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 Kick monitoring, detection, and control are key elements to ensure safe 
drilling operations and avoid catastrophic blow-out incidents that can cause loss 
of life, equipment, and environmental damage. Conventional kick detection 
systems such as the pit volume totalizer and the flow in/out sensors identify the 
kick after a large amount of influx has been recorded on the surface. So, we aim 
to recognize the kick before it enters the wellbore by detecting the abnormal 
formation pressure once the bit penetrates the rock. This paper proposes a new 
machine learning model as an alternative solution using field drilling parameters 
such as true vertical depth, porosity, bulk density, resistivity, rate of penetration, 
weight on bit, rotation per minute, torque, standpipe pressure, flow rate, flowline 
temperature, and gas level. The data-driven models were developed using three 
separate algorithms: K-Nearest Neighbor, Random Forest, and XG Boost. 6022 
field data points were split for training, testing, and validation processes. On 
average, the model using the random forest algorithm showed the highest 
accuracy in forecasting the formation pressure, with root mean squared error 
values and coefficient of determination values of 12.868 and 0.9638, respectively. 
Streamlit Deployment tool was used to create a user interface program to 
facilitate the prediction process. The program was tested using 196 field data 
points and recorded a high accuracy of 95%. 
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1. Introduction 

Drilling oil and gas wells is surrounded by 
many challenges, and well control concerns have 
the highest priority for all working personnel. A 
kick, which is the undesired, uncontrolled flow of 
formation fluids into the wellbore, is the result of 
mud hydrostatic pressure becoming insufficient to 
sustain formation pressure, and this can happen 
during any drilling stage [1]. We can look at one of 
the well control incidents that took place in the 
Gulf of Mexico, the Deep-Water Horizon incident. 
Due to a well control event, the rig exploded and 
sank into the ocean, taking 11 lives with it. Also, 4 
MMbbls spilled over the ocean in 87 days, and the 
incident cost $5.5 billion in account of the Clean 
Water Act penalty and $8.8 billion in natural 
resource damages [2]. So, the kick must be 
detected, handled, and removed from the well as 

early as possible to regain primary well control 
(i.e., mud hydrostatic pressure greater than 
formation pressure), and if the well control 
measures have not been applied, catastrophic 
events might happen that can result in the loss of 
life, equipment, and finances and cause 
environmental damage [3].  The main goal during 
a drilling operation is to constantly monitor the 
wellbore pressure and prevent any formation 
influx. So, the rig crew analyzes various 
parameters (surface and downhole) to recognize a 
kick. Therefore, sensors are widely distributed in 
the rig at the pump discharge, the flowline return to 
the shale shaker, and drilling parameters 
monitoring sensors [4]. Normal kick detection 
relies on mud volume in the mud system, and if the 
mud level increases in the tanks, this means that an 
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influx has occurred in the well.  
Machine learning is the tool that seeks to 

identify a relationship among the data sets and has 
become a tool for increasing safety and optimizing 
operations Machine learning models will help in 
the automation of operations and can remove 
human error. Machine learning has been applied to 
various oil and gas topics such as rate of 
penetration prediction, interpretation of real well 
logging data, expected weight on bit and bit wear, 
and non-productive time prediction [5] [6]. 

The aim of this research is to use machine 
learning and drilling parameters from mud logging 
and MWD/LWD in order to recognize the kick 
before it enters the wellbore by detecting the 
abnormal formation pressure. This will allow for 

early detection of the kick, giving the rig crew an 
advantage to regain control of the well rather than 
waiting until the influx is in the well, detected by 
the conventional sensors, then dealing with it.  

2. Kick Warning Signs 

When formation pressure exceeds the 
hydrostatic pressure and the formation has good 
porosity (Φ) and permeability (K), a kick is 
expected [7]. Abnormal formation pressure and 
kick have warning signs that can be predicted from 
drilling parameters. Table 1 summarizes the 
abnormal formation pressure and kick warning 
signs. 

Table 1 a summary of the abnormal formation pressure and kick warning signs. 
No. Parameter The normal trend with depth Change against high formation pressure 

1 Rate of penetration 
(ROP) [8] 

ROP decreases uniformly with the depth 
increase. 

ROP increases and the formation becomes more 
drillable which is called a fast break. 

2 Torque and Drag  [9] Normal increase of torque and drag. Greater wall contact and friction increase more 
causing a greater increase in torque and drag. 

3 Bulk Density [10] Bulk density increases with depth Density decreases against high pressures reflecting 
high porosity. 

4 Cutting Size and Cutting 
Shape [11] 

cuttings have rounded edges and are generally 
flat 

long, and splintery with angular edges. Also, there is 
an increase in cutting quantity. 

5 Trip, Connection, and 
Background Gases [12] 

Depends on the formation and the time taken 
in connections. increase while drilling abnormal formation pressure 

6 Formation Resistivity 
[13] 

The normal trend of the resistivity is to 
increase with depth. 

resistivity decreases greatly as a result of the 
increased porosity and water content 

 
3. Kick Detection Methods: Conventional, 
Mathematical, and Machine Learning 

Conventional kick detection methods are [14]: 
 

 Flow in and out sensors, located at the pump 
discharge line and return flow line, respectively 
[15]. 

 Pit Volume Totalizer (PVT), located at mud 
tanks [16] as shown in Figure 1. 

These methods give an alarm when the flow rate 
or tank volume deviates from a pre-set limit value. 
Under any circumstances, any change in the tank 
level will lag behind the increased flow rate, so the 
increased flow rate will take some time to give a 
considerable observable pit level change. Thus, 
these methods detect the kick after its effect is on 
the surface, which is time-consuming [17] [4]. 

Mathematical models and equations were 
developed to calculate the formation pressure (Pf) 
by using D-exponent (dc) [9]: 

 
 
 

 Eaton Method: applicable in sedimentary 
basins. 

Pf = σov – (σov – Pn) x (ௗ
ௗ

)ଵ.ଶ (1) 

Pf: formation pressure (ppg) 
σov: overburden gradient (ppg) 
Pn: normal formation pressure gradient (ppg) 
dco: the observed value of dc at depth of interest 
dcn: normal trendline value of dc at depth of interest 

 Ratio Method: applicable in Clastic 
Limestone. 

Pf = Pn x (ௗ
ௗ

) (2) 

The major problem with these mathematical 
equations is how to choose the correct normal 
compaction trend, especially when there is too little 
data. Also, there will be a continuous change in the 
mathematical equation in use due to the change in 
the rock type [18]. 

Machine learning (ML) is a discipline that uses 
a series of procedures and algorithms to analyze the 
data in order to recognize patterns, clusters, or 
trends and then extract fruitful information for data 
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analysis in an automated, enhanced way [19]. 
Machine learning is concerned with using the best 
features in conjunction with the best algorithm to 
build up a model capable of performing the 
required tasks [20]. Some machine learning models 
have been developed in order to overcome the 
problems associated with conventional methods. 

Some of the models analyze whether the alarm 
given by conventional methods is true or false, like 
[21]. Some use algorithms for kick detection and 
influx size estimation during drilling operations, 
like [22] and [15]. Table 2 shows a summary of 
some of the machine learning models used in kick 
detection. 

 
Figure 1. Drilling rig kick detection instruments and sensors locations [15] 

Table 2. Summary of some of the machine learning models used in kick detection. 
Model Algorithms Parameters Data set Accuracy 

False alarm 
detection [21]. 

-Long short-term memory 
recurrent neural network 
(LSTM-RNN) 

-D-Exponent 
-Standpipe pressure (SPP) 4 Cases of Kick - 

kick detection 
and influx size 
estimation 
during drilling 
operations [22] 

-Long Short-Term Memory 
(LSTM) 
-Bidirectional LSTM 
(BiLSTM) 

-Flow in/out 
-SPP 
-Choke Opening Size 
-Hydrostatic Pressure 
-Depth 

Artificial Generated data set by 
open lab drilling simulator for 
an inclined well of 2500 m 
depth. 

LSTM mud loss rate = 0.1040 kg/s 
over 500 epochs 

BiLSTM mud loss rate = 0.0744 
kg/s over 500 epochs 

kick detection 
using drilling 
parameters 
[15]. 

-Decision Tree 
- Naïve Bayes, 
-Logistic Regression 
-Neural Network 

-Delta flow 
-Hook load 
-Pit volume 
-Weight On Bit 
-Rate Of Penetration 
-Rotation per minute (RPM) 
-SPP 
-Torque. 

Artificial Generated data set by 
open lab drilling simulator 
giving 25 runs used in the 
mode. 

Decision Tree 
R2= 91.4 
Naïve Bayes 
R2= 78.1 
Logistic Regression 
R2= 61 
Neural Network 
R2= 70.3 

 
4. Method and Data 

Figure 2 shows the process followed to build-
up the ML Model and Program. 

4.1. Data Gathering 

Real-time drilling parameters from mud 
logging, MWD/LWD, open hole logs, and repeat 

formation tester data (RFT) collected from 10 wells 
located in the Western Desert, Egypt, to be used in 
the Formation Pressure Prediction and Kick 
Detection program and model build-up. Table 3 
shows the statistical summary of the input data, and 
the upper and lower limits of each property used in 
the program. 6022 points were gathered along 8.5” 
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holes having the following inputs:  
• True Vertical Depth (TVD) (ft), Measured from 

MWD/LWD 

• Rotation per Minute (RPM), Measured from 
Mud Logging and MWD/LWD 

• Bit Size (in), Actual hole size being drilled 

• Torque (lb. f), Measured from Mud Logging 

• Porosity (%), Measured from MWD/LWD 

• Standpipe pressure (Psi), Measured from Mud 
Logging 

• Bulk Density (gm/cc), Measured from 

MWD/LWD 

• Flow Rate (GPM), Measured from Mud Logging 

• Resistivity (ohm), Measured from MWD/LWD 

• Flowline Temperature (°C), Measured from Mud 
Logging 

• ROP (M/hr.), Measured from Mud Logging and 
MWD/LWD 

• Gas Level (PPM), Measured from Mud Logging. 

• Weight on Bit (WOB) (K. lb.), Measured from 
Mud Logging 

• Formation Pressure (Psi), Measured from RFT 

 
Figure 2. Model and Program Build-up Steps. 

Table 3. Statistical Summary of the Input Data 
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 (Psi) (Ft) (in) (%) (gm/cc) (ohm) M/hr.) (K. lb.)  (lb. f) (psi) (GPM) (C) (PPM) 
Maximum 8362.22 12523.58 8.50 0.53 3.21 2000.00 149.07 55.00 213.47 14586.81 3626.72 1150.41 63.27 779334.30 
Minimum 1505.24 7765.70 8.50 0.00 2.02 0.34 1.25 0.00 0.00 0.00 113.18 7.69 16.93 247.00 
Range 6856.99 4757.88 8.50 0.53 1.19 1999.66 147.83 55.00 213.47 14586.81 3513.54 1142.72 46.34 779087.30 
Mean 4770.24 10202.23 8.50 0.20 2.62 28.65 28.25 20.15 123.81 7491.69 2469.62 467.95 42.85 17068.01 
Median 4634.14 10154.19 8.50 0.19 2.62 2.17 24.58 19.95 136.18 7391.90 2485.30 471.40 42.11 9599.26 
Standard 
Deviation 918.20 971.85 0.00 0.11 0.11 177.15 15.90 8.99 26.54 2021.90 454.96 50.07 9.13 33675.95 
1st Q 4348.59 9545.85 8.50 0.11 2.55 1.04 17.14 13.81 110.47 6084.66 2220.67 449.67 35.99 5989.52 
3rd Q 5209.85 10827.35 8.50 0.28 2.69 5.22 36.55 26.75 141.13 8842.13 2722.08 498.05 47.79 16634.17 

 

4.2. Data Preparation 

The data has no missing inputs and no 
duplicates. So, the features and target were 
identified. Figure 3 shows the correlation matrix 
between the input data. 

Data split into three trains: 

 Training data set with 4335 points representing 
72%. 

 Test data set with 1084 points representing 18%. 

 Validation data set with 603 points representing 
10%. 

4.3. Model Build-Up 

Three different algorithms were used (KNN, 
Random Forest, and XG Boost) using the Python 

language to create the ML model. The standard 
parameters of each algorithm are used to create the 
model.  

4.3.1. Machine Learning Algorithms 

(1) K-Nearest Neighbors algorithm (KNN): 

KNN is a non-parametric model that does not 
have any parameters that can be learned from the 
data. Also, it does not make any mathematical 
assumptions as it only requires [23]: 

 A notion of distance from the selected point. 

 An assumption that the points that are closer to 
one another are similar. 

So, the KNN algorithm assigns a group of (K) 
objects in the training data set that are the closest 
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to a test point by using one of the similarity 
measures (e.g., distance function) and forecasts the 
required output depending on the most frequent 
class within the assigned K-Neighbors [24] [25].  

(2) Random Forest algorithm (RF): 

A ML algorithm that can solve classification 
and regression problems. The main element in the 
random forest is that for each nth, a random vector 
(Θn) is generated that is independent of any 
previous random vectors but has the same 
distribution. A tree starts to expand using a training 
set and random vectors to result in a classifier h (x, 
Θn), where x is the input vector. After a large set of 
trees is generated, a vote is made for the most 
popular class [26] [27]. The random forest can 
capture the nonlinearity in the data, and this can 

prevent issues like high errors, high variation, and 
overfitting [28].  
(3) XG Boost Algorithm: 

Gradient boosting is an ensemble ML algorithm 
that combines multiple weak learners into a strong 
learner. XG Boost is a scalable and improved 
version of the gradient boosting algorithm that has 
higher efficiency, computational speed, and 
performance. XG Boost creates nodes up to the 
maximum depth specified and then starts pruning 
from backward to reduce the size of regression 
trees by replacing nodes that do not contribute to 
improving leaf classification [29] [30]. However, 
XGB is more likely to show overfitting as it tries to 
minimize the cost function values between the real 
and predicted features. 

 
Figure 3. Correlation Matrix between the input data 
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4.4. Deployment and User Interface Program 

It is the design solution step by putting the 
results obtained from the ML Model into practice. 
After we do the model comparison and choose the 
best and most competent model, we will start 
deploying the user interface program using 
Streamlit. The following steps are followed for 
deployment [31]: 

 Import the chosen trained model to be able to 
predict based on the test data. 

 Define a function so it will use the trained model 
for prediction inside the app. 

 Create a variable to save the model prediction 
result and return it to the user once needed. 

 Accept the input from the browser and render the 
model’s final predictions on the web page. 

 Create (n) input variables to accept the user input 
values from the browser. 

5. Results and Discussion 
5.1. Model Assessment 

The use of statistical analysis of the data is a 
great help in evaluating the models. Root Mean 
Squared Error (RMSE) and Coefficient of 
Determination (R2) were used as expressed in 
equations (3) and (4), respectively, to evaluate the 
models generated. Table 4 shows the results of the 
three models used in this paper. 

 

ܧܵܯܴ =  ඨ
∑ ݎݑݏݏ݁ݎܲ ݊݅ݐܽ݉ݎܨ) ݁௧௨ − ௗ௧ௗ)ଶ݁ݎݑݏݏ݁ݎܲ ݊݅ݐܽ݉ݎܨ

ୀଵ
݊

 (3) 

ܴଶ =  
∑ ௧௨݁ݎݑݏݏ݁ݎܲ ݊݅ݐܽ݉ݎܨ) − ௗ௧ௗ݁ݎݑݏݏ݁ݎܲ ݊݅ݐܽ݉ݎܨ )ଶ

ୀଵ
∑ ௧௨݁ݎݑݏݏ݁ݎܲ ݊݅ݐܽ݉ݎܨ) − ெ)ଶ݁ݎݑݏݏ݁ݎܲ ݊݅ݐܽ݉ݎܨ

ୀଵ
 (4) 

 
Table 4. RMSE and R-Squared of the Three Models 

Model RMSE Average R-Squared 

KNN 18.69686605 0.8343 
Random Forest 12.86756387 0.9638 
XG Boost 13.05530926 0.9600 

 
Table 4 shows a comparison between the three 

models on RMSE and R2 values. RMSE values 
show the model's accuracy, with the RMSE closer 
to zero corresponding to higher accuracy. R2 values 
show how the actual and predicted data sets are 
correlated to each other, with R2 closer to 1 being 
better. It can be seen that the Random Forest Model 
has a lower RMSE value, which means that it has 
higher accuracy. Also, RF shows a higher R2 value, 
showing a better correlation between actual and 
predicted formation pressure.  

Figures 4-6 show the regression plot of actual 
vs. predicted formation pressure for the training 
data set developed by KNN, RF, and XGB, 
respectively. Figure 4 shows a great scatter of the 
data and lower R2 from the KNN model, which 
lowers its accuracy and gives a great variation in 
the predicted values from the actual values. Figure 
5 shows the RF model in the training phase with a 
smaller scatter of the data and reasonable R2, which 
is a good sign of the model. Also, it can be seen 

from Figure 6 and the corresponding R2 that is very 
close to 1 that XGB will give accurate results in the 
training phase for formation pressure, but when 
compared with the testing and validation results, it 
shows a greater difference in the predicted values, 
which indicates overfitting of the data in this 
model. 

Figures 7-9 represent the testing data. Figure 7 
representing the KNN model in the testing phase 
still shows a greater scatter of the data and lower 
R2 values. It can be seen from Figure 8 that there is 
a minimum scatter of the data and a reasonably 
high value of R2 very close to the values in the 
training stage (Figure 5) resulting from the RF 
model. Figure 9 shows a lower value of R2 in the 
testing phase of XGB in comparison to the 
extremely high value in the training phase (Figure 
6). 

Validation data are shown in Figures 10-12. 
Figure 10 of the KNN model still shows greater 
scatter of the data and lower R2 values over the 
validation process. From Figure 11, it can be seen 
that the RF model maintains its correlation, 
accuracy, and lower scatter of the data over the 
three phases. Figure 12 gives good results from 
XGB, but this shows that the model is not 
stabilized over the three phases. 
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Figure 4. Regression Plot of Actual 
vs. Predicted Formation Pressure 
for KNN Model – Training Phase 

Figure 5. Regression Plot of 
Actual vs. Predicted Formation 

Pressure for RF Model – Training 
Phase 

Figure 6. Regression Plot of Actual 
vs. Predicted Formation Pressure 
for XGB Model – Training Phase 

   
Figure 7. Regression Plot of Actual 
vs. Predicted Formation Pressure 
for KNN Model - Testing Phase 

Figure 8. Regression Plot of 
Actual vs. Predicted Formation 
Pressure for RF Model - Testing 

Phase 

Figure 9. Regression Plot of Actual 
vs. Predicted Formation Pressure 
for XGB Model - Testing Phase 

   
Figure 10. Regression Plot of 

Actual vs. Predicted Formation 
Pressure for KNN Model - 

Validation Phase 

Figure 11. Regression Plot of 
Actual vs. Predicted Formation 

Pressure for RF Model - 
Validation Phase 

Figure 12. Regression Plot of 
Actual vs. Predicted Formation 

Pressure for XGB Model - 
Validation Phase 

 
From the presented results, it can be seen that 

Random Forest has the best results in comparison 
to the other two models, as it has the lowest RMSE 
and higher R2 during the testing and validation and 
shows no overfitting of the data during the training 
stage.  

Well X is used in order to evaluate the 
credibility of the program. Table 5 shows a 
statistical summary of X. It can be seen that the 
used well data ranges in the same range as the input 
data. Well X shows the variation in pressure with 
depth and the sudden decrease in pressure, which 

R2 = 0.8999 R2 = 0.9837 R2 = 0.9999 

R2 = 0.7912 R2 = 0.9548 R2 = 0.9192 

R2 = 0.9530 R2 = 0.8119 R2 = 0.9617 
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helps more to evaluate the models. A comparison 
of the actual and predicted formation pressure vs. 
depth for the KNN, RF, and XGB over a well X is 
shown in Figures 13-15, respectively. It is clear 
that the RF model predicts the formation pressure 
and the abnormal points perfectly, while KNN 
shows good results and XGB shows the least good, 
as XGB provides overfitting in the training. So, 
Random Forest is used to build up a user interface 
program. 

Referring to Table 2, we can see that the 
presented accuracy of the random forest model in 
this paper is higher than the presented result of 
decision tree of [15]. Also, since the predicted 
formation pressure only depends on the immediate 
readings of the properties, so, there is no time delay 
for prediction and we will not wait for mud loss to 
occur like [22]. 

Table 5. Statistical Summary of Test Well  
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 (Psi) (Ft) (in) (%) (gm/cc) (ohm) M/hr.) (K. lb.)  (lb. f) (psi) (GPM) (C) (PPM) 
Maximum 4765.28 10830.19 8.5 0.38 2.87 2000 119.4 43.19 151.95 13236.36 3077.56 519.84 63.27 73251 
Minimum 3572.22 7765.70 8.5 0.01 2.23 0.41 3.56 2.4 9.45 2283.64 1502.50 370.64 34.68 2236 
Range 1193.06 3064.49 0 0.37 0.64 1999.59 115.84 41.19 142.50 10952.72 1575.07 149.20 28.59 71015 
Mean 4238.16 9312.50 8.5 0.193 2.58 31.22 29.18 24.87 125.82 7358.85 2150.62 443.62 48.99 7697.88 
Median 4287.21 9320.03 8.5 0.18 2.58 2.04 26.91 25.36 129.08 7256 2204.81 441.16 44.14 6057.82 
Standard 
Deviation 348.99 881.20 0 0.089 0.090 222.73 13.75 8.60 16.86 2331.32 439.60 36.61 9.06 5701.58 

1st Q 3935.85 8556.2 8.5 0.14 2.53 0.97 20.10 17.58 117.99 5342.55 1741.95 405.04 41.93 4852 
3rd Q 4553.43 10073.20 8.5 0.27 2.64 4.82 37.28 32.14 139.02 9230.55 2465.23 474.32 60.21 8631.88 

 

 
 

Figure 13. Actual and Predicted Formation Pressure Vs. Depth for KNN model - well X 

An additional tool is used to measure the effect 
of each input on the output. This tool is SHAP 
(SHapley Additive exPlanations), which has 
corresponding values. SHAP value is a method to 
explain the outputs of the ML models. It uses a 
game-theoretic approach that measures each 
individual feature’s contribution to the final 
outcome and is relative to the model’s expected 
value. In machine learning, each feature is assigned 
an importance value representing its contribution 

to the model's output [32]. In this research, we use 
SHAP Decision Plots to show how the model 
arrives at the predictions. Figure 16 shows the 
SHAP Decision plot of the RF Model with the plot 
centered on the X-axis around the Explainer 
expected value, which is equal to 4780.58 psi, 
while the Y-axis has the model’s input features 
ordered from top to bottom based on importance 
and contribution (feature’s importance is based on 
the observations plotted). Each line represents an 

Formation Pressure (Psi) 
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observation that strikes the X-axis at the top at the 
corresponding expected value. Figure 17 shows the 
observation plot and the effect of each feature on 
the prediction. It can be seen that the depth has the 
greatest effect on the prediction, where E[F(x)] is 

the explainer’s expected value and f(x) is the 
predicted value of the observation. Also, each 
feature has the corresponding SHAP value next to 
it and the contributing based on the importance on 
the plot. 

 
Figure 14. Actual and Predicted Formation Pressure Vs. Depth for RF model – well X 

 
Figure 15. Actual and Predicted Formation Pressure Vs. Depth for XGB model - well X 

5.2. Deployment and User Interface Program 

Streamlit is used for deploying the Random 
Forest machine learning model as a web service. 
Figure 18 shows the program interface on 

Streamlit. The interface program has been 
evaluated with a different well Y to measure its 
credibility with 196 points and found the accuracy 
of results to be 95%. Table 6 shows the statistical 
summary of the data for well Y.  

 

Formation Pressure (Psi) 

Formation Pressure (Psi) 
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Figure 16. Decision plot showing observations and predicted values based on the feature importance and SHAP 

Value 

 
Figure 17. Sample of the Observation from Decision plot 

Table 6 Statistical summary for the test well Y 
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 (Psi) (Ft) (in) (%) (gm/cc) (ohm) M/hr.) (K. lb.)  (lb. f) (psi) (GPM) (C) (PPM) 
Maximum 4522.87 9961.62 8.5 0.46 2.82 401.91 117.26 55.07 128.40 14680 3532.94 572.87 37.23 12601.16 
Minimum 2257.27 9340.81 8.5 0.022 2.27 0.72 4.68 8.35 70 903.42 2522.51 528.10 22.51 2250.55 
Range 2265.60 620.82 0 0.44 0.55 401.19 112.57 46.72 58.40 13776.57 1010.43 44.77 14.72 10350.61 
Mean 3898.61 9651.06 8.5 0.21 2.61 27.02 49.66 42.77 102.51 11424.84 3100.83 551.74 26.34 7332.04 
Median 4379.80 9650.99 8.5 0.21 2.61 2.92 49.97 44.07 102.82 11475 2986.15 569.96 22.76 7568.16 
Standard 
Deviation 917.04 180.14 0 0.099 0.099 79.19 16.90 7.03 5.83 1771.88 293.60 20.42 5.25 1968.67 

1st Q 4308.32 9495.85 8.5 0.13 2.56 1.72 39.91 39.91 101.30 10577.50 2830.28 531.04 22.67 6003.08 
3rd Q 4451.32 9806.18 8.5 0.27 2.68 13.46 59.82 46.95 104.94 12547.50 3391.94 571.41 31.32 8701.36 
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Figure 18. Program interface showing input variables to the left. 

6. Conclusions 

Conventional kick detection methods take a 
long time to record the kick, and this leads to an 
increase in the kick size and makes it harder to 
regain well control. Also, this model shows higher 
accuracy and fast response than some of the 
developed models. This research used the benefit 
of machine learning to recognize the kick before it 
enters the wellbore by predicting the abnormal 
formation pressure. In conclusion: 

 The ML tools depict a great advantage over 
conventional methods as it detects the abnormal 
formation pressure and the possible kick in place 
at the moment the bit drills through the 
formation. 

 This ML Model shows higher accuracy than 
other ML Models in predicting formation 
pressure and kick. 

 Since the parameters entered to the model are 
taken from the instantaneous readings of the 
drilling, so, no delay of formation pressure and 
kick detection like other ML Models. 

 The proposed models lead to enhance the kick 
performance indicators by decreasing the kick 
detection volume and kick response time. 

 The KNN model shows low R2 and high RMSE 
values with a greater scatter of data. 

 The XGB model shows overfitting of the data in 
the training stage and is not stable through the 
test, and validation stages. 

 The Random Forest model is found to be the best 
among the three models, with average R2 = 
0.9638 and RMSE = 12.86. 

 The Interface program was evaluated and 
showed an accuracy of 95%. 

 Even with computers with high computational 
power, caution must be considered to avoid 
making a non-required, non-valid correlation 
between parameters as computers do not 
understand the drilling operations. 

We recommend that the current model needs to 
be continuously fed with data, trained, and tested 
to increase its effectiveness and widen its area of 
coverage. 
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  چکیده:

باعث از دسـت   تواندیبار اسـت که مفاجعه ياز حوادث انفجار  يریو جلوگ منیا يحفار اتیاز عمل  نانیاطم  يبرا  يدیو کنترل ضـربه، عناصـر کل  صینظارت، تشـخ
ضـربه را پس   یجخرو/يورود  انیجر  يحجم گودال و حسـگرها  زریمانند توتالا  یلگد معمول صیتشـخ يهاسـتمیشـود. س ـ  یطیمح يهابیو آس ـ زاتیدادن جان، تجه
پس از نفوذ   يرعادیغ   لیفشـار تشـک صیاسـت که لگد را قبل از ورود به چاه با تشـخ نیهدف ما ا  ن،ی. بنابراکنندیم ییسـطح شـناسـا  يهجوم رو يادیاز ثبت مقدار ز

مانند عمق   یدانیم يحفار  يپارامترها ازبا اســتفاده  نیگزیراه حل جا  کیرا به عنوان  دیجد  نیماش ــ  يریادگیمدل   کیمقاله    نی. امیده صیبه ســنگ تشــخ  تیب
 شــنهادیپ  انیخط جر  ان،یســرعت جر  ســتاده،یگشــتاور، فشــار لوله ا  قه،یچرخش در دق  ت،یب يمقاومت، نرخ نفوذ، وزن رو  ،يظاهر  یتخلخل، چگال  ،یواقع يعمود

طح گاز مدلکندیم ه الگور  یمبتن  يها. دما و سـ تفاده از سـ عه داد تمیبر داده با اسـ دند:  همجزا توسـ  XG Boostو   K-Nearest Neighbor  ،Random Forestشـ

  ری با مقاد  یجنگل تصـادف  تمیشـدند. به طور متوسـط، مدل با اسـتفاده از الگور  میتقس ـ یو اعتبار سـنج شیآموزش، آزما  يندهایفرآ  يبرا  یدانینقطه داده م  6022
ــهیر يمربعات خطا  نیانگیم ــر ریو مقاد  ش ــان داد. ابزار   ینیبشیدقت را در پ  نیشــتری، ب9638/0و    868/12  بیبه ترت  نییتع بیض ــازند نش ــار س  Streamlitفش

Deployment شـد و دقت   شیآزما  یدانینقطه داده م 196برنامه با اسـتفاده از  نیاسـتفاده شـد. ا  ینیبشیپ  ندیفرآ  لیتسـه  يبرا  يبرنامه رابط کاربر کی جادیا  يبرا
 .درصد را ثبت کرد 95 يبالا

  .يرعادیغ  لیفشار تشک ،يحفار يپارامترها ن،یماش يریادگیزودهنگام ضربه،  صیتشخ کلمات کلیدي:

 

 

 

 


