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Kick monitoring, detection, and control are key elements to ensure safe
drilling operations and avoid catastrophic blow-out incidents that can cause loss
of life, equipment, and environmental damage. Conventional kick detection
systems such as the pit volume totalizer and the flow in/out sensors identify the
kick after a large amount of influx has been recorded on the surface. So, we aim
to recognize the kick before it enters the wellbore by detecting the abnormal
formation pressure once the bit penetrates the rock. This paper proposes a new
machine learning model as an alternative solution using field drilling parameters
such as true vertical depth, porosity, bulk density, resistivity, rate of penetration,
weight on bit, rotation per minute, torque, standpipe pressure, flow rate, flowline
temperature, and gas level. The data-driven models were developed using three
separate algorithms: K-Nearest Neighbor, Random Forest, and XG Boost. 6022
field data points were split for training, testing, and validation processes. On
average, the model using the random forest algorithm showed the highest
accuracy in forecasting the formation pressure, with root mean squared error
values and coefficient of determination values of 12.868 and 0.9638, respectively.
Streamlit Deployment tool was used to create a user interface program to
facilitate the prediction process. The program was tested using 196 field data
points and recorded a high accuracy of 95%.

1. Introduction

Drilling oil and gas wells is surrounded by
many challenges, and well control concerns have
the highest priority for all working personnel. A
kick, which is the undesired, uncontrolled flow of
formation fluids into the wellbore, is the result of
mud hydrostatic pressure becoming insufficient to
sustain formation pressure, and this can happen
during any drilling stage [1]. We can look at one of
the well control incidents that took place in the
Gulf of Mexico, the Deep-Water Horizon incident.
Due to a well control event, the rig exploded and
sank into the ocean, taking 11 lives with it. Also, 4
MMbbls spilled over the ocean in 87 days, and the
incident cost $5.5 billion in account of the Clean
Water Act penalty and $8.8 billion in natural
resource damages [2]. So, the kick must be
detected, handled, and removed from the well as
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early as possible to regain primary well control
(i.e., mud hydrostatic pressure greater than
formation pressure), and if the well control
measures have not been applied, catastrophic
events might happen that can result in the loss of
life, equipment, and finances and cause
environmental damage [3]. The main goal during
a drilling operation is to constantly monitor the
wellbore pressure and prevent any formation
influx. So, the rig crew analyzes various
parameters (surface and downhole) to recognize a
kick. Therefore, sensors are widely distributed in
the rig at the pump discharge, the flowline return to
the shale shaker, and drilling parameters
monitoring sensors [4]. Normal kick detection
relies on mud volume in the mud system, and if the
mud level increases in the tanks, this means that an
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influx has occurred in the well.

Machine learning is the tool that seeks to
identify a relationship among the data sets and has
become a tool for increasing safety and optimizing
operations Machine learning models will help in
the automation of operations and can remove
human error. Machine learning has been applied to
various oil and gas topics such as rate of
penetration prediction, interpretation of real well
logging data, expected weight on bit and bit wear,
and non-productive time prediction [5] [6].

The aim of this research is to use machine
learning and drilling parameters from mud logging
and MWD/LWD in order to recognize the kick
before it enters the wellbore by detecting the
abnormal formation pressure. This will allow for
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early detection of the kick, giving the rig crew an
advantage to regain control of the well rather than
waiting until the influx is in the well, detected by
the conventional sensors, then dealing with it.

2. Kick Warning Signs

When formation pressure exceeds the
hydrostatic pressure and the formation has good
porosity (@) and permeability (K), a kick is
expected [7]. Abnormal formation pressure and
kick have warning signs that can be predicted from
drilling parameters. Table 1 summarizes the
abnormal formation pressure and kick warning
signs.

Table 1 a summary of the abnormal formation pressure and kick warning signs.

No. Parameter

The normal trend with depth

Change against high formation pressure

Rate of penetration
(ROP) [8] increase.

ROP decreases uniformly with the depth

ROP increases and the formation becomes more
drillable which is called a fast break.

2 Torque and Drag [9]

Normal increase of torque and drag.

Greater wall contact and friction increase more
causing a greater increase in torque and drag.

3 Bulk Density [10]

Bulk density increases with depth

Density decreases against high pressures reflecting

high porosity.
4 Cutting Size and Cutting cuttings have rounded edges and are generally  long, and splintery with angular edges. Also, there is
Shape [11] flat an increase in cutting quantity.
Trip, Connection, and Depends on the formation and the time taken . . - .
5 . . increase while drilling abnormal formation pressure
Background Gases [12] in connections.
6 Formation Resistivity The normal trend of the resistivity is to resistivity decreases greatly as a result of the

[13] increase with depth.

increased porosity and water content

3. Kick Detection Methods: Conventional,
Mathematical, and Machine Learning

Conventional kick detection methods are [14]:

e Flow in and out sensors, located at the pump
discharge line and return flow line, respectively
[15].

e Pit Volume Totalizer (PVT), located at mud
tanks [16] as shown in Figure 1.

These methods give an alarm when the flow rate
or tank volume deviates from a pre-set limit value.
Under any circumstances, any change in the tank
level will lag behind the increased flow rate, so the
increased flow rate will take some time to give a
considerable observable pit level change. Thus,
these methods detect the kick after its effect is on
the surface, which is time-consuming [17] [4].

Mathematical models and equations were
developed to calculate the formation pressure (Pr)
by using D-exponent (d.) [9]:

e Eaton Method: applicable in sedimentary
basins.

Pf: Oov — (Gov — Pn) X (ﬂ)ll (1)

dcn

Ps: formation pressure (ppg)

Gov: overburden gradient (ppg)

P,: normal formation pressure gradient (ppg)

dco: the observed value of dc at depth of interest
dca: normal trendline value of dc at depth of interest

¢ Ratio Method: applicable in Clastic
Limestone.

dcn
Pf = Pn X (E) (2)

The major problem with these mathematical
equations is how to choose the correct normal
compaction trend, especially when there is too little
data. Also, there will be a continuous change in the
mathematical equation in use due to the change in
the rock type [18].

Machine learning (ML) is a discipline that uses
a series of procedures and algorithms to analyze the
data in order to recognize patterns, clusters, or
trends and then extract fruitful information for data
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analysis in an automated, enhanced way [19].
Machine learning is concerned with using the best
features in conjunction with the best algorithm to
build up a model capable of performing the
required tasks [20]. Some machine learning models
have been developed in order to overcome the
problems associated with conventional methods.

5. Hook load weight sensor | [}
6. WOB weight sensor 1 4!
7. Torque sensor

Annulus
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Some of the models analyze whether the alarm
given by conventional methods is true or false, like
[21]. Some use algorithms for kick detection and
influx size estimation during drilling operations,
like [22] and [15]. Table 2 shows a summary of
some of the machine learning models used in kick
detection.

4.Pump
discharge
pressure 1.Flowin

Presare o
semor meter

Return
flow line

2. Flow out
Flow

meter
- ModCond Rining 3. Active
Srstem pitlevel

et
semsor

BHA: Bottom hole assembly

Figure 1. Drilling rig kick detection instruments and sensors locations [15]

Table 2. Summary of some of the machine learning models used in kick detection.

Model Algorithms

Parameters

Data set Accuracy

-Long short-term memory

False alarm
recurrent neural network

detection [21].

-D-Exponent

-Standpipe pressure (SPP)

4 Cases of Kick -

(LSTM-RNN)
kick detection | ' qp “Flow infout ifici LSTM mud loss rate = 0.1040 kg/s
and influx size -8 ort-Term Memory _SPP Artificial G'en'eratc?d data set by g
L (LSTM) . . open lab drilling simulator for over 500 epochs
estimation -Bidirectional LSTM “Choke Opening Size an inclined well 0f 2500 m ,
idirectiona _
during drilling (BILSTM) -Hydrostatic Pressure depth BiLSTM mud loss rate = 0.0744
operations [22] -Depth Pt kg/s over 500 epochs
-Delta flow Decision Tree
-Hook load R>=91.4
kick detection -Decision Tree -Pit volume Artificial Generated data set by ~ Naive Bayes
using drilling - Naive Bayes, -Weight On Bit open lab drilling simulator R?>=78.1
parameters -Logistic Regression -Rate Of Penetration giving 25 runs used in the Logistic Regression
[15]. -Neural Network -Rotation per minute (RPM) mode. R>=61
-SPP Neural Network
-Torque. R?=70.3
4. Method and Data formation tester data (RFT) collected from 10 wells

Figure 2 shows the process followed to build-
up the ML Model and Program.
4.1. Data Gathering

Real-time drilling parameters from mud
logging, MWD/LWD, open hole logs, and repeat

located in the Western Desert, Egypt, to be used in
the Formation Pressure Prediction and Kick
Detection program and model build-up. Table 3
shows the statistical summary of the input data, and
the upper and lower limits of each property used in
the program. 6022 points were gathered along 8.5”
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holes having the following inputs:

* True Vertical Depth (TVD) (ft), Measured from
MWD/LWD

* Rotation per Minute (RPM), Measured from
Mud Logging and MWD/LWD

» Bit Size (in), Actual hole size being drilled
* Torque (Ib. f), Measured from Mud Logging
» Porosity (%), Measured from MWD/LWD

» Standpipe pressure (Psi), Measured from Mud
Logging

* Bulk Density (gm/cc), Measured from

Data Gathering

Data Preparation
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MWD/LWD
* Flow Rate (GPM), Measured from Mud Logging
* Resistivity (ohm), Measured from MWD/LWD

* Flowline Temperature (°C), Measured from Mud
Logging

* ROP (M/hr.), Measured from Mud Logging and
MWD/LWD

* Gas Level (PPM), Measured from Mud Logging.

*  Weight on Bit (WOB) (K. Ib.), Measured from
Mud Logging

» Formation Pressure (Psi), Measured from RFT

User Interface

i i
Model Build Up Program

Figure 2. Model and Program Build-up Steps.

Table 3. Statistical Summary of the Input Data

)
— = & > —
s 2 S @ o Z 2 b o = 5 [4
S S = £ z
¢ (¢ ¢ =z % : 2 5 & £ = g ;& 3
£ £ &z 5 £ Z g = z g ’ = g g
7 & <~ & S < = O
(Psi) (Ft) (in) (%) (gm/cc) (ohm) M/hr) (K. b)) (Ib. ) (psi) (GPM) (&) (PPM)
Maximum 8362.22 12523.58 8.50 0.53 321 2000.00 149.07 55.00 213.47 14586.81 3626.72 1150.41 63.27 77933430
Minimum 1505.24 7765.70 8.50 0.00 2.02 0.34 1.25 0.00 0.00 0.00 113.18 7.69 16.93 247.00
Range 6856.99 4757.88 8.50 0.53 1.19 1999.66 147.83 55.00 213.47 14586.81 3513.54 1142.72 46.34 779087.30
Mean 4770.24 10202.23 8.50 0.20 2.62 28.65 28.25 20.15 123.81 7491.69 2469.62 467.95 42.85 17068.01
Median 4634.14 10154.19 8.50 0.19 2.62 2.17 24.58 19.95 136.18 7391.90 2485.30 471.40 42.11 9599.26
]S)t:\?i(;:rjn 918.20 971.85 0.00 0.11 0.11 177.15 15.90 8.99 26.54 2021.90 454.96 50.07 9.13 33675.95
1stQ 4348.59 9545.85 8.50 0.11 2.55 1.04 17.14 13.81 110.47 6084.66 2220.67 449.67 35.99 5989.52
3rdQ 5209.85 10827.35 8.50 0.28 2.69 5.22 36.55 26.75 141.13 8842.13 2722.08 498.05 47.79 16634.17

4.2. Data Preparation

The data has no missing inputs and no
duplicates. So, the features and target were
identified. Figure 3 shows the correlation matrix
between the input data.

Data split into three trains:

e Training data set with 4335 points representing
72%.

e Test data set with 1084 points representing 18%.
e Validation data set with 603 points representing
10%.
4.3. Model Build-Up

Three different algorithms were used (KNN,
Random Forest, and XG Boost) using the Python

language to create the ML model. The standard
parameters of each algorithm are used to create the
model.

4.3.1. Machine Learning Algorithms
(1) K-Nearest Neighbors algorithm (KNN):

KNN is a non-parametric model that does not
have any parameters that can be learned from the
data. Also, it does not make any mathematical
assumptions as it only requires [23]:

e A notion of distance from the selected point.

e An assumption that the points that are closer to
one another are similar.

So, the KNN algorithm assigns a group of (K)
objects in the training data set that are the closest
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to a test point by using one of the similarity
measures (e.g., distance function) and forecasts the
required output depending on the most frequent
class within the assigned K-Neighbors [24] [25].

(2)Random Forest algorithm (RF):

A ML algorithm that can solve classification
and regression problems. The main element in the
random forest is that for each n, a random vector
(®n) is generated that is independent of any
previous random vectors but has the same
distribution. A tree starts to expand using a training
set and random vectors to result in a classifier h (x,
®n), where x is the input vector. After a large set of
trees is generated, a vote is made for the most
popular class [26] [27]. The random forest can
capture the nonlinearity in the data, and this can
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prevent issues like high errors, high variation, and
overfitting [28].

(3) XG Boost Algorithm:

Gradient boosting is an ensemble ML algorithm
that combines multiple weak learners into a strong
learner. XG Boost is a scalable and improved
version of the gradient boosting algorithm that has
higher efficiency, computational speed, and
performance. XG Boost creates nodes up to the
maximum depth specified and then starts pruning
from backward to reduce the size of regression
trees by replacing nodes that do not contribute to
improving leaf classification [29] [30]. However,
XGB is more likely to show overfitting as it tries to
minimize the cost function values between the real
and predicted features.

-1.00

Correlation Matrix

-075

050

025

0.00

-0.25

-0.50

-0.75

Figure 3. Correlation Matrix between the input data
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4.4. Deployment and User Interface Program

It is the design solution step by putting the
results obtained from the ML Model into practice.
After we do the model comparison and choose the
best and most competent model, we will start
deploying the user interface program using
Streamlit. The following steps are followed for
deployment [31]:

e Import the chosen trained model to be able to
predict based on the test data.

e Define a function so it will use the trained model
for prediction inside the app.

e Create a variable to save the model prediction
result and return it to the user once needed.

Journal of Mining & Environment, Published online

e Accept the input from the browser and render the
model’s final predictions on the web page.

e Create (n) input variables to accept the user input
values from the browser.

5. Results and Discussion
5.1. Model Assessment

The use of statistical analysis of the data is a
great help in evaluating the models. Root Mean
Squared Error (RMSE) and Coefficient of
Determination (R*) were used as expressed in
equations (3) and (4), respectively, to evaluate the
models generated. Table 4 shows the results of the
three models used in this paper.

RMSE =

X (Formation Pressureyciyq — Formation Pressurep egicted)?

®)

n

R? =

Y (Formation Pressuresciyq — Formation Pressurepregicteq)?

X, (Formation Pressureciyq — Formation Pressureyeqn)?

4)

Table 4. RMSE and R-Squared of the Three Models

Model RMSE Average R-Squared
KNN 18.69686605 0.8343
Random Forest 12.86756387 0.9638
XG Boost 13.05530926 0.9600

Table 4 shows a comparison between the three
models on RMSE and R* values. RMSE values
show the model's accuracy, with the RMSE closer
to zero corresponding to higher accuracy. R*values
show how the actual and predicted data sets are
correlated to each other, with R* closer to 1 being
better. It can be seen that the Random Forest Model
has a lower RMSE value, which means that it has
higher accuracy. Also, RF shows a higher R? value,
showing a better correlation between actual and
predicted formation pressure.

Figures 4-6 show the regression plot of actual
vs. predicted formation pressure for the training
data set developed by KNN, RF, and XGB,
respectively. Figure 4 shows a great scatter of the
data and lower R? from the KNN model, which
lowers its accuracy and gives a great variation in
the predicted values from the actual values. Figure
5 shows the RF model in the training phase with a
smaller scatter of the data and reasonable R?, which
is a good sign of the model. Also, it can be seen

from Figure 6 and the corresponding R*that is very
close to 1 that XGB will give accurate results in the
training phase for formation pressure, but when
compared with the testing and validation results, it
shows a greater difference in the predicted values,
which indicates overfitting of the data in this
model.

Figures 7-9 represent the testing data. Figure 7
representing the KNN model in the testing phase
still shows a greater scatter of the data and lower
R? values. It can be seen from Figure 8 that there is
a minimum scatter of the data and a reasonably
high value of R very close to the values in the
training stage (Figure 5) resulting from the RF
model. Figure 9 shows a lower value of R? in the
testing phase of XGB in comparison to the
extremely high value in the training phase (Figure
6).

Validation data are shown in Figures 10-12.
Figure 10 of the KNN model still shows greater
scatter of the data and lower R* values over the
validation process. From Figure 11, it can be seen
that the RF model maintains its correlation,
accuracy, and lower scatter of the data over the
three phases. Figure 12 gives good results from
XGB, but this shows that the model is not
stabilized over the three phases.
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Figure 4. Regression Plot of Actual
vs. Predicted Formation Pressure
for KNN Model — Training Phase

Figure 7. Regression Plot of Actual
vs. Predicted Formation Pressure
for KNN Model - Testing Phase

\——p—o—1is
NS e e sman

Figure 10. Regression Plot of
Actual vs. Predicted Formation
Pressure for KNN Model -
Validation Phase
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R2=0.9999 P

Figure 5. Regression Plot of
Actual vs. Predicted Formation
Pressure for RF Model — Training
Phase

Figure 6. Regression Plot of Actual
vs. Predicted Formation Pressure
for XGB Model — Training Phase

Figure 8. Regression Plot of
Actual vs. Predicted Formation
Pressure for RF Model - Testing

Phase

“‘oo .
.
b
o
.

Figure 11. Regression Plot of
Actual vs. Predicted Formation
Pressure for RF Model -
Validation Phase

Figure 9. Regression Plot of Actual
vs. Predicted Formation Pressure
for XGB Model - Testing Phase

Figure 12. Regression Plot of
Actual vs. Predicted Formation
Pressure for XGB Model -
Validation Phase

Well X is used in order to evaluate the
credibility of the program. Table 5 shows a
statistical summary of X. It can be seen that the
used well data ranges in the same range as the input
data. Well X shows the variation in pressure with
depth and the sudden decrease in pressure, which

From the presented results, it can be seen that
Random Forest has the best results in comparison
to the other two models, as it has the lowest RMSE
and higher R* during the testing and validation and
shows no overfitting of the data during the training
stage.
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helps more to evaluate the models. A comparison
of the actual and predicted formation pressure vs.
depth for the KNN, RF, and XGB over a well X is
shown in Figures 13-15, respectively. It is clear
that the RF model predicts the formation pressure
and the abnormal points perfectly, while KNN
shows good results and XGB shows the least good,
as XGB provides overfitting in the training. So,
Random Forest is used to build up a user interface
program.

Journal of Mining & Environment, Published online

Referring to Table 2, we can see that the
presented accuracy of the random forest model in
this paper is higher than the presented result of
decision tree of [15]. Also, since the predicted
formation pressure only depends on the immediate
readings of the properties, so, there is no time delay
for prediction and we will not wait for mud loss to
occur like [22].

Table 5. Statistical Summary of Test Well

3600 3800 4000

—_ = > )
< S @ @ > > = @ = =3 @
S g = g Z x £ : & 2 z s g g
ZE ZZ e 2 I 3% 3 3 S z g £ z 2 =
g8 E¢ 2 5 s 22 Z & s & g s = 2 g
# & g &~ &~ & = &
(Psi) (Ft) (in) (%) (gmlc) (ohm)  M/r)  (K.lb) (Ib. ) (psi)  (GPM) (©) (PPM)
Maximum 476528  10830.19 85  0.38 2.87 2000 119.4 4319 15195 1323636  3077.56 51984 6327 73251
Minimum 357222 776570 85 0.0l 223 0.41 356 24 945  2283.64  1502.50 370.64  34.68 2236
Range 119306 306449 0 037 064  1999.59 11584  41.19  142.50 1095272 1575.07 14920 2859 71015
Mean 4238.16 931250 85  0.93 258 3122 29.18 2487 12582  7358.85  2150.62 44362 4899  7697.88
Median 428721 932003 85  0.18 258 2.04 2691 2536 129.08 7256 220481 44116  44.14  6057.82
Standard 348.99 881.20 0 0089 009  222.73 13.75 8.60 1686 233132 43960  36.61 906 570158
Deviation
15t Q 3935.85 85562 85  0.14 253 0.97 20.10 1758 117.99 534255 174195 40504  41.93 4852
3rd Q 455343 1007320 85 027 2.64 4.82 37.28 32014 139.02  9230.55 246523 47432 6021  8631.88
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Figure 13. Actual and Predicted Formation Pressure Vs. Depth for KNN model - well X

An additional tool is used to measure the effect
of each input on the output. This tool is SHAP
(SHapley Additive exPlanations), which has
corresponding values. SHAP value is a method to
explain the outputs of the ML models. It uses a
game-theoretic approach that measures each
individual feature’s contribution to the final
outcome and is relative to the model’s expected
value. In machine learning, each feature is assigned
an importance value representing its contribution

to the model's output [32]. In this research, we use
SHAP Decision Plots to show how the model
arrives at the predictions. Figure 16 shows the
SHAP Decision plot of the RF Model with the plot
centered on the X-axis around the Explainer
expected value, which is equal to 4780.58 psi,
while the Y-axis has the model’s input features
ordered from top to bottom based on importance
and contribution (feature’s importance is based on
the observations plotted). Each line represents an
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observation that strikes the X-axis at the top at the
corresponding expected value. Figure 17 shows the
observation plot and the effect of each feature on
the prediction. It can be seen that the depth has the
greatest effect on the prediction, where E[F(x)] is

(=]

10000

10500

3600 3800 4000

4200 4400

Journal of Mining & Environment, Published online

the explainer’s expected value and f(x) is the
predicted value of the observation. Also, each
feature has the corresponding SHAP value next to
it and the contributing based on the importance on
the plot.

Formation Pressure (Psi)

Figure 14. Actual and Predicted Formation Pressure Vs. Depth for RF model — well X

TVD(ft)

10000

10500

00 30O 4000

o Actual
Predicted

4200 00 4500 4800

Formation Pressure (Psi)

Figure 15. Actual and Predicted Formation Pressure Vs. Depth for XGB model - well X

5.2. Deployment and User Interface Program

Streamlit is used for deploying the Random
Forest machine learning model as a web service.
Figure 18 shows the program interface on

Streamlit. The interface program has been
evaluated with a different well Y to measure its
credibility with 196 points and found the accuracy
of results to be 95%. Table 6 shows the statistical
summary of the data for well Y.
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Figure 16. Decision plot showing observations and predicted values based on the feature importance and SHAP
Value
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Table 6 Statistical summary for the test well Y
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Mean 3898.61 9651.06 8.5 0.21 2.61 27.02 49.66 42.77 102.51 11424.84 3100.83 551.74 26.34 7332.04
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3rd Q 445132 9806.18 8.5 0.27 2.68 13.46 59.82 46.95 104.94 12547.50 3391.94 57141 3132 8701.36
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6. Conclusions

Conventional kick detection methods take a
long time to record the kick, and this leads to an
increase in the kick size and makes it harder to
regain well control. Also, this model shows higher
accuracy and fast response than some of the
developed models. This research used the benefit
of machine learning to recognize the kick before it
enters the wellbore by predicting the abnormal
formation pressure. In conclusion:

e The ML tools depict a great advantage over
conventional methods as it detects the abnormal
formation pressure and the possible kick in place
at the moment the bit drills through the
formation.

e This ML Model shows higher accuracy than
other ML Models in predicting formation
pressure and kick.

¢ Since the parameters entered to the model are
taken from the instantaneous readings of the
drilling, so, no delay of formation pressure and
kick detection like other ML Models.

e The proposed models lead to enhance the kick
performance indicators by decreasing the kick
detection volume and kick response time.

e The KNN model shows low R? and high RMSE
values with a greater scatter of data.

e The XGB model shows overfitting of the data in
the training stage and is not stable through the
test, and validation stages.

e The Random Forest model is found to be the best
among the three models, with average R? =
0.9638 and RMSE = 12.86.

e The Interface program was evaluated and
showed an accuracy of 95%.

e Even with computers with high computational
power, caution must be considered to avoid
making a non-required, non-valid correlation
between parameters as computers do not
understand the drilling operations.

We recommend that the current model needs to
be continuously fed with data, trained, and tested
to increase its effectiveness and widen its area of
coverage.
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