Document Type : Original Research Paper

Authors

Department of Mining Engineering, Birjand University of Technology, Birjand, Iran

Abstract

This study employs Sentinel-2 satellite images along with the random forest algorithm to create a regional geological map. For this purpose, the independent variables consist of the images for 10 Sentinel-2 bands of the Khosuf-I region, while the class labels consist of a geological map of Khosuf-I divided into three and fifteen rock units. The classification accuracy of the resulting model is 90.97 and 84.85% for the three-class training and testing data, and 94.76 and 63.92% for the fifteen-class training and testing data, respectively. These models are then applied to the Sentinel-2 satellite images' data of the Birjand-IV region to prepare two preliminary geological maps. The Birjand-IV region's three-class geology map reveals that igneous rocks are present in the northern and southern regions, while sedimentary rocks occupy the middle section and metamorphic rocks are found within the region's igneous masses. Similarly, the fifteen-class geology map of Birjand-IV indicates that andesite, dacite, intermediate tuff rock units, and metamorphic rocks characterize the northern region. Conversely, the southern part of the region is mainly composed of ophiolite, flysch sediments, basaltic and ultra-basic volcanic rocks, and limestone and shale interlayers. Field studies in three areas confirm the accuracy of the preliminary geology maps.

Keywords

Main Subjects

[1]. Alexandre, P. (2020). Novel Methods and Applications for Mineral Exploration, MDPI Publisher, 264 p.
[2]. Haldar, S.K. (2018). Mineral Exploration: Principles and Applications, 2nd Edition, Elsevier, 378 p.
[3]. Hill, P.R., Lebel, D., Hitzman, M., Smelrop, M. & Thorleifson, H. (2020). The Changing Role of Geological Surveys, Geological Society, London, Special Publications 2020, 499, 1–15.
[4]. Sinha, K., Sharma, P., Sharma, A., Singh, K. & Hassan, M. (2024). Analysis of Land Subsidence in Joshimath Township using GIS and Remote Sensing. Journal of Mining and Environment, 13(3), 817-843.
[5]. Gururani, D.M., Kumar, Y., Abed, S.A., Kumar, V., Vishwakarma, D.K., Al-Ansari, N., Singh, K., Kuriqi, A. & Mattar, M.A. (2023). Mapping Prospects for Artificial Groundwater Recharge Utilizing Remote Sensing and GIS Methods. Water, 15, 3904.
[6]. Dhakal, D., Abdi, S., Singh, K. & Sharma, A. (2023). Applications of GIS and Remote Sensing in Highway Project-A Review. Journal of Mining and Environment, 14(2), 375-388.
[7]. Bhardwaj, V. & Singh, K. (2023). Landslide susceptibility assessment using remote sensing and GIS-a review. Journal of Mining and Environment, 14(1), 133-154.
[8]. Beiranvand Pour, A., Zoheir, B., Pradhan, B. & Hashim, M. (2021). Multispectral and Hyperspectral Remote Sensing Data for Mineral Exploration and Environmental Monitoring of Mined Areas. Remote Sensing, 13, 519.
[9]. Himanshu, G. (2015). Hyperspectral Remote Sensing Application in Mineral Exploration, LAP Lambert Academic Publishing, 160 p.
[10]. Jain, R. & Bhu, H. (2024). Potentials of spaceborne imaging spectrometer PRISMA, ASTER, and ALOS-1 PALSAR datasets for mineral mapping and geological controls of mineral deposit in Jahazpur, Rajasthan, India. Remote Sensing, 34, 101193.
[11]. Rajendran, S. & Nasir, S. (2019). ASTER capability in mapping of mineral resources of arid region: A review on mapping of mineral resources of the Sultanate of Oman. Ore Geology Review, 108, 33-53.
[12]. Wang, G. & Weng, Q. (2020). Remote Sensing of Natural Resources, CRC Press, 580 p.
[13]. Ahmad, A. & Nair, A.M. (2024). Lithological mapping of charnockites using spectral mixture analysis. Remote Sensing, 34, 101165.
[14]. Rajan Girija, R. & Mayappan, S. (2019). Mapping of mineral resources and lithological units: a review of remote sensing techniques. International Journal of Image Data Fusion, 10, 79-106.
[15]. Van der Meer, F.D. (2006). The effectiveness of spectral similarity measures for the analysis of hyperspectral imagery. International Journal of Applied Earth Observation and Geoinformation, 8, 3–17.
[16]. Van der Meer, F.D., Van der Werff, H.M.A., Van Ruitenbeek, F.J.A., Hecker, C.A., Bakker, W.H., Noomen, M.F., Van der Meijde, M., Carranza, E.J.M., Boudewijn de Smeth, J. & Woldai, T. (2012). Multi-and hyperspectral geologic remote sensing: A review. International Journal of Applied Earth Observation and Geoinformation, 14, 112–128.
[17]. Chen, X., Warner, T.A. & Campagna, D.J. (2007). Integrating visible, near-infrared and short-wave infrared hyperspectral and multispectral thermal imagery for geological mapping at Cuprite, Nevada. Remote Sensing of Environment, 110, 344-356.
[18]. Cracknell, M.J. & Reading, A.M. (2014). Geological mapping using remote sensing data: A comparison of five machine learning algorithms, their response to variations in the spatial distribution of training data and the use of explicit spatial information. Computers & Geosciences, 63, 22–33.
[19]. Girouard, G.G., Bannari, A., El Harti, A. & Desrochers, A. (2004). Validated Spectral Angle Mapper Algorithm for Geological Mapping: Comparative Study between Quickbird and Landsat-TM, Geological Mapping Project.
[20]. Leverington, D.W. (2010). Discrimination of sedimentary lithologies using Hyperion and Landsat Thematic Mapper data: a case study at Melville Island, Canadian High Arctic. International Journal of Remote Sensing, 31, 233–260.
[21]. Leverington, D.W. & Moon, W.M. (2012). Landsat-TM-based discrimination of lithological units associated with the Purtuniq Ophiolite, Quebec, Canada. Remote Sensing, 4, 1208–1231.
[22]. Oommen, T., Misra, D., Twarakavi, N.K.C., Prakash, A., Sahoo, B. & Bandopadhyay, S. (2008). An objective analysis of support vector machine based classification for remote sensing. Mathematical Geosciences, 40, 409–424.
[23]. Pal, M., Rasmussen, T. & Porwal, A. (2020). Optimized Lithological Mapping from Multispectral and Hyperspectral Remote Sensing Images Using Fused Multi-Classifiers. Remote Sensing, 12, 177.
[24]. Waske, B., Benediktsson, J.A., Árnason, K. & Sveinsson, J.R. (2009). Mapping of hyperspectral AVIRIS data using machine-learning algorithms. Canadian Journal of Remote Sensing, 35, 106–116.
[25]. Ye, B., Tian, S., Cheng, Q. & Ge, Y. (2020). Application of Lithological Mapping Based on Advanced Hyperspectral Imager (AHSI) Imagery Onboard Gaofen-5 (GF-5) Satellite. Remote Sensing, 12, 3990.
[26]. Yu, L., Porwal, A., Holden, E.J. & Dentith, M.C. (2012). Towards automatic lithological classification from remote sensing data using support vector machines. Computers & Geosciences, 45, 229–239.
[27]. Fatima, K., Khattak, U.K. & Kausar, A.B. (2013). Selection of appropriate classification technique for lithological mapping of Gali Jagir area, Pakistan. International Journal of Earth Sciences and Engineering, 7, 964–971.
[28]. Adiri, Z., El Harti, A., Jellouli, A., Maacha, L. & Mostafa Bachaoui, E. (2016). Lithological mapping using Landsat 8 OLI and Terra ASTER multispectral data in the Bas Drâa inlier, Moroccan Anti Atlas. Journal of Applied Remote Sensing, 10, 016005.
[29]. AlMakki Mohamed, M.T., Al‑Naimi, L.S., Mgbeojedo, T.I. & Agoha, C.C. (2021). Geological mapping and mineral prospectivity using remote sensing and GIS in parts of Hamissana, Northeast Sudan. Journal of Petroleum Exploration and Production Technology, 11, 1123–1138.
[30]. Amaral, C.H.d., Almeida, T.I.R.d., Souza Filho, C.R.d., Roberts, D.A., Fraser, S.J., Alves, M.N. & Botelho, M. (2018). Characterization of indicator tree species in neotropical environments and implications for geological mapping. Remote Sensing of Environment, 216, 385-400.
[31]. Gomez, C., Delacourt, C., Allemand, P., Ledru, P. & Wackerle, R. (2005). Using ASTER remote sensing data set for geological mapping, in Namibia. Physics and Chemistry of the Earth, 30, 97–108.
[32]. Khalifa, A., Bashir, B., Çakir, Z., Kaya, S., Alsalman, A. & Henaish, A. (2021). Paradigm of Geological Mapping of the Adıyaman Fault Zone of Eastern Turkey Using Landsat 8 Remotely Sensed Data Coupled with PCA, ICA, and MNFA Techniques. International Journal of Geoinformatics, 10, 368.
[33]. Mahmoudishadi, S., Malian, A. & Hosseinali, F. (2017). Comparing independent component analysis with principal component analysis in detecting alterations of porphyry copper deposit (Case study: Ardestan area, central Iran). The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W4, Tehran, Iran.
[34]. Mohan, M. & Meyyappan, M. (2022). Mapping of mafic-ultramafic rocks in SMUC-SGT, India using ASTER & Sentinel-2A satellite images. Remote Sensing, 28, 100826.
[35]. Peyghambari, S. & Zhang, Y. (2021). Hyperspectral remote sensing in lithological mapping, mineral exploration, and environmental geology: an updated review. Journal of Applied Remote Sensing, 15, 031501.
[36]. Al-Nahmia, F., Saddiqia, O., Hilalia, A., Rhinanea, H., Baiddera, L., El arabia, H. & Khanbari, K. (2017). Application of remote sensing in geological mapping, Case study Al Maghrabah area- Hajjah region, Yemen. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4/W4, Karabuk, Turkey.
[37] Andreani, L., Herrmann, E., Lorenz, S., Zimmermann, R., Kirsch, M., Brazzo, N. & Gloaguen, R. (2021). Sentinel-2 as a tool for mapping iron-bearing alteration minerals: a case study from the Iberian Pyrite Belt (Southern Spain). EGU General Assembly, 10719.
[38]. Ge, W., Cheng, Q., Jing, L., Wang, F., Zhao, M. & Ding, H. (2020). Assessment of the Capability of Sentinel-2 Imagery for Iron-Bearing Minerals Mapping: A Case Study in the Cuprite Area, Nevada. Remote Sensing, 12, 3028.
[39]. Van der Meer, F.D., Van der Werff, H.M.A. & Van Ruitenbeek, F.J.A. (2014). Potential of ESA's Sentinel-2 for geological applications. Remote Sensing of Environment, 148, 124-133.
[40]. Van der Werff, H. & Van der Meer, F.D. (2015). Sentinel-2 for Mapping Iron Absorption Feature Parameters. Remote Sensing, 7, 12635-12653.
[41]. Van Der Werff, H. & Van Der Meer, F.D. (2016). Sentinel-2A MSI and Landsat 8 OLI provide data continuity for geological remote sensing. Remote Sensing, 8, 883.
[42]. ODSS, (2011). Instructions for Compiling and Digitizing Large Scale Geological- Exploration Maps, Office of Deputy for Strategic Supervision, Bureau of Technical Execution System, Ministry of Industries and Mines of Iran, Report No. 532, 77 p. (In Persian).
[43]. Shuai, A., Ardebili, O., Badrikallo, N., Jadidi, R., Strabi-Ashtiani, M. & Awadnamur, M. (2019). Atlas of maps of the Geological Survey and Mineral Explorations of Country, Geological Survey & Mineral Explorations of Iran, Tehran, 218 p., (In Persian).
[44]. Geranian, H. & Khajeh Miry, Z. (2018). Introducing mineral potentials and investment solutions in the mining industry of South Khorasan province, The 1st National Conference on Investment Opportunities and Limitations in South Khorasan Industry, 58-64, (In Persian).
[45]. Camp, V.E. & Griffis, R.J. (1982). Character, genesis and tectonic setting of igneous rocks in the Sistan suture zone, eastern Iran. Lithos, 15, 221-239.
[46]. Tirrul, R., Bell, I.R., Griffis, R.J. & Camp, V.E. (1983). The Sistan suture zone of eastern Iran. Geological Society of America Bulletin, 94, 134-150.
[47]. Babazadeh, S.A. & De Wever, P. (2004). Early Cretaceous radiolarian assemblages from radiolarites in the Sistan Suture (eastern Iran). Geodiversitas, 26, 185-206.
[48]. Delaloye, M & Desmons, J. (1980). Ophiolites and mélange terranes in Iran: a geochronological study and its paleotectonic implications. Tectonophysics, 68, 83–111.
[49]. Zarrinkoub, M.H., Pang, K.N., Chung, S.L., Khatib, M.M., Mohammadi, S.S., Chiu, H.Y. & Lee, H.Y. (2012). Zircon U\Pb age and geochemical constraints on the origin of the Birjand ophiolite, Sistan suture zone, eastern Iran. Lithos, 154, 392–405.
[50]. Pang, K.N., Chung, S.L., Zarrinkoub, M.H., Khatib, M.M., Mohammadi, S.S., Chiu, H.Y., Chu, C.H., Lee, H.Y. & Lo, C.H. (2013). Eocene-Oligocene post-collisional magmatism in the Lut-Sistan region, eastern Iran: magma genesis and tectonic implications. Lithos, 180-181, 234-251.
[51]. Arjmandzadeh, R., Karimpour, M.H., Mazaheri, S.A., Santos, J.F., Medina, J.M. & Homam, S.M. (2011). Sr\Nd isotope geochemistry and petrogenesis of the Chah-Shaljami granitoids (Lut Block, Eastern Iran). Journal of Asian Earth Sciences, 41, 283–296.
[52]. Angiboust, S., Agard, P., De Hoog, J.C.M., Omrani, J. & Plunder, A. (2013). Insights on deep, accretionary subduction processes from the Sistan ophiolitic “melange” (Eastern Iran). Lithos, 156–159, 139–158.
[53]. Walker, R., Gans, P., Allen, M.B., Jackson, J., Khatib, M., Marsh, N. & Zarrinkoub, M. (2009). Late Cenozoic volcanism and rates of active faulting in eastern Iran. Geophysical Journal International, 177, 783–805.
[54]. Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32.
[55]. Charbuty, B. & Abdulazeez, A.M. (2021). Classification Based on Decision Tree Algorithm for Machine Learning. Journal of Applied Science and Technology Trends, 2, 20-28.
[56]. Han, J., Kamber, M. & Pei, J. (2011). Data mining: concepts and techniques, 3rd Edition, Morgan Kaufmann, 744 p.
[57]. Patel, H. & Prajapati, P. (2018). Study and Analysis of Decision Tree Based Classification Algorithms. International Journal of Computer Systems Science and Engineering, 6, 74-78.
[58]. Tangirala, S. (2020). Evaluating the Impact of GINI Index and Information Gain on Classification using Decision Tree Classifier Algorithm. International Journal of Advanced Computer Science and Applications, 11, 612-619.
[59]. Schonlau, M. & Zou, R.Y. (2020). The random forest algorithm for statistical learning. The Stata Journal: Promoting communications on statistics and Stata, 20, 3-29.
[60]. Phiri, D., Simwanda, M., Salekin, S., Nyirenda, V.R., Murayama, Y. & Ranagalage, M. (2020). Sentinel-2 Data for Land Cover/Use Mapping: A Review. Remote Sensing, 12, 2291.
[61]. Aggarwal, C.C. (2014). Data Classification: Algorithms and Applications, Chapman and Hall, 707 p.
[62]. Brereton, R.G. & Lloyd, G.R. (2016). Re-evaluating the role of the Mahalanobis distance measure. Journal of Chemometrics, 30, 134–143.
[63]. Qiong, G., Xian-Ming, W., Zhao, W., Bing, N. & Chun-Sheng, X. (2016). An Improved SMOTE Algorithm Based on Genetic Algorithm for Imbalanced Data Classification. Journal of Digital Information Management, 14, 92-103.
[64]. Brownlee, J. (2021). Imbalanced Classification with Python, Machine Learning Mastery, 463 p.
[65]. Sisodia, D.S. & Verma, U. (2019). Distinct multiple learner-based ensemble SMOTE bagging (ML-ESB) method for classification of binary clad imbalance problems. International Journal of Technology, 10, 721-730.
[66]. Chawla, N.V., Bowyer, K.W., Hall, L.O. & Kegelmeyer, W.P. (2002). SMOTE: Synthetic Minority Over-Sampling Technique. Journal of Artificial Intelligence Research, 16, 321-357.
[67]. Abedin, M.Z., Guotai, C., Hajek, P., & Zhang, T. (2023). Combining weighted SMOTE with ensemble learning for the class-imbalanced prediction of small business credit risk. Complex & Intelligent Systems, 9, 3559–3579.
[68]. Wongvorachan, T., He, S., & Bulut, O. (2023). A Comparison of Undersampling, Oversampling, and SMOTE Methods for Dealing with Imbalanced Classification in Educational Data Mining. Information, 14, 54.
[69]. Grandini, M., Bagli, E. & Visani, G. (2020). Metrics for multi-class classification: An overview, Computer Science, Mathematics, arXiv:2008.05756v1.
[70]. Ardjmand, E., Millie, D.F., Ghalehkhondabi, I., Young, W.A. & Weckman, G.R. (2021). A State-Based Sensitivity Analysis for Distinguishing the Global Importance of Predictor Variables in Artificial Neural Networks. Advances in Artificial Neural Systems, Article ID 2303181.
[71]. Saarela, M. & Jauhiainen, S. (2021). Comparison of feature importance measures as explanations for classification models. SN Applied Sciences, 3, 272.
[72]. Nasar Mursal, A.S. & Ibrahim, H. (2020). Median Filtering Using First-Order and Second-Order Neighborhood Pixels to Reduce Fixed Value Impulse Noise from Grayscale Digital Images. Electronics, 9, 2034.
[73]. Al-amri, S., Kalyankar, N.V. & Khamitkar, S.D. (2010). A Comparative Study of Removal Noise from Remote Sensing Image. IJCSI International Journal of Computer Science Issues, 7, 32-36.
[74]. Eftekharnezhad, J. (1980). Separating Different Parts of Iran in Vies of Constructional Position Related Too Sedimentary Basins, Petrol Association Publication, No: 82.