[1]. Monjezi, M., Rezaei, M., & Yazdian Varjani, A. (2009). Prediction of rock fragmentation due to blasting in Gol-E-Gohar iron mine using fuzzy logic. International Journal of Rock Mechanics and Mining Sciences 46(8). 1273–1280.
[2]. Akbari, M., Lashkaripour, G., Bafghi, A.Y., & Ghafoori, M. (2015). Blastability evaluation for rock mass fragmentation in Iran central iron ore mines. International Journal of Mining Sciences and Technology 25(1) 59–66.
[3]. Sasaoka, T., Takahashi, Y., Sugeng, W., Hamanaka, A., Shimada, H., Matsui, K., & Kubota, S. (2015). Effects of Rock Mass Conditions and Blasting Standard on Fragmentation Size at Limestone Quarries. Open journal of geology 05(05) 331.
[4]. Singh, P.K., Roy, M.P., Paswan, R.K., Sarim, M.D., Kumar, S., 7 Ranjan, R. (2016). Rock fragmentation control in opencast blasting, Journal of Rock Mechanics and Geotechnical Engineering, 8 (2), 225-237.
[5]. MacKenzie, A.S. (1966). Cost of explosives—do you evaluate it properly? Mining Congress Journal 32–41.
[6]. Michaud, P., Lizotte, Y., & Scoble, M. (1997). Rock fragmentation and mining productivity: characterization and case studies. In: Proceedings of the 23rd annual conference on explosives and blasting technique, Las Vegas, NV, 61–72.
[7]. Sanchidrián, J., Segarra, P., & López, L. (2006). A practical procedure for the measurement of fragmentation by blasting by image analysis. Rock Mechanics and Rock Engineering, 39(4), 359–382.
[8]. Kulatilake, P.H.S.W., Hudaverdi, T., & Wu, Q. (2012). New prediction models for mean particle size in rock blast fragmentation. Geotechnical and Geological Engineering 30(3) 665–684.
[9]. Konya, C.J., & Walter, E.J. (1991). Rock blasting and overbreak control. United States Department of Transportation, McClean.
[10]. Latham, J.P., & Lu, P. (1999). Development of an assessment system for the blastability of rock masses. International Journal of Rock Mechanics and Mining Sciences 36(1):41–55.
[11]. Azimi, Y., Osanloo, M., Aakbarpour-Shirazi, M., & Aghajani Bazzazi, A. (2010). Prediction of the blastability designation of rock masses using fuzzy sets. International Journal of Rock Mechanics and Mining Sciences, 47(7), 1126–1140.
[12]. Kuznetsov, V.M. (1973). The mean diameter of fragments formed by blasting rock. Journal of Mining Sciences, 9, 144–148.
[13]. Hjelmberg, H. (1983). Some ideas on how to improve calculations of the fragment size distribution in bench blasting. 1st International Symposium on Rock Fragmentation by Blasting, 469–494.
[14]. Kou, S., & Rustan, A. (1993). Computerized design and result predictions of bench blasting. In: Rossmanith HP (ed) Proceedings of 4th international symposium on rock fragmentation by blasting (Fragblast 4), Vienna, Austria, Balkema, Rotterdam, pp 263–271.
[15]. Cunningham, C.V.B. (1983). The Kuz-Ram model for prediction of fragmentation from blasting. In: Proceedings of the 1st international symposium on rock fragmentation by blasting, Lulea, Sweden, 439–453.
[16]. Cunningham, C.V.B. (1987). Fragmentation estimations and the Kuz-Ram Model-Four years on. In: Proc. 2nd Int. Symposium on Rock Fragmentation by Blasting, 475–487
[17]. Cunningham, C.V.B., (2005) The Kuz–Ram fragmentation model—20 years on. In: Proceedings of the 3rd EFEE World Conference on Explosives and Blasting, England, 201–210.
[18]. Dahlhielm, S. (1996). Industrial applications of image analysis—the IPACS system. Measurement of Blast Fragmentation, first edition, Routledge.
[19]. Djordjevic, N. (1999). A two-component model of blast fragmentation. Australian Institute of Mining and Metallurgy Proceedings 304, 9–13.
[20]. Bahrami, A., Monjezi, M., Goshtasbi, K., & Ghazvinian, A. (2011). Prediction of rock fragmentation due to blasting using artificial neural network. Engineering with Computers 27(2) 177–181.
[21]. Hudaverdi, T., Kulatilake, P., & Kuzu, C. (2011). Prediction of blast fragmentation using multivariate analysis procedures. International Journal of Numerical and Analytical Methods Geomechanics 35(12) 1318–1333.
[22]. Shi, X.Z., Jian, Z.H., Wu, B.B., Huang, D., & Wei, W.E. (2012). Support vector machines approach to mean particle size of rock fragmentation due to bench blasting prediction. Transactions of Nonferrous Metals Society of China 22(2) 432–441.
[23]. Sayadi, A., Monjezi, M., Talebi, N., & Khandelwal, M. (2013). A comparative study on the application of various artificial neural networks to simultaneous prediction of rock fragmentation and backbreak. Journal of Rock Mechanics and Geotechnical Engineering 5(4) 318–324.
[24]. Karami, A., & Afiuni-Zadeh, S. (2013). Sizing of rock fragmentation modeling due to bench blasting using adaptive neuro fuzzy inference system (ANFIS). International Journal Mining Science and Technology 23(6) 809–813.
[25]. Bakhtavar, E., Khoshrou, H., & Badroddin, M. (2015). Using dimensional-regression analysis to predict the mean particle size of fragmentation by blasting at the Sungun copper mine. Arabian Journal for Geosciences 8(4) 2111–2120.
[26]. Ebrahimi, E., Monjezi, M., Khalesi, M.R., & Jahed Armaghani, D. (2015). Prediction and optimization of backbreak and rock fragmentation using an artificial neural network and a bee colony algorithm. Bulletin of Engineering, Geology and the Environment 75(1) 27–36.
[27]. Mandelbrot, B.B. (1983). The Fractal Geometry of Nature: Updated and Augmented. WH Freeman, New York, NY.
[28]. Cheng, Q., Agterberg, F.P., & Ballantyne, S.B. (1994). The separation of geochemical anomalies from background by fractal methods. Journal of Geochemical Exploration 51(2) 109–130.
[29]. Agterberg, F.P. (1995). Multifractal modeling of the sizes and grades of giant and supergiant deposits. International Geology Review 37(1) 1–8.
[30]. Cheng, Q., Xu, Y., & Grunsky, E. (2000) Integrated spatial and spectrum method for geochemical anomaly separation. Natural Resources, 9, 43–52.
[31]. Davis, J.C. (2002). Statistics and data analysis in geology, 3rd edition. John Wiley & Sons Inc., New York.
[32]. Li, C., Ma, T., & Shi, J. (2003). Application of a fractal method relating concentrations and distances for separation of geochemical anomalies from background. Journal of Geochemical Exploration, 77, 167–175.
[33]. Zuo, R., Xia, Q., & Zhang, D. (2013). A comparison study of the C-A and SA models with singularity analysis to identify geochemical anomalies in covered areas. Applied Geochemistry, 33, 165-172.
[34]. Afzal, P., Alghalandis, Y.F., Khakzad, A., Moarefvand, P., & Omran, N.R. (2011). Delineation of mineralization zones in porphyry Cu deposits by fractal concentration–volume modeling. Journal of Geochemical Exploration 108(3). 220–232.
[35]. Hassanpour, S., & Afzal, P. (2013). Application of concentration–number (C–N) multifractal modeling for geochemical anomaly separation in Haftcheshmeh porphyry system, NW Iran. Arabian Journal for Geosciences 6(3) 957–970.
[36]. Yasrebi, A.B., Wetherelt, A., Foster, P., Coggan, J., Afzal, P., Agterberg, F., & Kaveh Ahangaran, D. (2014). Application of a density–volume fractal model for rock characterization of the Kahang porphyry deposit. International Journal of Rock Mechanics and Mining Sciences 66 188–193
[37]. Yasrebi, A.B., Hezarkhani, A., & Afzal, P. (2017). Application of Present Value-Volume (PV-V) and NPV-Cumulative Total Ore (NPV-CTO) fractal modelling for mining strategy selection. Resources Policy 53:384–393.
[38]. Zhao, Y., Huang, J., & Wang, R. (1993). Fractal characteristics of mesofractures in compressed rock specimens. International Journal of Rock Mechanics and Mining Sciences 30(7), 877–882.
[39]. Ehlen, J., (2000). Fractal analysis of joint patterns in granite. International Journal of Rock Mechanics and Mining Sciences 37(6), 909–922.
[40]. Billi, A., & Storti, F. (2004). Fractal distribution of particle size in carbonate catallactic rocks from the core of a regional strike-slip fault zone. Tectonophysics 384, 115–128.
[41]. Hamdi, E. (2008). A fractal description of simulated 3D discontinuity networks. Rock Mechanics and Rock Engineering 41(4), 587–599.
[42]. Kruhl, J.H. (2013). Fractal-geometry techniques in the quantification of complex rock structures: a special view on scaling regimes, inhomogeneity and anisotropy. Journal of Structural Geology, 46, 2–21.
[43]. Yasrebi, A.B., Wetherelt, A., Foster, P.J., Afzal, P., Coggan, J., & Ahangaran, D.K. (2013). Application of RQD- Number and RQD-Volume to delineate rock mass characterization in Kahang Cu-Mo porphyry deposit, central Iran. Archives of Mining Sciences 58(4), 1023–1035.
[44]. Ficker, T. (2017). Fractal properties of joint roughness coefficients. International Journal of Rock Mechanics and Mining Sciences 94, 27–31.
[45]. Zhan, J., Xu, P., Chen, J., Wang, Q., Zhang, W., & Han, X. (2017). Comprehensive characterization and clustering of orientation data: A case study from the Songta dam site, China. Engineering Geology 225, 3–18.
[46]. Crum, S.V. (1990). Fractal concepts applied to bench-blast fragmentation. In: Proc. 3rd US Rock Mechachanics. Symposium Balkema, Rotterdam, 913–919.
[47]. Ghosh, A., Daemen, J.J., & Van Zyl, D. (1990). Fractal-based approach to determine the effect of discontinuities on blast fragmentation. In: The 31th US Symposium on Rock Mechanics (USRMS), American Rock Mechanics Association.
[48]. Samani, B. A., (1988). Metallogeny of the Precambrian in Iran. Precambrian research journal 39, 85–106.
[49]. Jami, M., (2005). Geology, Geochemistry and evolution of the Esfordi phosphate–iron deposit, Bafq area, central Iran. Ph.D. thesis, University of New South Wales, Sydney, Australia.
[50]. Sadeghi, B., Moarefvand, P., Afzal, P., Yasrebi, A.B., & Saein, L.D. (2012). Application of fractal models to outline mineralized zones in the zaghia iron ore deposit, central Iran. Journal of Geochemical Exploration 122, 9–19.
[51]. Afzal, P., Ghasempour, R., Mokhtari, A.R., & Haroni, H.A. (2015). Application of Concentration-Number and Concentration-Volume Fractal Models to Recognize Mineralized Zones in North Anomaly Iron Ore Deposit, Central Iran. Archives of Mining Sciences 60(3), 777–789.
[52]. Saein, L.D., Rasa, I., Omran, N.R., Moarefvand, P., Afzal, P., & Sadeghi, B. (2013). Application of number-size (N-S) fractal model to quantify of the vertical distributions of Cu and Mo in Nowchun porphyry deposit (Kerman, Se Iran). Archives of Mining Sciences 58, 89–105.
[53] Havermann, T., & Vogt, W. (1996). TUCIPS- A system for the estimation of solid particleation after production blasts. In: Franklin, J.A., Katsabanis, T. (eds.) Measurement of Blast Solid particleation, Balkema, Rotterdam 67–71.
[54]. Maerz, N.H., Palangio, T.C., & Franklin, J.A. (1996). WipFrag image based granulometry system. In Proceedings of the FRAGBLAST, 5 Workshop on Measurement of Blast Fragmentation, Montreal, 91–99.
[55]. Sanchidrián, J., Segarra, P., & López, L. (2006). A practical procedure for the measurement of fragmentation by blasting by image analysis. Rock Mechanics and Rock Engineering, 39(4), 359–382.
[56]. Siddiqui, F.I., Shah, S.A., & Behan, M.Y. (2009). Measurement of size distribution of blasted rock using digital image processing. Journal of King Abdulaziz University 20(2), 81–93
[57]. Franklin, J.A., Kemeny, J.M., & Girdner, K.K. (1996). Evolution of measuring systems: A review. Measurement of Blast Fragmentation, first edition, Routledge.
[58] Bamford, T., Esmaeili, K., & Schoellig, A.P. (2016). A real-time analysis of rock fragmentation using UAV technology. 6th International Conference on Computer Applications in the Minerals Industries, arXiv:1607.04243 [cs.RO].
[59]. Carranza, E.J.M. (2011). Analysis and mapping of geochemical anomalies using logratio-transformed stream sediment data with censored values. Journal of Geochemical Exploration 110(2), 167–185.
[60]. Yilmaz, I., & Yuksek, G. (2009). Prediction of the strength and elasticity modulus of gypsum using multiple regression, ANN, and ANFIS models. International Journal of Rock Mechanics and Mining Sciences, 46(4), 803–810.
[61]. Faramarzi, F., Mansouri H, & Ebrahimi Farsangi M.A. (2013). A rock engineering systems based model to predict rock fragmentation by blasting. International Journal of Rock Mechanics and Mining Sciences, 60, 82–94.
[62]. Hasanipanah, M., Jahed Armaghani D, Monjezi, M., & Shams, S. (2016). Risk assessment and prediction of rock fragmentation produced by blasting operation: a rock engineering system. Environmental Earth Sciences, 75(9), 808.