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 The production rate and cut-off grade are two critical variables in the design and 
planning of open-pit mines. Generally, the production rate depends on the reserve 
amount, which is influenced by the cut-off grade. Additionally, the cut-off grade is 
affected by the production cost, which is influenced by the production rate and product 
price. A conventional approach optimizes each variable individually, and neglects the 
trade-off between production rate and cut-off grade, leading to a sub-optimal solution. 
This work aimed to address the simultaneous optimization of the production rate and 
cut-off grade and provided a novel solution for this problem. In this context, a non-
linear mathematical model was developed. The Particle Swarm Optimization (PSO) 
algorithm was used due to the model's non-linear nature and the continuous decision 
variables. Implementing the model for a typical copper mine showed that the suggested 
model resulted in a concurrent optimization of production rate and cut-off grade. The 
maximum NPV of 1.153 billion dollars occurred at a production rate of 15.66 Mt/y, 
and a cut-off grade of 0.64%. Additionally, a sensitivity analysis was conducted for 
key factors such as product price, discount rate, and maximum capital cost. 
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1. Introduction  

The profitability of a mining project is 
influenced by two key factors, namely production 
rate and cut-off grade [1]. The production rate is 
determined based on the amount of mineral` 
reserve, and is measured using a series of 
predefined cut-off grades. The cut-off grade is 
commonly calculated based on the operating cost 
and product price. The product price is out of the 
control, but the operating cost has shown a direct 
relationship with the production rate. Therefore, 
there is a trade-off between these factors, and the 
optimization of the project requires considering 
simultaneously both the production rate and cut-off 
grade. The optimization of production rate is a 
critical issue, as it determines mine opening size, 
mining equipment, processing capacity, and the 
number of human workforces [2, 3].  

Generally, a higher production rate needs a 
higher capital cost. However, it lowers the 

operating cost and the mine life. With a reduced 
production rate, the capital costs and revenues 
show a remarkable decrease, but the mine life 
would be prolonged. When the production rate of 
the reserves be too high, the operating lifetime 
would be very short in order to cause an adequate 
return on the capital investment. Furthermore, an 
extremely high rate of production requires a 
significant capital cost, which may not be cost-
effective for the investors, especially when 
regional infrastructure is inadequate. If the 
production rate is too low compared with the ore 
reserve tonnage, the resulting operating profit may 
be too small to recover the capital cost, as it is 
expected to be returned during the initial years of 
the operation [4, 5].  

Typically, an optimum production rate exists 
between the two extremes that balances negative 
and positive cash flows to maximize the project's 
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profitability [6, 7]. The production rate is affected 
by many factors including reserve, cut-off grade, 
unit costs, and selling price. Except for the product 
price, the other factors are related to the production 
rate and change. For example, the enhancement in 
the production rate results in a reduction in unit 
cost, causing a decrease in the cut-off grade, and an 
increase in the reserve. The conventional 
techniques that optimize each variable 
independently can lead to sub-optimal solutions, as 
trade-offs between these factors are neglected.  

This work aimed to develop a novel model to 
optimize simultaneously the production rate and 
cut-off grade of metal open-pit mines. In this 
context, a non-linear optimization model was 
presented, and a Particle Swarm Optimization 
(PSO) algorithm was implemented to solve the 
model. The necessity of this work becomes 
particularly evident in the early stages of open-pit 
mine feasibility studies, while more advanced 
multi-period and dynamic cut-off grade 
calculations are essential for detailed production 
planning. The reason behind is that such analyses 
are often impractical during the initial phases of 
project evaluation. In these preliminary stages, it is 
crucial to estimate production capacity, which is 
directly influenced by the ore reserves defined by a 
single cut-off grade. Given the interconnected 
relationship between cut-off grade, ore reserves, 
and production capacity, multiple scenario 
analyses may be required to identify the optimal 
capacity. Our proposed optimization approach 
sought to streamline this process by providing a 
systematic method for determining the optimal 
production rate and cut-off grade, thereby reducing 
the need for extensive scenario analysis. 

2. Literature Review 

Many studies have been conducted considering 
the optimization of production rate and cut-off 
grade. Taylor presented an empirical formula to 
select the mining production rate based on the 
survey of 30 projects [8]. However, this approach 
has several disadvantages such as the ignorance of 
operational and financial parameters [4, 9]. Dowd 
addressed the issue through dynamic 
programming, assuming that costs and prices could 
be accurately predicted [10]. Wells suggested a 
method to maximize the ratio of the positive 
present value of cash flow to its negative 
counterpart [6]. Cavender sought to optimize the 
production rate based on the Net Present Value 
(NPV) maximization, regarding cash flow and 
option pricing techniques. However, this model 

was not widely used due to the lack of practical 
operating constraints  [11]. Hajdasiński critically 
evaluated Z. Li's model using the Net Future Value 
(NFV) for optimization. His results demonstrated 
that the NPV was a more appropriate basis for such 
models. It showed that NFV made time variables 
undefined and rendered Li's sensitivity analysis 
and optimization results misleading. These results 
underscored the necessity of using NPV to obtain 
significant optimum solutions in mine production 
capacity optimization [12]. Smith investigated the 
techniques and variables affecting the selection of 
the most suitable production rate. The results 
suggested that the cut-off grade should be included 
to calculate the production rate [2]. Abdul Sabour 
proposed a model according to a marginal analysis, 
which suggested that setting marginal cost equal to 
marginal revenue could lead to an optimum 
production rate [13]. Smith and Abdul Sabour 
indicated that the production rate associated with 
the maximum NPV might not always be optimum 
and recommended considering a range of 
production rates. The upper level of the range 
corresponded to the maximum value of NPV, and 
the lower level coincided with the production rate 
that yielded to double the capital cost [2].  

Ordin and Ordin studied the optimization of the 
design capacity of a mine considering the 
investment risk. The study employed mathematical 
and economic models to evaluate critical factors 
such as ore grade, production costs, and market 
conditions. This approach facilitated informed 
decision-making under varying economic 
scenarios, finally enhancing the economic value of 
mining operations [14]. Elkington and Durham 
desegregated pushback and production capacity 
optimization in open-pit mines, aiming to 
maximize NPV. They proposed a mathematical 
model to optimize simultaneously the mining and 
processing capacities including intermediate and 
ultimate pushback selection, the determination of 
scheduling, cut-off grade, and stockpiling  [15]. 
Ordin et al. developed a dynamic lag modeling 
approach to optimize the mine design capacity, 
considering the discount of cash flows and 
variations in technical and economic parameters 
over the mine's operational life. This method was 
applied into the diamond placer mines of Solur and 
Vostochny in the Republic of Sakha (Yakutia), 
demonstrating the improved accuracy and 
reliability for capacity optimization by 
incorporating macroeconomic dynamics [16]. Zuo 
et al. developed a multi-disciplinary optimization 
model for underground metal mines, considering 
income, safety, and environmental impact. 
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Through an adaptive optimization algorithm, the 
model was applied to a lead and zinc mine, 
achieving a production scale of 1.25 Mt/y, and 
improving profits, safety, and environmental 
impacts [17]. Kizilkal and Dimitrakopoulos 
presented an interactive and non-linear model to 
estimate the optimum production rate under 
financial uncertainty [18]. Malli et al. developed a 
model to determine the optimum production 
capacity and mine life of open-pit mining, 
considering NPV and haulage costs, geotechnical 
features, and slope stability. Their findings 
highlighted that higher production capacity and 
steeper slope angles not only increased NPV, but 
also raised initial investment costs and financial 
risks. These results underscored the importance of 
balancing production capacity, mine life, and 
investment in mining feasibility assessments [19]. 
Runge supported this idea by proposing that an 
increase in the production rate would lead to a 
reduction in mining costs due to the economy of 
scale [9]. Akishev et al. investigated advanced 
techniques to evaluate the production capacity and 
life of open-pit diamond mines. They highlighted 
the importance of the accurate evaluation methods 
to optimize mine planning and resource 
application. By integrating geological, economic, 
and operational factors, the study aimed to enhance 
prediction accuracy. The article tried to refine these 
evaluation methods to improve decision-making 
processes, ensuring more effective and sustainable 
mining operations [20]. Salama et al. conducted a 
study on the effect of financial analysis of 
increased mining rates on underground mining 
through simulation and mixed-integer 
programming [21]. Arteaga et al. investigated the 
trade-off between shovel utilization and mining 
rate in open-pit mining. They showed that 
productivity was relevant to the optimum mining 
rate [22]. Magda investigated the effect of utilizing 
mine production capacity on unit production costs, 
emphasizing that costs were minimized when 
production matched the capacity. Two key indices-
rate of capacity utilization and fixed costs per unit-
are crucial for cost reduction. Increasing the 
capacity utilization rate and reducing the fixed 
costs could effectively decrease the unit production 
costs, providing a basis for the mining company 
restructuring programs [23]. Neingo et al. studied 
the effectiveness of three production rate 
estimation methods for the South African platinum 
mines by comparing estimated rates from rules of 
thumb with actual reported production rates. 
Findings revealed significant variations up to 
218% among the estimation methods and weak 

correlations with actual production, suggesting that 
deposit size and geometry alone were insufficient 
for an accurate estimation. These results underlined 
the necessity for the robust mathematical models 
that incorporated multiple constraints to optimize 
the production rates [24]. Souza et al. presented a 
mathematical formula to optimize the mining 
production rate to achieve a maximum profit, 
similar to the study by Abdul Sabour [25]. 
Nyandwe et al. concentrated on optimizing the 
production rate of a copper mine based on the 
feasibility study of three production plans. The 
optimum production rate was selected through 
criteria such as investment, cost, engineering 
complexity, and economic advantage [26]. Sohrabi 
et al. investigated the optimum production rate of 
the Sari Gunay gold mine in Iran under price 
uncertainty. Using the Taylor and Zwiagin’s 
methods across different scenarios, they compared 
the influence of price certainty and uncertainty on 
the mine's NPV. The findings highlighted that 
scenarios accounting for price uncertainty, 
particularly those using the binomial tree method, 
yielded higher and more stable NPV values. These 
results underscored the importance of 
incorporating price uncertainty into mining project 
evaluations to mitigate risks and optimize financial 
outcomes [27]. Liu et al. developed a production 
capacity model for open-pit coal mines, linking the 
working face length and annual advancing speed to 
the production capacity. Applied to the Baorixile 
open-pit Coal Mine in Inner Mongolia, China, the 
remaining unmined areas were divided into four 
regions. The optimum production capacities were 
determined for the mining districts, ensuring 
efficient resource extraction and operational 
continuity [28].  

The investigation of the mentioned studies 
underscored the significance of optimizing 
production rates and delineated various 
methodologies to achieve this purpose. 
Nevertheless, some authors emphasized that the 
optimization of the production rate and cut-off grade 
should be carried out simultaneously to obtain 
reliable results  [6, 7, 29, 30] Since   .mination  of  
the  cut-off grade is influenced by the production 
rate, any changes in the cut-off grade requires a 
recalculation of the extractable reserves, 
production rate, and cost estimates [30]. Many 
studies have addressed the determination of cut-off 
grade for mining projects by incorporating it into 
the production planning optimization. In a review 
paper, Asad discussed the issue of cut-off grades 
[31], meanwhile, the area of interest in this work 
focused on the cut-off grade that dealt with the 
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production rate in more details or considered the 
production rate in the optimization of the cut-off 
grade.  

Vickers presented a graphical method that used 
marginal analysis to determine the cut-off grade. 
The technique produced a constant schedule of cut-
off grades over the life of the operation [32]. Lane's 
model considered not only the grade-tonnage 
distribution, but also the production capacities of 
different components of the mining operation. This 
model supported the overall objective of a mining 
operation by maximizing the NPV, while 
considering the limitations of mining, processing, 
and refining capacities [31, 33, 34]. Nieto and 
Bascetin utilized a multiyear Generalized Reduced 
Gradient (GRG) iterative factor to determine a cut-
off grade strategy that maximized NPV over 
several years. By integrating the economic and 
geological factors into the GRG iterative factor, the 
approach aimed to improve the accuracy and 
efficiency of the cut-off grade determination. 
Finally, their strategy proposed iteratively 
adjusting cut-off grades based on the multi-year 
GRG factor, increasing long-term profitability and 
decision-making in mining ventures [35]. Nieto 
and Bascetin introduced a new method to 
determine the optimum cut-off grade policy to 
maximize NPV in the mining projects. This 
method integrated an optimization factor, 
considering the economic, operational, and 
geological parameters. Through outlining the 
implementation steps and emphasizing potential 
benefits, their approach offered a systematic and 
effective means to optimize NPV by selecting the 
most appropriate cut-off grade policy [36]. Asad 
integrated the operating costs and commodity price 
variation into the Lane's model. The results 
proposed a more practical cut-off grade policy that 
considered these variations [37]. He et al. proposed 
a novel technique to optimize cut-off grades by 
combining neural network nesting with the genetic 
algorithm method. Their findings acknowledged 
the complexity and non-linearity of the traditional 
model, and proposed an evolutionary approach to 
find solutions [38]. Gholamnejad incorporated the 
cost of waste dump rehabilitation into the profit 
function of the Lane's model. This adjustment led 
to a variation in the relationship between benefits 
and costs, and caused a shift in the optimum cut-
off grade [39, 40]. King proposed a modification to 
the cut-off grade and profit equations by separating 
the cost of mining ore and waste into two distinct 
parts. This adjustment showed that some mining 
operations incurred lower costs when blasting 
waste, and the transportation costs for ore and 

waste were always different [41]. Abdollahisharif 
et al. studied the optimum cut-off grade with 
variable capacities in open-pit mining. They 
modified the Lane's algorithm to account for 
variable processing capacities, and determine the 
optimum cut-off grade in open-pit mines [42]. 
Khodayari and Jafarnejad improved the Lane's 
model by maximizing the annual metal production. 
Their mathematical formulation was built upon the 
balancing cut-off grade concept of the Lane's 
model [43]. Gama introduced a simplified method 
that enabled the mining companies to optimize 
their production strategies efficiently. The 
technique focused on the key factors such as cut-
off grade determination, production rate 
optimization, and economic considerations. By 
employing this method, the mining companies 
streamlined their decision-making process, 
enhanced profitability, and achieved better 
financial outcomes. Generally, they provided a 
practical and accessible framework to maximize 
profits in open-pit mining operations [44]. 
Hustrulid et al. and Rendu discussed the 
applicability of the Lane's model in both open-pit 
and underground mining scenarios, emphasizing 
the importance of stockpiling policies through 
various case studies [5, 45]. Johnson et al. proposed 
a mathematical algorithm based on partial 
differential equations that dynamically determined 
the cut-off grade strategy to manage market 
uncertainty. They applied an algorithm to a real 
mine case study. According to their findings, the 
decision to send a mining block to either the 
processing flows or waste dump, depended not 
only on commodity price or ore grade, but also on 
the grade of future mining blocks, processing costs, 
and mining and processing capacities [46]. 
Dagdelen and Kawahata highlighted the 
significance of strategic mine planning and the 
optimization of cut-off grades to enhance the 
profitability. They emphasized on the integration 
of geological, economic, and operational variables 
to formulate resilient strategies in line with long-
term goals. The article explored diverse 
methodologies and tools to optimize the cut-off 
grades, considering ore attributes, processing 
expenses, and market fluctuations. Finally, it 
emphasized on the pivotal role of strategic 
planning and cut-off-grade optimization in 
fostering sustainable value within mining 
endeavors [47]. Ganguli et al. provided an 
overview of a methodological approach to 
optimize mine scheduling and cut-off grades 
through Mixed-Integer Linear Programming 
(MILP). This technique aimed to enhance the 
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efficiency and profitability of mining operations by 
systematically allocating resources and 
determining the optimum extraction sequence, 
considering economic constraints and geological 
factors. They discussed the application of MILP in 
mine planning, highlighting its ability to address 
complex decision-making scenarios and improve 
the overall performance. By integrating mine 
scheduling and cut-off grade optimization, mining 
companies achieved better resource utilization and 
maximized economic returns [48]. Ahmadi and 
Bazzazi conducted a study on determining the 
optimum cut-off grade of open-pit mines using the 
Imperialist Competitive Algorithm (ICA) and 
Particle Swarm Optimization (PSO) as the efficient 
meta-heuristic optimization methods [49, 50]. 
Fathollahzadeh et al. presented a MIP model to 
schedule open-pit mining operations incorporating 
the grade engineering techniques. This method 
enhanced the efficiency by pre-processing 
materials to deliver only high-grade ore to the 
mineral processing plant. It optimized the resource 
use. The model aimed to maximize NPV by 
adhering to the operational constraints [51]. 
Sotoudeh et al. introduced a novel technique to 
establish the cut-off grade in the underground 
metalliferous mining operations. It emphasized on 
the integration of pre-concentration systems to 
increase sustainability and resource utilization. The 
proposed model that was applied to a sub-level 
stopping operation, demonstrated significant 
improvements in profitability, efficiency, and 
sustainability by lowering the cut-off grade and 
optimizing ore processing [52]. Wells used the 
Present Value Ratio (PVR) as an optimization 
criterion to identify the optimum combination of 
cut-off grade and production rate. The PVR was 
computed by dividing the present value of positive 
cash flows using the present value of negative cash 
flows, indicating economic viability when the ratio 
exceeded 1. While Wells accounted for the 
simultaneous optimization of production rate and 
cut-off grade, they observed that the influence of 
the economy of scale on capital and operating costs 
was overlooked [6]. The Park's method, as 
described in previous work  [29], could maximize 
overall mine profit by identifying the optimum set 
of production rates and cut-off grades, which 
would use a trial-and-error approach that might not 
always yield optimum outcomes. 

In this work, the static cut-off grade and 
production rate were optimized for the early stage 
of feasibility studies. The objective of this work 
was to introduce a model that optimized both the 
production rate and cut-off grade, considering the 

effect of the economy of scale. As the model 
involved non-linear equations and continuous 
decision variables, the Particle Swarm 
Optimization (PSO) algorithm was implemented. 

3. Statement of Problem and Mathematical 
Formulation 

As mentioned before, the cut-off grade, average 
grade, reserve amount, and unit cost are the key 
factors that affect the production rate. A change in 
the cut-off grade affects not only the reserve, but 
also the production rate and unit costs. The 
selection of an appropriate production rate is 
determined through an iterative process. First, the 
reserve tonnage and average grade are determined 
based on a preliminary cut-off grade. Then, 
assuming this reserve, a possible production rate is 
considered, and the revenue, capital, and operating 
costs are estimated for the entire project. A new 
cut-off grade is calculated based on these costs and 
revenues, and the corresponding reserve tonnage is 
estimated. Considering economic indicators, the 
iterative process must be repeated until the most 
suitable production rate is achieved. 

This iterative process is time-consuming, and 
requires the change-and-see scenario evaluations. 
Therefore, a more systematic and standard 
optimization model was the main objective of the 
current study. The problem was first formulated 
using the standard mathematical modeling 
language. Due to the dependency between the 
decision variables (cut-off grade and production 
rate), the model was non-linear. Therefore, a 
Particle Swarm Optimization (PSO) algorithm was 
implemented to solve the model, and obtain a near-
optimum solution. In this algorithm, a set of 
possible cut-off grades and production rates were 
generated. For each of these combinations, NPV, 
as the objective value was computed, the cut-off 
grade and production rate corresponding to the 
maximum NPV value were reported as the near-
optimum solution. The scheme of the research 
methodology has been shown in Figure 1. 

3.1. Notations 

The notations used in the current model are as 
follows: 

Decision Variables  
g: Cut-off grade 
q: Production rate (Mt/y) 
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Dependent Variables  
 ௚: Average grade of the reserve assuming cut-offܩ
grade ݃ such that  ܩ௚ = ௚ ܩ &  (݃)݂ > 0   
ܴ௚: Total tonnage of the reserve assuming cut-off 
grade ݃ (tone) such that  ܴ௚ = ݂(݃) & ܴ௚ > 0 
௤ܥ

௢௖: Operating cost (mining and milling) for the 
production rate of ݍ ($/tone) such that ܥ௤

௢௖ =
௤ܥ & (ݍ)݂

௢௖ > 0. The operating costs of mining include 
both the expenses associated with ore and waste 
extraction, i.e. the stripping ratio is involved. 
௤ܥ

௖௖: Capital cost (mining and milling) for the 
production rate of ݍ ($) such that ܥ௤

௖௖ =
௤ܥ & (ݍ)݂

௖௖ > 0 

ܰ: Years of production such that ܰ = ோ೒

௤
.   

Parameters  
ܲ: Price of commodity 
  Recovery of the operations (mining and milling) :ߩ
  Discount rate : ߦ
  ௠௔௫ : Maximum available capital spendingܥ

Objective Function 

Maximize 

( ෍
ݍ × ܲ × ௚ܩ  × ߩ − ݍ × ௤ܥ

௢௖  
(1 + ݊^(ߦ 

 )
ே

௡ୀଵ

− ௤ܥ 
௖௖ (1) 

The above objective function is seeking a cut-
off grade and a production rate that maximizes the 
NPV.  

subject to 

௤ܥ
௖௖ < ௠௔௫ܥ  (2) 
According to this constraint, the capital cost 

must remain below the maximum allowable 
amount. As highlighted by Smith, maximizing 
NPV will lead to a very high and impractical 
production rate, requiring a remarkable capital 
investment. This constraint is applied to address 
this shortcoming [2].  

N ≥ ܰ௠௜௡ (3) 
Based on this constraint, the mine life must 

always be higher or equal to an acceptable 
minimum. The minimum life of the mine must be 
determined in advance according to the 
experimental and analytical criteria. 

ݍ > 0  &  ݃ > 0 (4) 

 

 

Assumption 

The production rate of the mining operation and 
the mineral processing plant are equal, limiting the 
amount of ore extraction to the plant's needs, and 
there is no stockpile. 

 
Figure 1. The scheme of this study`s methodology. 

3.2. Particle swarm optimization algorithm 

Particle swarm optimization (PSO) is inspired 
by the collective behaviors of birds and fish. This 
approach is characterized by a population-based 
methodology with random weighting. Its 
optimization capability arises from localized 
interactions between the individuals.  In PSO, 
swarm particles collaborate to explore and exploit 
the search space, aiming to reach the global 
optimization solution. The fundamental premise of 
PSO is that each particle within the swarm, 
exploring, and exploiting the search space retains 
knowledge of its initial velocity, having the best 
local position, and the best global position within 
the entire swarm. Leveraging this information, 
each swarm member continuously updates its 
velocity and position. Unlike the conventional 
methods, PSO can efficiently tackle various 
problem types with minimal or no need for 
adaptation, as it does not rely on the problem-
specific features. However, it instead employs a 
parallel, cooperative exploration of the search 
space through a population of individuals [53]. 
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In the context of a d-dimensional search space 
with N swarm particles, where the position 
attribute of the ith particle is denoted by ܺ௜ =
,௜ଵݔ) ,௜ଶݔ … ,  ௜ௗ), and the velocity attribute isݔ
denoted by ௜ܸ = ,௜ଵݒ) ,௜ଶݒ … ,  ௜ௗ), the velocityݒ
attribute reflects the particle's speed at the ith 
position. This velocity is updated using the 

individual experienced local-best position 
attribute, given by ௅ܲ௜ = ( ௅ܲ௜ଵ, ௅ܲ௜ଶ, … , ௅ܲ௜ௗ). The 
best position is represented by ௚ܲ =
( ௚ܲଵ, ௚ܲଶ, … , ௚ܲௗ). Each swarm particle adjusts its 
velocity and position in the search space, moving 
toward the global minimum position. This 
adjustment is governed by the following equations: 

 

v୧(୩ାଵ) = ω × v୧୩ + cଵ × ଵ݀݊ܽݎ × ( ௅ܲ௜ − (௜௞ݔ + ܿଶ × ଶ݀݊ܽݎ × ൫ ௚ܲ௜ −  ௜௞൯       (5)ݔ

௜(௞ାଵ)ݔ = ௜௞ݔ +  ௜(௞ାଵ) (6)ݒ
 

 
where k varies from 1 to d, and ω is the inertia 

parameter coefficient. cଵ and ܿଶ are parameter 
coefficients for acceleration, having values higher 
than zero. In this work, these parameters and the 
size of particles were calculated based on the 
Taguchi method [54] and were chosen equal to 0.2, 
0.8, 0.2, and 1000, respectively. ݀݊ܽݎଵ and ݀݊ܽݎଶ 
are the randomly generated values between 0 and 
1. The individual experience, i.e. cognitive term is 
determined by term cଵ × ଵ݀݊ܽݎ × ( ௅ܲ௜ −  ,(௜௞ݔ
whereas the social term due interaction among the 
particles is determined by term ܿଶ × ଶ݀݊ܽݎ ×
൫ ௚ܲ௜ −  .௜௞൯ݔ

The cognitive term assists particles in exploring 
the search space, while the social term aids in 
exploiting the search space. As indicated in 
Equations (4) and (5) above, it is evident that 
swarms continually alter their positions by 
adjusting their instantaneous velocities, relying on 
the information about their own previously 
optimum positions and the overall group's best 
position [55].  

The mathematical model of this study included 
an objective function that was non-linear and 
depended on two decision variables, namely the 
cut-off grade and the production rate. Additionally, 
the total mineable reserve, the years of production, 
the average grade, and capital and operating costs 
changed due to variations in these decision 
variables. Therefore, five dependent variables were 
considered in this work that must be computed 
when the value of the decision variables was 
known. Accordingly, this problem was presented 
as a constrained non-linear optimization problem 
with a non-linear dependency relationship between 
the decision variables. To the best of our 
knowledge, there were no exact solution 

techniques available for this type of problem. 
Therefore, a metaheuristic technique was 
necessary for a quick and efficient solution. As the 
decision variables were continuous in this problem, 
the Particle Swarm Optimization (PSO) technique 
was used. PSO is a population-based optimization 
algorithm inspired by the social behaviors 
exhibited by birds, fish, and insects in dynamic 
communication. Developed and introduced by 
James Kennedy and Russell Eberhart in 1995, the 
technique has since been successfully applied to a 
variety of optimization problems including those 
that are constrained and non-linear [56].  

In summary, our proposed model provided a 
static cut-off grade calculated for a single period. 
In more advanced models and with minor changes, 
this model could make it possible to calculate a 
multi-period cut-off grade, where the cut-off 
grades changed over time. Despite these changes, 
the current methodology and most similar studies 
were based on a single grade-tonnage curve that 
ignored the real spatial distribution of ore tonnage 
in the mine. A more accurate calculation could still 
be achieved by considering the exact grade-
tonnage distribution using a block model. This 
sophisticated cut-off grade optimization represents 
the next step of our current work. Specifically, the 
current metaheuristic has been developed for 
integration into future advanced simultaneous 
production scheduling and cut-off grade 
optimization, which involves mathematically 
complex soft computing techniques. However, in 
this paper only the nonlinear relationship between 
production rate and cut-off grade optimization, the 
particle swarm algorithm and economic functions 
as the core engine of a sophisticated dynamic 
optimization strategy has been investigated.  
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Algorithm 1. Pseudo code of the PSO algorithm. 
1 Input: Economic and technical parameters 

2 
Initialize a population (swarm) of particles with random initial positions ݔ௜,଴ (including cut-off 
grade, production rate and life of mine) and random velocities ݒ௜,଴ in the search space. The random 
values are within the acceptable ranges for these parameters. 

3 Initialize each particle’s personal best position (݈ܲ݅ ଵ,଴ ) to ݔ௜,଴ as its initial position.  

4 Calculate the fitness value of each particle (NPV from Equation 1) at its initial position ݔ௜,଴ and 
determine the initial global best position (ܲ݃݅). 

5 While (k < maximum number of generations) 

6            For all particles do 

7          Update the particle’s velocity and position using Equations [5] and [6]. 

8                  Calculate the fitness value of each particle at its current position ݔ௜,௞ 

9                   If fitness (ݔ௜,௞) is better than the fitness ݈ܲ ௜,௞ିଵ  

10                           ݈ܲ ௜,௞ ←  ௜,௞ݔ

11                   End If 

12                   If fitness ݈ܲ ௜,௞ is better than the fitness ܲ  ݃௞ିଵ  

13                           ܲ݃ ௞ ← ݈ܲ ௜,௞ 

14                   End If 

15            End For 

16 End While 
 

4. Case Study 

In this research work, the Sungun copper 
deposit, the second-largest copper mine of Iran was 
studied. It is known for its substantial copper 
reserves and relatively high production capacity. 
The Sungun copper deposit is known as porphyry 
copper mineralization, and is mined through the 
open-pit method [57].  

While designing a deposit, several cut-off grade 
values are considered. Based on the grade 

distribution curve, the corresponding ore reserve 
tonnage and the average grade are determined for a 
specific cut-off grade. Therefore, for the cut-off 
grade as a variable, the average grade and ore 
reserve tonnage could be represented as a grade-
tonnage curve. Figure 2 shows the grade-tonnage 
curve for the Sungun reserve. For example, 
assuming a cut-off grade of 0.25% Cu, the total ore 
tonnage was 420 Mt with an average grade of 
0.58%.  The best fits were computed below to use 
this curve in the optimization model: 

 

Average grade function: ܩ௚ = ଵ݂(݃) =  1.011݃ + 0.325 (7) 

Reserve function (Mt): ܴ௚ = ଶ݂(݃) = 896.67 × 3.062−)ܲܺܧ × ݃) (8) 
 
Since the change in the production rate affected 

the operating and capital costs, regression models 
were developed using cost data from COSTMINE 
[58]. The purpose was to relate the production rates 
to these costs. These models and the fitted curves 
have been shown in Figures 3 and 4.  The increased 

production rate resulted in a reduction in the unit 
operating costs and enhanced the economies of 
scale. However, the higher production rate also 
necessitated additional equipment and machinery, 
leading to an increase in capital costs.  
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Figure 2. Grade-Tonnage curve. Figure 3. Mining costs versus production rate. 

 
Figure 4. Milling costs versus production rate. 

According to previous studies, the technical and 
economic parameters were determined, as reported 
in Table 1.  

Table 1. Input data. 
Amount Unit  Symbol  Parameter  

7500 USD/ton  ܲ Copper price  
1 Billion dollars  ܥ௠௔௫ Maximum capital cost 

80 Percentage  ߩ Recovery   
10 Percentage  ߦ Discount rate   

260  -  - Number of working days per year  
897 Mt  ܴ௚ Reserve     

 

5. Results and Discussion  

In this paper, calculating the optimum cut-off 
grade, and the production rate for open-pit mines 

were studied through developing a mathematical 
model and implementing a solution technique on a 
real mine. The current case study involved a copper 
mine with a linear grade distribution. The final 
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product was cathode copper, assuming a constant 
and deterministic product price in the objective 
function.  

The PSO algorithm was implemented in the 
MATLAB software to solve this problem and 
maximize the NPV, enabling the simultaneous 
optimization of both the cut-off grade and 
production rate. In the PSO algorithm, the particle 
velocity in each iteration consists of two 
components: the first component is the current 
velocity of the particle, and the second component 
is the weighted sum of the particle's personal best 
position, and the best position among its neighbors 
in the search space. Without the second 
component, the algorithm would only perform a 
local search around the best particle, and could not 
explore large regions of the search space. 
Conversely, without the first component, the 
algorithm would lose its ability to converge to a 
solution. By combining these two components, the 
PSO algorithm of the study attempted to balance 
between the local and global searches. One 
thousand particles (representing the cut-off grade 
and production rate in this optimization problem) 
were randomly selected to optimize the function. 

The inertia weight was set to 0.8. Additionally, the 
C1 and C2 parameters were adjusted to generate 
multiple solutions during program execution and 
evaluate the results. Although it is not critical for 
PSO convergence, setting these parameters could 
expedite convergence. After several program 
executions, it was achieved that setting C1 = C2 = 
0.2 was more helpful to obtain a better solution. 
The termination criterion of the algorithm was set 
to 1000 iterations. The model`s output variables 
included cut-off grade, production rate, average 
grade, mine life, and other variables, as 
summarized in Table 2. The results indicated that 
with a cut-off grade of 0.64% and a production rate 
of 15.66 Mt/y, the NPV was maximized at 1.153 
billion dollars. It was the economic cut-off grade, 
covering both capital and operating costs for 
mining and processing. This result varied from the 
marginal cut-off grade to satisfy only processing 
operating costs. Figure 5 shows the optimization of 
NPV using the PSO algorithm across different 
iterations. All computations were performed on an 
ASUS K52J with five 2.53 GHz cores and 8 GB 
RAM. The computational time was about 30 
seconds.  

 
Figure 5. Optimization of NPV using the PSO algorithm. 
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Table 2. Model output. 
Amount  Unit Variable 

0.64 Percent Cut-off grade 
 15.66 Mt/y Production rate 
 1153 M$ NPV 
 5.13 $/t Mining operating cost  
 11.52 $/t Processing operating cost 
 936 M$ Total capital cost (mining and processing) 
0.97 Percent Average grade 
 128 Mt Ore tonnage  

 
In the following section, a sensitivity analysis 

was conducted on various parameters. The metal 
price varied between 5,000 and 10,000 dollars, and 
the discount rate varied between 0 to 20 % to 
analyze their sensitivity. As shown in Figure 6, in 

general, as the metal price increased and the 
discount rate decreased, the cut-off grade 
decreased (Figure 6a), while the production rate 
(Figure 6b) and NPV (Figure 6c) increased.  

 

  
(a) (b) 

 
(c) 

Figure 6. Price and discount rate sensitivity analysis: a) Cut-off grade, b) Production rate, c) NPV.  

The region's inadequate infrastructure  may 
cause a challenge for the investors due to the 
significant capital costs required for high 

production rates. Therefore, considering constraint 
(2), the impact of the maximum capital cost (ܥ௠௔௫) 
was explored by changing ܥ௠௔௫  from 0.1 to 2 
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billion dollars. As shown in Figure 8, the cut-off 
grade decreased with an increase in ܥ௠௔௫ , until a 
certain point where it remained constant. 

Conversely, the production rate and NPV increased 
with an increase in ܥ௠௔௫ , until they reached a 
constant level, one billion dollars in this case.  

 

   

    
Figure 7. Sensitivity analysis of the maximum capital cost (࢞ࢇ࢓࡯).  

From Figure 8, the optimum cut-off grade for 
maximum NPV was 0.64%, representing the 
balance point between the mineable reserve and the 
profit margin. When the cut-off grade increased to 
higher values (such as 0.9%), the amount of the 
mineable reserves was decreased, resulting in a 
lower production rate and NPV. Conversely, the 
lower cut-off grades (such as 0.5%) led to a 
reduction in the average grade and, subsequently, a 
decrease in the profit margin. 

Furthermore, the reduction rate in NPV after its 
peak was more pronounced for a cut-off grade of 
0.9% compared to the cut-off grade of 0.5%. When 
the cut-off grade was 0.9%, the mineable reserve 
decreased significantly, and the NPV remained 
sensitive to the changes in production rate. 
Furthermore, at a cut-off of 0.5%, the cost-saving 
benefits of economy of scale in both capital and 
operating costs were substantial due to the high 
volume of mineable reserve.   

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

0 1 2 3

C
ut

-o
ff 

gr
ad

e (
%

) 

Max capital cost (B$)

 -

 2

 4

 6

 8

 10

 12

 14

 16

 18

0 1 2 3

Pr
od

uc
tio

n 
ra

te
 (M

t/y
)

Max capital cost (B$)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1 2 3

N
PV

 (B
$)

 

Max capital cost (B$)



Lotfi Godarzi et al. Journal of Mining & Environment, Vol. 16, No. 2, 2025 

 

595 

 
Figure 8. Sensitivity analysis of the production rate and cut-off grade. 

6. Conclusions 

Addressing the challenges to optimize the cut-
off grade and production rate in open-pit mine 
planning was the essential objective of this work. 
Both mentioned variables were considered 
simultaneously to achieve an optimum result, with 
the outcomes heavily reliant on significant 
parameters used to construct the model. These 
parameters included deposit characteristics, 
mining and processing cost relationships, product 
price, and time value of money. In this context, a 
novel framework was proposed to use the 
computationally efficient particle swarm 
optimization algorithm to solve the long-term 
production scheduling problem in open-pit mines. 
The PSO algorithm showed a reliable ability to 
solve non-linear and continuous problems, and 
could effectively solve this model. The data from 
an open-pit copper mine containing approximately 
897 million tons was used to investigate the 
efficiency of the proposed model. Our findings 
showed that for a cut-off grade of 0.64% and a 
production rate of 15.66 Mt/y, the NPV could be 
maximized to $1.153 billion. This cut-off grade 
represented the economic threshold, covering both 
capital costs and operational expenses during 
mining and processing. The average grade and 
reserves were computed from the tonnage-grade 
curve to simplify the problem. A fixed product 
price was assumed without considering its 
fluctuations. It is suggested to develop a block 
model approach and incorporate price uncertainty 
for future studies to improve the robustness of the 
results. These studies can lead to a more accurate 
representation of the deposit's characteristics and 
improve the reliability of the economic analysis. 
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  چکیده:

خود نیز  دارد که  یبستگ  یرهذخ زانیبه م  دینرخ تول ،یمعادن روباز هستند. به طور کل تولید   يزیرو برنامه  یدر طراح تاثیرگذار اصلی ری حد دو متغ اریو ع   دینرخ تول
 يکردهایمحصول قرار دارد. رو  مت یو ق  دینرخ تول  ریخود تحت تأثبه نوبه  وابسته است، که    دیتول  نهیبه هز  ز یحد ن  اریع   گر،یحد است. از طرف د  اریع   ریتحت تأث 

 ریغ  يهاحلامر منجر به راه  نیا .رندیگی م دهیحد را ناد اریو ع  دینرخ تول نیو ارتباط متقابل ب کنندیم يسازنهیرا به صورت جداگانه به رهایمتغ نیمعمولاً ا یسنت
مدل   کی،  در این راستا  .مسئله ارائه کرده است  نیا  ينوآورانه برا  یحلهحد متمرکز بوده و را  اریو ع   دیهمزمان نرخ تول  يسازنهیپژوهش بر به  نی. اشودیم  نهیبه
 ي. اجراه استازدحام ذرات استفاده شد يسازنهی به تمیاز الگور وسته،یپ يریگمیتصم   يرهایمدل و متغ یرخطیغ  تیماه   لی. به دلتوسعه داده شد یرخطیغ  یاضیر
ارزش خالص   بیشینهبر این اساس، . سازدفراهم می  حد را اریو ع  دیهمزمان نرخ تول  يسازنه یبهامکان  يشنهادیمعدن مس نشان داد که مدل پ کی يمدل برا نیا

 يدیعوامل کل  يبرا  تیحساس  لیتحل  ن،یدرصد به دست آمد. علاوه بر ا  0.64حد    اریتن در سال و ع   ونی لیم  15.66  دیدلار در نرخ تول  اردیلی م  1.153  زانیبه م  یفعل
  انجام شد. در دسترس  هیسرمامقدار و حداکثر   لیمحصول، نرخ تنز متیق رینظ

  سازي ازدحام ذرات، معدنکاري روباز.عیار حد، نرخ تولید، بهینه کلمات کلیدي:

 

 


