, a Gaussian 
neighborhood function was employed, which was 
described as follows: 

(݀)்ߢ = ݁ି
ௗమ
்మ (2) 

The basic SOM algorithm, often referred to as 
the Kohonen algorithm, processes each training 
point xi by adjusting each prototype vector to move 
it closer to xi. These adjustments are weighted 
according to the neighborhood around the BMU, 
with neighboring units experiencing substantial 
changes, while units farther away remain 

unchanged [35]. This is expressed by the following 
formula: 

ܕ ܕ← + ܾ)ߜ൫்ߢߙ , ݇)൯(ܠ  ) (3)ܕ−

In the above equation, α represents a learning 
rate that decreases over the course of training. One 
of the disadvantages of this algorithm is its slow 
convergence; it is sequential, and cannot be 
performed in parallel. To address this issue, a 
variant called Batch SOM was developed, which 
processed all the data points in a batch. This allows 
for a faster training, and often leads to better 
results, especially for large datasets [35]. The Batch 
SOM algorithm involves minimizing the following 
cost function, known as the distortion measure: 

 

ℒௌைெ({ܕ}, ঘ, ܾ, ܶ) =
ଵ
ே
∑ ∑ ܾ)ߜ൫்ߢ , ݇)൯‖ܠ ‖ଶଶܕ−

ୀଵ
ே
ୀଵ  (4) 

 
The distortion caused by BMU assignments is 

not directly differentiable [35]. Nonetheless, this 
can be empirically reduced through a dynamic 
clustering approach akin to k-means, which cycles 
between two main steps: assigning best matching 
units, and minimizing distortion [35]. 

ܕ ←
∑ ,݇)ߜ൫்ߢ ݈)൯ ∑ [ୀ]ܠ

ே
ୀଵ


ୀଵ

∑ ,݇)ߜ൫்ߢ ݈)൯∑ [ୀ]
ே
ୀଵ


ୀଵ

 (5) 

3.3. Deep self-organizing map 

The structure of the Deep SOM model is built 
around three primary elements: an encoder, a SOM 
layer, and a decoder. The encoder maps the input 
data to a latent intermediate space. Training of the 
SOM occurs within this latent space, using the 
encoded data. Following this, the decoder works to 
transform the latent codes back to the original input 
space, with the goal of precisely reconstructing the 

inputs [35]. Detailed descriptions of each 
component will be provided in the subsequent 
sections. 

3.3.1 Loss function 

The weights of the encoder and decoder 
parameters are denoted by We and Wd , 
respectively. The encoding function is represented 
by few and the decoding function by gWd [29]. 
Therefore, ݖ = ௪݂(ݔ) ∈ ܴ

  is the encoded 
version of xi in the latent space, and ݔ =
݃௪ ቀ ௪݂(ݔ)ቁ ∈ ܴ

 ; it is the decoder's 
reconstruction. Our goal was to simultaneously 
improve the weights of the autoencoder network 
and the prototype vectors of the SOM [35]. To 
achieve this, a hybrid loss function was defined, 
consisting of two components, as expressed below: 

 

ℒ(W ,Wௗ ,mଵ, … ,m) = ℒோ(W ,Wௗ) + ℒௌைெ(Wߛ ,mଵ, … ,m) (6) 

 
The first component, LR, is the reconstruction 

loss of the autoencoder. The Mean Squared Error 
(MSE) loss is used, which is equivalent to the 
negative log-likelihood of a Gaussian distribution 
centered on the reconstruction. 

ℒோ =
1
ܰ
ℒோ
ே

ୀଵ

=
1
ܰ
‖ܠ − ‖ଶଶܠ


 (7) 

The second component of the loss is related to 
the SOM, and is denoted by LSOM. This loss relies 
on a set of parameters {݉}ଵஸஸ and the BMUs, 
which assign a latent data point to the nearest 
prototype based on the Euclidean distance [35]: 

ܾ = min݃ݎܽ


ܢ‖  ‖ଶଶ (8)ܕ−

The loss function for the self-organizing map 
is expressed as follows: 
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ℒௌைெ =
1
ܰ
ℒௌைெ
ே

ୀଵ

=
1
ܰ
்ߢ൫ߜ(ܾ , ݇)൯‖ࢠ ‖ଶଶܕ−



ୀଵ

 (9) 

 
The coefficient γ is a hyperparameter that 

balances the minimization of the autoencoder's 
reconstruction error and the SOM error. Therefore, 
the SOM loss functions as a SOM-guided 
regularizer [35]. 

 
 
 

3.3.2. Interpretation of topological organization 

The SOM loss can be separated into two 
components: the first component is the squared 
distance between the BMU and the latent point, 
while the second component pertains to the 
topological relationship with neighboring units 
[35]. 

 

ℒௌைெ =
1
்ܰߢ൫ߜ(ܾ, ݇)൯‖ࢠ ‖ଶଶܕ−



ୀଵ

ே

ୀଵ

=
1
ܰቂ்ߢ൫ߜ(ܾ , ܾ)൯ฮࢠ ฮଶܕ−

ଶ
+ ்ߢ൫ߜ(ܾ, ݇)൯‖ࢠ ‖ଶଶ൧ܕ−

ஷ

ே

ୀଵ

 

(12) 

=
1
ܰ

ฮࢠ ฮଶܕ−
ଶ
+
1
ܰ ܾ)ߜ൫்ߢ , ݇)൯‖ࢠ ‖ଶଶܕ−

ஷ

ே

ୀଵ

ே

ୀଵ

 

 
For large values of T, the second component 

dominates, resulting in a topological organization. 
As the temperature decreases towards zero, the first 
component takes precedence, making the SOM 
loss resemble the k-means loss [35], where the 
centroids correspond to the prototypes of the map. 

lim
்→

ℒௌைெ =
1
ܰฮࢠ ฮଶܕ−

ଶ
=



ℒି୫ୣୟ୬ୱ (12) 

Therefore, as the temperature approaches zero, 
the hybrid loss function can be written as follows: 

lim
்→

ℒ = ℒோ + ߛ ℒି୫ୣୟ୬ୱ (12) 

3.3.3. Training method 

A joint training method was employed, where 
the network parameters and prototypes were 
optimized using back-propagation and stochastic 
gradient descent. The assignments to the BMUs 
were kept fixed between each optimization step, as 
they are not differentiable. Therefore, the weight 
coefficients ݓ, ≡ ܾ)ߜ)்݇ , ݇)) simplify to fixed 
coefficients for each data point and prototype, 
given the network parameters and prototypes. The 
gradients of the loss function with respect to the 
autoencoder weights and prototypes are easily 
obtained when the assignments are considered 
fixed at each step [35]. 
߲ℒ
܅߲

=
߲ℒோ
܅߲

+ ߛ
߲ℒௌைெ
܅߲

 (13) 

߲ℒ
ௗ܅߲

=
߲ℒோ
ௗ܅߲

 

߲ℒ
ܕ߲

= ߛ
߲ℒௌைெ
ܕ߲

 

The gradients for a data point xi are given as 
follows: 
߲ℒோ

܅߲
= 2൫܅൫܅

−൯(ܠ) (ܠ
܅൫܅߲

൯(ܠ)
܅߲

 

(14) 

߲ℒோ

ௗ܅߲
= 2൫܅൫܅

൯(ܠ) − (ܠ
܅൫܅߲

൯(ܠ)
ௗ܅߲

 

߲ℒௌைெ

܅߲
= 2ݓ,



ୀଵ

൫܅
(ܠ) (ܕ−

܅߲
(ܠ)

܅߲
 

߲ℒௌைெ

ܕ߲
= ܕ),ݓ2 − ܅

 ቁ(ܠ)

Batch gradient descent is not effective for large 
datasets, as it can result in a slow convergence. 
Conversely, using a batch size of one, as in the 
stochastic Kohonen algorithm, would be inefficient 
for training the autoencoder, and would 
particularly fail to take advantage of parallel 
implementations [35]. Considering a batch B of t 
nb samples, the encoder weights are updated as 
follows: 

܅ ܅← −
݈
݊
ቆ

߲ℒோ

܅߲
+ ߛ

߲ℒௌைெ

܅߲
ቇ

∈ℬ

 (15) 
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The decoder weights are updated as follows: 

ௗ܅ ← ௗ܅ −
݈
݊


߲ℒோ

ௗ∈ℬ܅߲

 (16) 

and finally, the map prototypes are updated 
using the following update rule: 

ܕ ← ܕ −
݈
݊
ߛ

߲ℒௌைெ

∈ℬܕ߲

 (17) 

By expanding the prototype update rule in 
Equation 17, we arrive at an expression that can be 
considered a middle ground between the stochastic 
the SOM and Batch SOM algorithms, which we 
can referred to as a mini-batch SOM: 

ܕ ܕ← ߛ2+
݈
݊
்ߢ൫ߜ( ܾ , ݇)൯(ࢠ (ܕ−
∈ℬ

 (18) 

Similar to Batch SOM, we alternated between 
BMU assignments and minimization. However, the 
minimization was performed using a gradient 
descent step, much like in stochastic SOM [35]. 

4.Preparation of Input Layers 

Given the target mineralization in this work, it 
is essential to identify the appropriate elements for 

detecting geochemical anomalies. For this purpose, 
factor analysis, a multivariate method, was utilized. 
Factor analysis is a technique that analyzes the 
variance between several dependent variables by 
describing them in terms of a few latent variables. 
In other words, this method aims to simplify a 
complex data by describing it using a smaller 
number of variables. This technique and its 
variations have been widely used in geochemical 
studies and mineral potential modeling [36-41]. In 
this work, simple factor analysis was employed to 
uncover the hidden relationships between 
elements. The loadings associated with the factors 
are recorded in Table 1 . Based on the results of the 
factor analysis, the highest loadings in Factor 1 
were assigned to the elements Cu, Co, V, Rb, Sr, 
and P. In Factor 2, the elements Pb, Zn, Ag, Sb, and 
Hg had the highest loadings. In Factor 3, Au, B, W, 
and Bi showed the highest coefficients. Due to their 
genetic association with mineralization, high 
mobility in hydrothermal fluids, and stability in 
surface environments, the presence of high 
loadings for key elements such as Cu, Au, and As 
is significant. Accordingly, the factors associated 
with these elements were selected for algorithm 
implementation. 

Table 1. Loading of factor analysis. 
Elements D1 D2 D3 D4 D5 

zn 0.254 0.841 0.032 0.071 0.167 
pb -0.010 0.893 0.218 -0.025 0.067 
ag -0.147 0.784 0.190 -0.020 -0.143 
cr 0.430 -0.123 -0.010 0.641 0.134 
ni 0.061 -0.005 0.164 0.814 0.018 
bi 0.190 0.189 0.808 -0.091 0.140 
cu 0.691 0.135 0.399 0.148 -0.204 
as 0.031 0.532 0.036 0.192 0.179 
sb 0.219 0.786 0.083 -0.156 0.120 
co 0.760 0.127 0.222 0.400 0.044 
sn 0.056 -0.122 0.312 0.272 0.484 
ba -0.275 0.574 -0.115 0.129 -0.026 
v 0.815 -0.088 -0.117 0.130 0.064 
sr -0.754 -0.079 -0.056 0.172 -0.181 
hg -0.085 0.856 0.069 -0.025 0.006 
w 0.252 0.112 0.623 -0.018 0.550 
b -0.088 0.015 0.711 0.256 0.378 
be 0.560 0.069 0.314 0.113 0.593 
mo -0.283 0.340 0.555 -0.057 0.317 
li 0.239 -0.010 -0.135 0.621 0.216 

au 0.254 0.395 0.681 0.072 -0.100 
rb 0.604 0.073 0.172 0.004 0.617 
p 0.880 -0.043 -0.027 0.100 0.186 
cs 0.499 0.050 -0.088 0.491 0.060 
nb 0.236 0.132 0.088 0.090 0.782 
th -0.267 0.017 0.432 0.142 0.366 
u -0.032 0.049 0.116 0.053 0.823 



Hoseinzade and Bazoobandi Journal of Mining & Environment, Published online 

 

5. Results and Assessment 

The use of an appropriate algorithm to identify 
geochemical anomalies is essential due to the 
geological complexities of the studied area. 
Therefore, a deep unsupervised learning algorithm 
called Deep Embedded SOM was employed. This 
algorithm utilizes three neural network modules, 
each responsible for a specific task. Initially, the 
input is transferred to an intermediate latent space 
by the encoder. In this space, the SOM is trained, 
and receives the encoded inputs. Then the latent 
code is returned to the original space by the 
decoder. At this stage, the goal is to accurately 
reconstruct the inputs. The model is trained for a 
specified number of iterations until the error 
converges. During each iteration, the weights of the 
autoencoder and the prototypes of the SOM are 
updated. 

After the implementation of the algorithm, the 
weight assigned to each cluster is determined using 
the prediction area plot, and the anomalous clusters 
are separated from the background. This plot 
contains two curves, one of which is related to the 
prediction rate of mineral occurrences known by 
each class, and the other is the percentage of the 
area occupied by each class. In fact, these curves 
serve as a criteria for evaluating the classes of a 
geochemical model. In the p-a plot of a model, if 
the intersection point shows a higher value 
compared with the p-a plot of other models; it 
means that it has the lowest percentage of the area 
covered. As a result, this model will have the most 
weight, because the sum of the prediction rate and 
the occupied area for the intersection point is equal 
to 100. To assign quantitative weights to the 
clusters, first the normalized density is calculated. 
The normalized density is used to rank the clusters. 
To determine the normalized density using the 
parameters of P-A plot, the ratio of the prediction 

rate to the occupied area at the intersection point 
was calculated [42]. 

The mentioned algorithm was implemented on 
the geochemical data in the studied area. Then, 
using the weight assigned to each cluster, the 
regions with different degrees were separated from 
each other (Table 2). In the next step, according to 
the obtained weights, the clusters are classified into 
three general categories: anomaly, halo, and 
background, and the results of all the three SOM, 
Batch SOM, and Deep Embedded SOM algorithms 
are presented in Figure 3. According to the maps, 
the SOM algorithm has introduced a large part of 
the studied area under the title of anomaly. 
Meanwhile, Deep Embedded SOM considers a 
smaller area as an anomaly, and this shows the 
effective performance of the algorithm. 

One of the suitable methods for evaluating the 
results obtained from the applied techniques, and 
assessing their effectiveness in identifying the 
desired anomaly is the use of the ROC curve to 
examine the sensitivity of the method. Sensitivity 
refers to the ratio of correctly classified cells to 
incorrectly classified ones. Various methods have 
been developed for this purpose including different 
evaluation curves and parameters such as accuracy 
and sensitivity. One of the most recent methods 
introduced in this area is the Prediction-Area (P-A) 
plot, introduced by [42], and it has been widely 
used in many studies [43–46]. Finally, based on the 
anomaly models, the number of high-potential 
points predicted in each class and the 
corresponding class areas, P-A plots were 
generated. According to Figure 4, in the generated 
geochemical anomaly model, 75% of the known 
mineral occurrences were predicted in about 25% 
of the studied area using the Deep Embedded SOM 
method, 65% in approximately 35% of the studied 
area using the Batch SOM method, and 67% in 
about 33% using the SOM method.  

Table 2. Prediction rate and area for each class in SOM, Batch SOM, and Deep SOM. 
Methods Class Area Prediction rate Weight 

SOM 
1 31.19 68 0.33 
2 14.59 0 - 
3 54.22 32 -0.22 

Batch SOM 
1 26.62 64 0.38 
2 12.8 0 - 
3 60.57 36 -0.22 

Deep SOM 
1 13.13 55 0.62 
2 29.63 33 0.04 
3 57.24 12 -0.67 
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Figure 2. Multivariate geochemical map in the studied area. a) SOM. b) Batch SOM. c) Deep-embedded SOM. 

 
Figure 3. Prediction area plot. a) SOM. b) Batch SOM. c) Deep-embedded SOM. 
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6.Conclusions 

Clustering and classification are among the 
most important and fundamental issues in data 
analysis, data mining, and machine learning. These 
two methods allow us to uncover hidden structures, 
patterns, and relationships in the data, enabling 
effective decision-making and prediction. Data 
learning, whether supervised or unsupervised, is 
inherently associated with uncertainty. This is 
primarily because learning as generalization 
beyond the observed data, is necessarily based on 
an inductive inference process. Inductive inference 
replaces specific observations with general models 
that describe the data generation process. However, 
these models are always hypothetical and, as a 
result, come with uncertainty. In fact, the observed 
data can generally be explained by more than one 
theory or model. This means that we can never be 
certain of the accuracy of a particular model and its 
predictions, marking the onset of uncertainty. This 
uncertainty in machine learning can arise from 
various factors such as noise in the data, sampling 
limitations, and the inherent complexity of the 
systems under study . 

According to Figure 3, it was observed that with 
a change in the method, the position of 
geochemical anomalies is shifted, and the three 
different methods produced varying extents of 
anomalies in the Moalleman region. This is natural, 
as each of the three methods has different structures 
and assumptions, and they perform clustering 
based on various algorithms and criteria. This 
means that the choice of model introduces varying 
degrees of uncertainty. Therefore, a method must 
be used to reduce uncertainty in the final outcome. 
Several methods exist to achieve a more reliable 
model including model combination techniques, 
cross-validation, and uncertainty quantification 
[47–49]. These methods aim to improve accuracy 
and reduce uncertainty by combining the results of 
different models or evaluating them based on 
specific criteria. In this work, the maximin method 
was used to create a combined model with a high 
confidence level. This method, used in decision 
theory and statistics, serves as a cautious strategy 
in the face of uncertainty and risk. The maximin 
method works by selecting the option that provides 
the best outcome in the worst-case scenario, in 
situations where the results of decisions are 
uncertain or dependent on complex conditions. In 
other words, this method seeks to minimize the 
maximum possible loss. The method follows a 
cautious strategy, where the decision-maker selects 
an option that offers the best result in the worst 

possible conditions  [50] The resulting map is 
presented in Figure 5, which shows that the results 
of the other methods are well-supported, and more 
reliable targets are produced. This method reduces 
uncertainty by combining the results of different 
models and selecting the output with the highest 
agreement among the models. This approach can 
be particularly useful in situations where models 
perform variably. It is important to note here that 
the combined model does not necessarily 
outperform individual models in all cases. Some 
models require parameters that must be correctly 
adjusted [48] If these parameters are not properly 
set, the performance of the combined model may 
be affected. Additionally, the combining models 
can increase computational complexity, and require 
more resources. Therefore, while the combined 
methods can help reduce uncertainty and improve 
accuracy, they should be applied carefully, 
considering the characteristics of the models used 
and the need for an appropriate parameter tuning. 
The selection of suitable models for combination 
and the correct adjustment of parameters are 
crucial for achieving optimal results. 

 
Figure 4. Delineation of geochemical anomalies 

based on the maxmin scores 
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 يها است که با رفتار معمول و مورد انتظار سازگاردر داده   ییالگوها  افتنی  ي به معنا  ي ناهنجار  صیتشخ
زم در  شناسا  ن یا   ،یمیژئوش   نه یندارند.  به  غ   ي الگوها  ییموضوع  و  فرا   رمعمولیپنهان    یی شناسا  ندیدر 

اندک  کندیم  دا ی پ  ت یاهم  یزمان  ژهیومسئله به   نی. ا شودی مربوط م  یاکتشاف  ي ها تارگت  از    یکه اطلاعات 
و با وجود   یطیشرا  نیکه بتوانند در چن ییهااستفاده از روش ن،یمنطقه مورد نظر در دسترس باشد. بنابرا 

ا   اریاکتشاف کمک کنند، بس  ندیبه فرا   ،یاطلاعات  ي هات یمحدود است. در  پژوهش، از روش    نیارزشمند 
عم   قیعم   ي ریادگی خودسازمانده  نقشه  به  موسوم  نظارت  شناسا  شدههی تعب- قیبدون  منظور   ییبه 

در    ره یمتغچند   ییایم یژئوش   يهاي ناهنجار  ییپژوهش بر شناسا  ن یاستفاده شد. ا   یی ایمیژئوش  ي هاي ناهنجار
در کنار   تمیالگور ییمنطقه، کارا  ییایمیژئوش ي هاي ناهنجار ییمنطقه معلمان تمرکز داشت. پس از شناسا

از نمودار نرخ پ   نیا   ي شد. برا   یابیسازمانده ارز  ودنقشه خ  ي هاتم ی از الگور  گر ی دو نوع د - ینیبش یمنظور، 
گرد استفاده  برا   د یمساحت  تقاطع  نقاط  عم  ي و  خودسازمانده  سازمانده    شده،هی تعب- قینقشه  نقشه خود 

ترت  ي ا دسته به  سازمانده  خود  نقشه  ناهنجار  نییتع  0.65و    0.67،  0.75  ب یو    یی ایمیژئوش  ي شدند. 
  تیو داس  ت یآندز  ي شده و واحدهاشناخته  یمعدن  ي با رخدادها  یمعلمان ارتباط خوب  قهدر منط  رهیمتغچند 

  ي دیابزار مف شدهه یتعب- قیکرد که روش نقشه خودسازمانده عم انیب توانیاساس، م نی. بر ا دهدینشان م
  . است  ي سازیمرتبط با کان ي و الگوها هاي ناهنجار ییشناسا ي برا 

    کلمات کلیدي 

  ی اصل يگالر
  ي حفار دهیدب یآس هیناح

  ی کارگاه استخراج جبهه کار طولان
  ب یتخر هیناح

    د یجد یمدل هندس

  

 

 


