[1]. Armaghani, D.J., Hajihassani, M., Mohamad, E.T., Marto, A., & Noorani, S. (2014). Blasting-induced flyrock and ground vibration prediction through an expert artificial neural network based on particle swarm optimization. Arabian J. Geosci, 1(12), 1396-1373.
[2]. Amini, H., Gholami, R., Monjezi, M., Torabi, S.R., & Zadhesh, J. (2012). Evaluation of flyrock phenomenon due to blasting operation by support vector machine. Neural Comput Appl, 21(8), 2077-2085.
[3]. Yan,Y., Hou, X., & Fei, H. (2020). Review of predicting the blast-induced ground vibrations to reduce impacts on ambient urban communities. J Clean Prod, 260, 121-135.
[4]. Arthur, C.K., Temeng, V.A., & Ziggah, Y.Y. (2020). Novel approach to predicting blast-induced ground vibration using Gaussian process regression. Eng Comput, 36(1), 29-42.
[5]. Li, G., Kumar, D., Samui, P., Nikafshan Rad, H., Roy, B., & Hasanipanah, M. (2020). Developing a new computational intelligence approach for approximating the blast-induced ground vibration. Applied Sciences, 10(2), 434.
[6]. Khandelwal, M., &
Singh, T.N. (2009). Prediction of blast-induced ground vibration using artificial neural network.
J Rock Mech Min Sci, 46,1214-1222.
[7]. Singh, P.K., & Roy, M.P. (2010). Damage to surface structures due to blast vibration. J Rock Mech Min Sci, 47(6), 949–961.
[8]. Dehghani, H., & Ataee-pour, M. (2011). Development of a model to predict peak particle velocity in blasting operation. J Rock Mech Min Sci, 48(1), 51–58.
[9]. Monjezi, M., Ghafurikalajahi, M., & Bahrami, A. (2011). Prediction of blast-induced ground vibration using artificial neural networks. Tunnelling andUnderground Space Technology, 26(1), 46–50.
[10]. Hasanipanah, M., Faradonbeh, R.S., Amnieh, H.B., Armaghani, D. J., & Monjezi, M. (2017). Forecasting blast-induced ground vibration developing a CART model. Eng Comput, 33(2), 307–316.
[11]. Faradonbeh, R.S., & Monjezi, M. (2017). Prediction and minimization of blast-induced ground vibration using two robust meta-heuristic algorithms. Eng Comput, 33, 835–851.
[12]. Ragam, P., & Nimaje, D. S. (2018). Evaluation and prediction of blast-induced peak particle velocity using artificial neural network: A case study. Noise and Vibration Worldwide, 43(3), 111-119.
[13]. Ataei, M., & Sereshki, F. (2017). Improved prediction of blast-induced vibrations in limestone mines using Genetic Algorithm. J M E, 8(2), 291-304.
[14]. Agrawal, H., & Mishra, A. K. (2020). An innovative technique of simplified signature hole analysis for prediction of blastinducedground vibration of multi-hole/production blast: an empirical analysis.
Nat Hazards, 100, 111–132.
[15]. Ainalis, D., Kaufmann, O., Tshibangu, J. P., Verlinden, O., & Kouroussis, G. (2017). Modelling the source of blasting for the numerical simulation of blast-induced ground vibrations: a review. J Rock Mech Min Sci, 50(1), 171–193.
[16]. Gorai, A.K., Himanshu, V.K., & Santi, C. (2021). Development of ANNbased universal predictor for prediction of blast-induced vibration indicators and its performance comparison with existing empirical models. Min Metall Explor, 38, 2021–2036.
[17]. Hasanipanah, M., Monjezi, M., Shahnazar, A., Armaghani, D. J., & Farazmand, A. (2015). Feasibility of indirect determination of blast induced ground vibration based on support vector machine. Measurement, 75, 289–297.
[18]. Himanshu, V.K., Mishra, A.K., Vishwakarma, A.K., Roy, M.P., & Singh, P.K. (2022). Explicit dynamics based numerical simulation approach for assessment of impact of relief hole on blast induced deformation pattern in an underground face blast. Geomech Geophys Geo Energy Ge Resour, 8, 19.
[19]. Himanshu, V.K., Mishra, A.K., Roy, M.P., Vishwakarma, A.K., & Singh, P.K. (2021). Numerical simulation based approach for assessment of blast induced deformation pattern in slot raise excavation. Int J Rock Mech Min Sci, 144, 104816.
[20]. Himanshu, V. K., & Roy, M. P. (2017). Prediction of blast induced vibration using numerical simulation. Chapter in Edited book entitled Sustainable Mining Practices, (ISBN10 8184876041), 219–227.
[21]. Kumar, S., Choudhary, B.S., & Mishra, A.K. (2022). Modelling the effects of ground vibrations on the surface due to blasting in underground coal mines.
Nat Hazards, 110, 315–323.
[22]. Kumar, S., Mishra, A.K., Choudhary, B.S., Sinha, R.K., Deepak, D., & Agrawal, H. (2020). Prediction of ground vibration induced due to single hole blast using explicit dynamics. Min Metall Explor, 37, 733–741.
[23]. Li, X .P., Huang, J., Luo, Y., Dong, Q., Li, Y. H., Wan, Y., & Liu, T. T.(2017). Numerical simulation of blast vibration and crack forming effect of rock-anchored beam excavation in deep underground caverns. Shock and Vibration, Article ID 1812080.
[24]. Monjezi, M., Ahmadi, M., Sheikhan, M., Bahrami, A., & Salimi, A.R. (2010). Predicting blast-induced ground vibration using various types of neural networks. Soil Dynamics and Earthquake Engineering , 30(11), 1233-1236 .
[25]. Tian, E., Zhang, J., Tehrani, M. S., Surendar, A., & Ibatova, A. Z. (2019). Development of GA-based models for simulating the ground vibration in mine blasting. Eng Comput, 35(3), 849 855.
[26]. Verma, A.K., & Singh, T.N. (2011). Intelligent systems for ground vibration measurement: a comparative study. Eng Comput, 27(3), 225– 233.
[27]. Zhang, X., Nguyen, H., Bui, X.N., Tran, Q.H., Nguyen, D.A., Bui, D.T., & Moayedi, H. (2020). Novel soft computing model for predicting blast-induced ground vibration in open-pit mines based on particle swarm optimization and XGBoost.
Natural Resources Research, 29, 711– 721.
[28]. Zhou, J., Li, C., Koopialipoor, M., Armaghani, D .J., & Pham, B. T. (2021). Development of a new methodology for estimating the amount of PPV in surface mines based on prediction and probabilistic models (GEP-MC). Int J Min Reclam Environ, 35(1), 48 68.
[29]. Zhao, S., Wang. L., & Cao, M. (2024). Chaos Game Optimization-HybridizedArtificial Neural Network for Predicting Blast-Induced Ground Vibration. Appl. Sci, 14, 3759.
[30]. Fissha,Y., Ikeda, H., Toriya, H., Adachi, T., & Kawamura, Y. (2023). Application of Bayesian Neural Network (BNN) for the Prediction of Blast-Induced Ground Vibration. Appl. Sci, 13, 3128.
[31]. Guo, J., Zhao, P., & Li, P. (2023). Prediction and Optimization of Blasting-Induced Ground Vibration in Open-Pit Mines Using Intelligent Algorithms. Appl. Sci, 13, 7166.
[32]. Keshtegar, B., Piri, J., Abdullah, R.A., Hasanipanah, M., Sabri, M.M.S., & Le, BN. (2023). Intelligent ground vibration prediction in surface mines using an ecient soft computing method based on field data. Front. Public Health, 10.
[33]. Fissha, Y., Ikeda, H., Toriya, H., Owada, N., Adachi, T., & Kawamura, Y. (2023). Evaluation and Prediction of Blast-Induced Ground Vibrations: A Gaussian Process Regression (GPR) Approach. Mining. 3, 659–682.
[34]. Armaghani, D.J., He. B., Mohamad, E.T., Zhang, Y.X., Lai, S.H., & Ye, F. (2023). Applications of Two Neuro-Based Metaheuristic Techniques in Evaluating Ground Vibration Resulting from Tunnel Blasting. Mathematics. 11, 106.
[35]. Arthur, C.K., Bhatawdekar, R.M., Mohamad, E.T., Sabri, M.M.S., Bohra, M., Khandelwal, M., & Kwon, S. (2022). Prediction of Blast-Induced Ground Vibration at a Limestone Quarry: An Artificial Intelligence Approach. Appl. Sci, 12(18), 9189.
[36]. He, B., Lai, S.H., Mohammed, A.S., Sabri, M.M.S., & Ulrikh, D.V. (2022). Estimation of Blast-Induced Peak Particle Velocity through the Improved Weighted Random Forest Technique. Appl. Sci, 12, 5019.
[37]. Lawal, A.I., Kwon, S., Hammed, O.S., & Idris, M.A. )2021(. Blast-induced ground vibration prediction in granite quarries: An application of gene expression programming, ANFIS, and sine cosine algorithm optimized ANN.
Int.J.Min. Sci, 31(2(, 265-277.
[38]. Jelušiˇc, P., Ivaniˇc, A., & Lubej, S. (2021). Prediction of Blast-Induced Ground Vibration Using an Adaptive Network-Based Fuzzy Inference System. Appl. Sci, 11, 203.
[39]. Srivastav, A., Singh Choudhary, B., & Sharma, M. (2021). A Comparative Study of Machine Learning Methods for Prediction of Blast-Induced Ground Vibration. JME, 12(3), 667-677.
[40]. Kittikun, P., antachang, K., Thungfung, S., & Petthong, N. (2020). Effect of Blast-induced Ground Vibration on Factor of Safety of Pit Wall Stability. J. Pol. Miner. Eng. Soc, 1(2).
[41]. Lawal, A.I., & AdebayoIdris, M. (2020). An artificial neural network-based mathematical model for the prediction of blast-induced ground vibrations. Int. J. Environ. Stud, 77(2), 318–334.
[42]. Yu, Z., Shi,X., Zhou, J., Chen, X., & Qiu, X. (2020). Effective Assessment of Blast-Induced Ground Vibration Using an Optimized Random Forest Model Based on a Harris Hawks Optimization Algorithm. Appl. Sci, 10(4), 1403.
[43]. Zhang, H., Zhou, J., Armaghani, D.J., Tahir, M.M., Pham, B.T., & Huynh,V.V. (2020). A Combination of Feature Selection and Random Forest Techniques to Solve a Problem Related to Blast-Induced Ground Vibration . Appl. Sci, 10(3), 869.
[44]. Mahdiyar, A., Armaghani, D.J., Koopialipoor, M., Hedayat, A., Abdullah, A., & Yahy, Kh. (2020). Practical Risk Assessment of Ground Vibrations Resulting from Blasting, Using Gene Expression Programming and Monte Carlo Simulation Techniques. Appl. Sci, 10(2), 472.
[45]. Li, G., Deepak Kumar, D., Pijush Samui, D., Nikafshan Rad, H,. Roy, P., & Hasanipanah, M. (2020) Developing a New Computational Intelligence Approach for Approximating the Blast-Induced Ground Vibration . Appl. Sci, 10(2), 434.
[46].
Shakeri, J., Shokri, B., &
Dehghani, H. (2020). Prediction of Blast-Induced Ground Vibration Using Gene Expression Programming (GEP), Artificial Neural Networks (ANNs), and Linear Multivariate Regression (LMR).
Arch. Min. Sci, 65(2), 317-335.
[47]. Mohammadi, D., Mikaeil, R., & Abdollahei Sharif, J. (2020). Investigating and Ranking Blasting Patterns to Reduce Ground Vibration using Soft Computing Approaches and MCDM Technique. JME, 113, 881-897.
[48]. Ragama, P., & Nimaje, D.S. (2018). Assessment of Blast-induced Ground Vibration using Different Predictor Approaches- A Comparison. Chem. Eng. Trans, 66, 487-492.
[49]. Sirjani, A. K., Sereshki, F., Ataei, M., & Hosseini, M. A. (2022). Prediction of Backbreak in the Blasting Operations using Artificial Neural Network (ANN) Model and Statistical Models (Case study: Gole-Gohar Iron Ore Mine No. 1). A M S, 67(1), 107–121.
[50]. Caffo, B. (2019). Regression Models for Data Science in R: A companion book for the Coursera Regression Models class. Leanpub.
[51]. Eusuff, M .M., & Lansey, K. E. (2003). Optimization of Water Distribution Network Design Using the Shuffled Frog Leaping Algorithm. J Water Resour Plan Manag, 129(3), 210–225.
[52]. Luo, J., & Chen, M. R. (2014). Improved shuffled frog leaping algorithm and its multi-phase model for multidepot vehicle routing problem. Expert Syst Appl, 41(5), 2535-2545.
[53]. Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization (PSO). InProc. IEEE International Conference on Neural Networks, Perth, Australia, 1942-1948.
[54]. Liping, Z., Weiwei, W., Yi, H., Yefeng, X., & Yixian, C. (2012). Application of shuffled frog leaping algorithm to an uncapacitated SLLS problem. AASRI Procedia, 1, 226-231.
[55]. Huynh, T. H. (2008). A Modified Shuffled Frog Leaping Algorithm for Optimal Tuning of Multivariable PID Controllers. ICIT IEEE Industrial Technology.
[56]. Ebrahimi, J., Hosseinian, S. H., &
Gharehpetian, B. G. (2011). Unit commitment problem solution using shuffled frog leaping algorithm.
IEEE Trans Power Syst, 26(2), 573-581.
[57]. Jaafari, A., Zenner, E.K., Panahi, M., & Shahabi, H. (2019). Hybrid artificial intelligence models based on a neuro-fuzzy system and metaheuristic optimization algorithms for spatial prediction of wildfire probability. Agric For Meteorol, 266-267,198-207.
[58]. Niknam, T., & Farsani, E. A. (2010). A hybrid self-adaptive particle swarm optimization and modified shuffled frog leaping algorithm for distribution feeder reconfiguration. Eng Appl Artif Intell, 23(8), 1340-1349.