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 The Shavaz iron deposit, located in the southwest Yazd province in Central Iranian 
Block, near The Bafq metallogenic belt, is a significant and economically valuable iron 
oxide-apatite resource. It features hematite and a minor content of magnetite, detectable 
through potential field geophysical surveys. This study aimed to target magnetite 
mineralization within the deposit using constrained susceptibility inversion. We began 
by simulating a multi-source synthetic model with three identical cubes at different 
depths to evaluate the sparse norm inversion approach. The method was then applied 
to the case study after the essential magnetic data corrections. To refine the 
interpretation of residual magnetic anomalies and gain insights into their source and 
depth, the analytic signal and upward continuation methods were employed. Inversion 
results across different cross-sections revealed two distinct, shallow, lens-shaped 
magnetite mineralizations with an average vertical extent of 60 meters. Notably, one 
magnetite body lies approximately 30 meters deeper due to the Dehshir-Baft fault 
influence. Low normalized mis-fit values confirmed the successful minimization of the 
objective function during inversion. Additionally, the reconstructed susceptibility 
models align well with the previous geological studies and borehole data, 
demonstrating the efficiency of the sparse norm inversion algorithm. 
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1. Introduction 

Advanced geophysical surveys, particularly 
through improvements in the inversion and 
modeling, are revolutionizing mineral exploration 
by enabling detailed imaging of subsurface 
resources. The Oldenburg and Pratt categorized 
inversion methods for mineral and natural resource 
exploration into three groups [1]: 

1. Discrete body inversion: Efficiently models the 
simple structures with minimal computational 
requirements, making it ideal for the initial 
assessments. This method does not incorporate 
the geological and lithological data [1-2]. 

2. Pure property inversion: Requires detailed 
discretization and powerful computers for a 
complex modeling. This method allows for the 
inclusion of bound constraints and depth 
weighting terms in the inversion formulation, 

making it suitable for research and industrial 
applications [1, 3-6]. 

3. Petrophysical/lithological inversion: 
Incorporates the geological and petrophysical 
data for more relevant models, but is limited by 
the data availability [7-9]. 

This categorization highlights the trade-off 
between computational cost, model detail, and 
geological relevance, when choosing the most 
suitable inversion technique. 

This introduction focuses on a particular pure 
property inversion method was utilized in this 
study, for iron deposit exploration. Due to the 
presence of hematite and magnetite, iron deposits 
like Banded Iron Formations (BIFs), Iron Oxide-
Apatite (IOA) deposits, and Kiruna-type deposits 
are prime targets for the gravity and magnetic 
methods [10-11]. Magnetite's strong ferromagnetic 
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nature makes it detectable through airborne and 
ground magnetic surveys. However, successful 
exploration depends on selecting the right 
inversion method. For deposits with weak remnant 
magnetization, susceptibility inversion, which 
ignores remanence, is a fast and common choice 
for the academic and industrial projects, due to its 
simplicity [12-14]. For deposits with a significant 
remnant magnetization, Magnetization Vector 
Inversion (MVI) is more accurate, as it recovers 
total magnetization including both the induced and 
remnant components [15-17]. 

This study utilizes 3D sparse norm 
susceptibility inversion for magnetite targeting. 
Although the Magnetization Vector Inversion 
(MVI) method offers a higher accuracy, 
susceptibility inversion remains a valuable tool for 
the initial inverse modeling. We implemented a 
constrained inversion by defining the upper and 
lower bounds based on the geological observations 
and borehole data. This approach guided the 
inversion toward a geologically realistic solution, 
resembling the actual subsurface conditions. 

Magnetite mineralization typically features 
sharp boundaries, and is not continuously 
distributed, presenting a significant challenge for 
the traditional inversion methods. The Tikhonov 
inversion, which tends to produce smooth models, 
is unsuitable in this context, because it cannot 
accurately recover the models with sharp 
boundaries and distinct depth variations. To 
address this limitation, we employ a sparse norm 
inversion technique. This method is specifically 
designed to overcome the inherent smoothness 
constraint of the Tikhonov inversion, enabling us 
to achieve a more precise and realistic 
interpretation of the subsurface structure. Sparse 
norm inversion enhances the resolution of sharp 
boundaries, and accurately delineates the 
distribution and depth of magnetite mineralization, 
leading to improved geological and geophysical 
insights. 

Although the Shavaz deposit is not as large as 
the major iron resources in Iran such as the Gol-e-
Gohar complex or the iron deposits in the Bafq 
metallogenic belt, it is considered as an economic 
iron deposit containing significant hematite and a 
small portion of magnetite [18]. Hematite 
mineralization is mostly detectable through gravity 
surveys, due to its high density contrast and weak 
magnetization, while the magnetic methods are 
more efficient for detecting magnetite. Several 
significant studies have been conducted on the 
Shavaz iron deposit, providing valuable and 
informative insights [19-22]. However, in this 

study, we employ a sparse norm inversion in a 
mixed Lp norm framework to promote sparsity in 
the reconstructed susceptibility models for a more 
accurate recovery of the depth and geometry of the 
magnetite mineralization. 

In the following sections, we begin by 
discussing the susceptibility inversion method and 
its underlying mathematical principles. 
Subsequently, a synthetic model is simulated to 
evaluate the inversion's effectiveness in recovering 
the structures at varying depths. Following this 
evaluation, the geological context of the studied 
area and the geophysical surveys conducted are 
presented. Finally, the inversion results are 
interpreted, and the efficiency of the inversion 
algorithm for the real-world case study is assessed. 
A subsequent section will address the geological 
correlation, and conclusions derived from this 
work. Notably, both the forward and inverse 
modelings were performed using the SimPEG 
framework, a well-established Python library for 
geophysical modeling [23]. 

2. Methodology 

In this section, we discuss the sparse norm 
inversion methodology used within the SimPEG 
framework to generate the susceptibility contrast 
models for synthetic modeling and case study. We 
used the mixed Lp norm inversion approach [24] to 
recover subsurface physical properties, as 
discussed in this section. We begin by formulating 
the forward problem as follows [24-25]: 

௦࢈ =  (1) ܕ۴

In the above equation, ࢈௦  is the vector of 
magnetic observations, and ܕ is the magnetization 
of the prisms (cells) in the discretized environment, 
as shown below [25]: 

௦࢈ =  [ܾ௫ , ܾ௬, ܾ௭]் 
(2) 

 = ௫ܯ]  , ,௬ܯ  ்[௭ܯ

In Equation 1, ۴  is the forward operator, a 
matrix that produces the geophysical data based on 
the physical properties (magnetization). It is 
important to note that Equation 1 is based on the 
following descriptions (Equation 3), where ܯ 
represents the number of cells in the discretized 
environment, and ܰ represents the number of data 
points or observations [24]: 

ܕ ∈ ℝଷெ , ݏܾ࢈ ∈ ℝே, ࡲ ∈ ℝே×ଷெ (3) 
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The Li and Oldenburg define geophysical 
inverse problems, as an optimization problem, 
which is generally formulated as follows [3-6]: 

min ߶(݉) = ߶ௗ +   (4)߶ߚ

In a brief explanation, ߶(݉) serves as the 
model's objective function, comprising two key 
elements: the data mis-fit term ( ߶ௗ),  which 
measures how well the model m explains the 
observed geophysical data, and the regularization 
term (߶ ), which control the complexity of the 
model by imposing constraints [5]. ߶ௗ  is defined 
as the sum of squared differences between the 
observed data ( ࢊ

௦ ), and the predicted data 
ࢊ)

ௗ) typically expressed as follows [24]: 

߶ௗ =   ቆ
ࢊ

ௗ − ࢊ
௦

ો
ቇ

ଶ

= ܕௗ(۴܅‖  − ௦)‖ଶ܌
ଶ 

ே

ୀଵ

 (5) 

Here, ો represents the estimated uncertainty or 
standard deviation associated with each data point. 
 ௗ denotes a weighted diagonal matrix, reflecting܅
the inverse of the uncertainties. ۴ is a matrix that 
relates the model parameters ܕ to the predicted 
data ( ࢊ

ௗ ). This formulation quantifies the 
discrepancy between the observed and predicted 
data, considering the uncertainties ો  with each 
observation [3-5, 24]. 

In the context of the regularization term, its 
common formulation as an L2 norm is represented 
as follows [3, 24]: 

߶ = ௦߶௦ߙ  ௫߶௫ߙ + + ௬߶௬ߙ +  = ௭߶௭ߙ

(6) 
 ߙ

ୀ௦,௫,௬,௭

ฮ܅܄۵(ܕ − )ฮܕ
ଶ

ଶ
 

߶௦  is the smallness term, and ߶௫,௬,௭  are the 
roughness terms. The smallness term measures 
how much the model deviates from a reference 
model. Essentially, it encourages the model 
parameters to stay close to pre-defined values. The 
roughness terms, on the other hand, measure the 
smoothness of the model along different directions 
(typically the Cartesian directions ݔ ݕ , , and ݖ ). 
These terms use gradient operators to quantify 
changes or variations in the model parameters 
across space, promoting smoother transitions and 
discouraging abrupt changes. Together, the 
smallness and roughness terms help to prevent 
overfitting, ensure stability, and guide the model 
towards realistic solutions by incorporating prior 
knowledge and enforcing smoothness [5]. 

 The matrices ܅(௦,௫,௬,௭), ܄(௦,௫,௬,௭) , and 
۵(௦,௫,௬,௭) play crucial roles in the regularization of 
a model's objective function. ܅(௦,௫,௬,௭)  are 
weighting matrices that apply specific weights to 
different parts of the model or data, reflecting their 
varying importance or reliability. ܄(௦,௫,௬,௭)  are 
volume weighting matrices that normalize the 
contributions of different model cells based on 
their size, ensuring balanced representation. 
۵(௦,௫,௬,௭) are gradient operators that measure the 
spatial derivative from the model parameters, 
promoting smoothness by capturing how 
parameters vary across space. Together, these 
matrices help prevent overfitting, maintain 
stability, and guide the model towards realistic 
solutions by incorporating prior knowledge and 
enforcing smoothness. 

In a mixed Lp norm condition [16, 24, 26-27], 
the regularization term can be writen as follows, 
where 0 ≤ ≥  2: 

 

߶
 = ௦߶௦ߙ 

 + ௫߶௫ߙ 
 + ௬߶௬ߙ

 + ௭߶௭ߙ
 = ‖(ܕ)௦܀௦܄௦܅‖௦ߙ +  ߙ

ୀ௫,௬,௭

  (7)‖(ܕ)ࡳ܀܄܅‖

 
The first component in the regularization 

( ‖(ܕ)௦܀௦܄௦܅‖௦ߙ ) is the model smoothness 
term. In this term, ߙ௦  is the regularization 
parameter, ܅௦  is weighting matrix for the 
smoothness term, which can adjust the importance 
of different parts of the model. ܄௦  is the scaling 
matrix for the model parameters, and ܀௦  is the 
regularization operator that enforces smoothness 
on the model ܕ . The second component 
 is the gradient term. These (‖(ܕ)௦܀௦܄௦܅‖௦ߙ)
terms ensure that the model gradients (change in 
the model parameters) in the x, y, and z directions 
are smooth or sparse, and do not exhibit large 

fluctuations. Each direction can be weighted 
differently to account for anisotropy in the model. 
All the parameters in the smoothness term can 
similarly be defined from the gradient term [24, 
27]. 

In a condition where we have ߶
 = ௦߶௦ߙ 

 +
௫߶௫ߙ 

ଶ + ௬߶௬ߙ
ଶ + ௭߶௭ߙ

ଶ , this norm combination is 
called the sparse norm in the SimPEG framework 
[24, 26, 28-29]. This norm combination, as used in 
this study, produces models with sharper contrasts 
between different geological units, making it easier 
to identify distinct boundaries. 
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3. Synthetic Scenarios 

This section evaluates the effectiveness of the 
inversion methodology in recovering a synthetic 
model containing three identical cubes. The 
synthetic environment extends approximately 320 
meters in both the x and y directions, ranging from 

-160 meters to 160 meters. Vertically, it extends 
from -160 meters to 0. To accurately assess the 
inversion method's efficiency, a dense data spacing 
was chosen within the synthetic environment. The 
data spacing was set to 10 meters, resulting in a 
total of 1,024 data points collected. 

 

 
 

Figure 1. Synthetic model with three identical cubes having the same magnetic susceptibility (0.5 SI). (a) xz 
cross-section at y = 0, (b) Plan view at depth = -40 m. 

To discretize the synthetic subsurface 
environment, tensor meshing was employed [23]. 
In this type of meshing, all the cells are similar to 
each other, but we have the ability to change the 
cell length in each of the three directions. However, 
in this synthetic study, all cells have the same 
dimensions of 5 × 5 × 5 meters. We considered the 
cell dimensions to be smaller than the synthetic 
data spacing to represent the models using fine 

meshes. Figure 1 illustrates the synthetic modeling 
in an xz cross-section (Figure 1(a)) and a plan view 
of the model (Figure 1(b)). The synthetic model 
includes three cubes, each measuring 30 × 30 × 30 
meters, with one cube located 40 meters deeper 
than the others. All three cubes have a magnetic 
susceptibility of 0.5 SI without remanent 
magnetization. 

 

 

 
Figure 2. Inversion results for the synthetic model after 30 iterations. (a) xz cross-section of the recovered model 
at y = 0, (b) Plan view of the recovered model at a depth of -40 m. The inversion algorithm successfully recovered 

the three cubes at different depths, demonstrating its ability to reconstruct both the shallow and deep features. 

Figure 2 shows the inversion results. The sparse 
norm inversion successfully recovered three cubes 
with sharp boundaries. Figure 3 compares the 
observed and predicted anomalies. Figure 3(a) 
shows the observed anomalies from the synthetic 

model with 2% Gaussian noise. Figure 3(b) shows 
the anomalies from the recovered models. Figure 
3(c) shows the normalized residual, representing 
the weighted difference between the observed and 
predicted data. 
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Figure 3.  Anomalies resulted from the true and recovered models and their differences. (a) Magnetic anomalies 

from the synthetic model, (b) Magnetic anomalies from the recovered model after inversion, (c) Weighted 
normalized residuals, showing the difference between the observed and predicted data. Positive values indicate 

the true model has a stronger magnetic anomaly than the recovered model, and negative values indicate the 
opposite. 

Figure 4 represents the convergence curve for 
the synthetic model inversion, and shows the 
progression of the inversion algorithm, as it 
iteratively updates the model parameters to fit the 
observed data. The objective function related to the 
data mis-fit (߶ௗ) is minimized effectively within 
the first 5 iterations, suggesting that the algorithm 
quickly finds a model that fits the observed data 

well. The increase and subsequent stabilization of 
߶

  around 70 suggests a significant role of 
regularization or constraint enforcement in the 
inversion process. The initial increase reflects the 
adjustment of model parameters, and the 
stabilization indicates that a balance has been 
achieved between the data fitting and 
regularization. 

 
Figure 4. Convergence curve for the inversion of the synthetic data. The x-axis shows the number of iterations, 
indicating how many steps it took for the inversion to reach the stopping criteria. The left y-axis shows the mis-
fit (ࣘࢊ), which was minimized over 30 iterations. The right y-axis shows the model norm variations (ࣘ

 ) over 
different iterations. 
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4. Real Case Study 

In this section, we first discuss about the 
geological context of the Shavaz deposit. In the 
next part, we discuss about the geophysical surveys 
and interpreted the magnetic anomalies through 
analytic signal and upward continuation, and in the 
final part, we discuss about the inversion results 
and susceptibility models. 

4.1. Geological Setting 

Iran, situated on the Iranian plateau, has 
witnessed a dynamic geological history 
characterized by numerous transformative events. 
The country is divided into several structural 
geological zones based on their tectonic setting, 
petrological characteristics, volcanism, orogenic 
events, and seismic activities [30]. This 
classification includes Central Iran, Sanandaj-
Sirjan Zone (SSZ), Alborz, Zagros, Makran, East 
Iran Zone, Kopeh Dagh, and Lut Block [30-33]. 
Analysis of the Iranian magmatism and structural 
features has revealed the existence of six major 
metallogenic phases, spanning a vast timeframe 
from the Late Proterozoic era to the Quaternary. 
Within these metallogenic phases, iron 
mineralization occurred during four key periods 
[30]: 

1. Late Proterozoic-early Cambrian iron 
mineralization: This phase, the most abundant 
includes deposits with the volcano-sedimentary 
and orthomagmatic origins. 

2. Paleozoic-early Triassic iron mineralization: 
These deposits are less abundant, smaller in 
size, and have a lower iron grade compared to 
the earlier phase. 

3. Mesozoic iron mineralization: The Sanandaj-
Sirjan Zone became a hotspot for iron 
mineralization during this era, with the primary 
deposit type being skarn, often containing 
associated manganese. 

4. Cenozoic iron mineralization: primarily found 
in the Urumiyeh-Dokhtar Zone and Alborz, 
with significant skarn deposits. 

The most economically valuable iron resources 
in Iran originated during the late Proterozoic-early 
Cambrian and the late Eocene to Pliocene 
(Cenozoic) [21]. The Bafq metallogenic belt, 
which is located in the Kashmar-Kerman arc, is the 
most significant zone for iron mineralization, 
containing over 2 billion tons of iron ore. These 
deposits share common properties such as age, host 
rock alteration, presence of apatite, and volcanic-
magmatic origins [30].  

The Shavaz iron deposit, located within Iran's 
Central Iranian block southwest of the Yazd 
province, near the Bafq mining district, spans an 
area of 550 × 650 m² [18]. This deposit, influenced 
by the Nain-Dehshir-Baft fault zone, is notable for 
its significant metal potential. The iron ore, 
predominantly composed of hematite with minor 
magnetite, is found in proximity to volcanic rocks 
and tuffs. This spatial association suggests that the 
hydrothermal processes stemming from volcanic 
activity played a crucial role in the iron deposition 
[22]. The oldest rocks in the area are the Cretaceous 
granite and granodiorites of the Shirkuh complex, 
located to the east of the deposit. These intrusive 
rocks range primarily from granodiorite to granite. 
Studies indicate that the Shirkuh rocks initially 
formed as biotite-bearing granodiorites, and 
subsequently evolved to become more acidic [33]. 
Figure 5 presents the geological map of the area, 
which is covered by Neogene sediments and 
Quaternary alluviums. 

The Sangestan formation, a significant 
geological unit in the region, comprises alternating 
layers of sandstone, fine-grained conglomerate, 
and red marls interspersed with limestone. Its 
lower boundary exhibits an unconformable 
relationship with the underlying Shirkuh granites 
[33-35]. While the precise age of the Sangestan 
formation remains a subject of debate, the 
Geological Organization of Iran attributes it to the 
lower Cretaceous period [33]. Overlying these 
lower Cretaceous sediments in the Yazd region is 
the Taft formation, characterized by dolomitic 
limestone. Microfossil analyses suggest that the 
Taft formation also dates to the Cretaceous period 
[35]. This formation initiates with shale and thin 
limestone beds, which transition into thicker 
limestone beds at higher stratigraphic levels, 
thereby contributing to the region's pronounced 
topography. Additionally, these limestones are 
periodically inter-layered with black limestone 
strata [35]. 

4.2. Geophysical survey  

A ground magnetic survey was conducted in the 
studied area using a proton magnetometer in 2010 
[21, 35]. The collected data underwent several 
processing steps: 

1. Diurnal correction: Diurnal variations, natural 
fluctuations in the Earth's magnetic field 
throughout the day, were removed from the data. 

2. IGRF removal: The influence of the Earth's main 
magnetic field, modeled by the International 
Geomagnetic Reference Field (IGRF), was 
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eliminated. Adjustments were made for the local 
declination (3.2 degrees) and inclination (49.2 
degrees) angles. 

3. Reduction To Pole (RTP) transformation: This 
filter normalized the data for geometric effects 
caused by the Earth's magnetic field, effectively 
placing all measurements at the magnetic poles 
for easier analysis. 

 
Figure 5. Geological map of the Shavaz deposit [36]. The map depicts the geological setting of the studied area, 

highlighting faults, lithological units, and the location of the Shavaz iron deposit. The surrounding region is 
predominantly underlain by sedimentary rocks (Quaternary terraces) including conglomerates, sandstones, and 

travertine. 

The survey employed a north-south line grid 
with 20-meter line spacing and station spacing of 
typically 10 meters (occasionally 20 meters). This 
resulted in a total of 1641 data points collected 
across an area of approximately 550 meters by 650 
meters [21, 35]. Figure 6(a) displays the Total 
Magnetic Intensity (TMI) map of the studied area 
after applying corrections. Figure 6(b) shows the 
results of applying an analytic signal filter to the 
TMI data. This filter enhances the boundaries 
(edges) of magnetic anomalies, allowing for a 
better differentiation of individual causative 
sources. Figure 6(c) presents the magnetic 
anomalies after a 40-meter upward the 
continuation process. This process reduces the 
influence of shallow magnetic sources, aiding in 
the identification of deeper anomalies.  

In the context of interpreting the observations, 
The Total Magnetic Intensity (TMI) anomaly map 
(Figure 6(a)) reveals significant magnetic 
anomalies with a prominent high around 

coordinates (727500, 3507300), indicating the 
presence of a major magnetite body near the 
surface. This high magnetic intensity is consistent 
with the expected response from a dense and 
magnetically susceptible mineral deposit, 
suggesting a significant target for exploration. 
Additionally, a smaller low-intensity anomaly 
around coordinates (727600, 3507050) hints at a 
secondary magnetic source, potentially a smaller or 
less magnetized body, which may warrant further 
investigation. 

The Analytic Signal (AS) map (Figure 6(b)) 
complements the TMI data by providing a clear 
depiction of the edges of magnetic bodies, 
regardless of their magnetization direction. The 
highest amplitude in the AS map, centered at 
(727500, 3507300), corroborates the presence of 
the primary magnetic source identified in the TMI 
map. This map also reveals additional high-
amplitude zones, around (727750, 3507400), and 
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(727600, 3507050), suggesting the presence of 
smaller magnetic bodies.  

The upward continuation map (Figure 6(c)), 
calculated at 40 meters above the ground surface, 
smooths out the near-surface anomalies to 
emphasize deeper sources. This map reinforces the 
presence of a significant magnetic source around 

(727500, 3507300), as seen in the TMI and AS 
maps, suggesting that the primary magnetite body 
extends to greater depths. The overall trend 
indicates a prominent deep-seated magnetic source 
in the north-central part of the map, with a potential 
secondary source to the south around (727600, 
3507050). 

 

  

 
Figure 6. (a) Total Magnetic Intensity (TMI) map following corrections for diurnal variations, International 

Geomagnetic Reference Field (IGRF), and reduction to the pole, (b) Analytic signal map, (c) Upward 
continuation map (40 m). The locations of the drilling wells are also indicated. 

4.3. Inversion results 

For performing the inversion on the field data, 
we first discretized the environment into the 60 × 
70 × 40 cells along the x, y, and z directions, 
respectively. Based on the analysis of geological 
and geophysical data from the previous studies [18, 
19, 21, 22, 34, 35], the upper bounds were set at 1.0 
SI. The inversion algorithm converged after 30 
iterations, reaching a pre-defined stopping 
criterion. This criterion, known as the chi-square 
factor (χ² = 1), indicates that the inversion aimed to 

achieve a data mis-fit equivalent to the estimated 
noise level in the magnetic data, assuming a chi-
squared distribution of the mis-fit values. Figure 7 
presents the inversion results along the profiles 
(AA' and BB') displayed in Figure 6. The inversion 
results for the profile AA' (Figure 7(a)) suggest a 
lens-shaped magnetic body extending 
approximately 60-70 meters vertically. In contrast, 
the inversion results for profile BB' ((Figure 7(b)) 
reveal a deeper causative magnetic source with 
approximately the same vertical extent and a 
slightly weaker susceptibility. 
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Figure 7. Plan view of the inversion results at 

different depths, revealing the distribution of the 
magnetized ore body. (a) Susceptibility model at 

elevation = 1708 m, (b) elevation = 1727 m, (c) 
Elevation = 1744 m, and (d) Elevation = 1759 m. 

Figure 8 presents the inversion results at 
different depths. As shown, when moving from a 
depth of 1708 m (Figure 8(a)) to 1759 m (Figure 

8(d)), the secondary source located around 
(727600, 3507050) disappears, while the primary 
source located around (727500, 3507300) becomes 
amplified. These observations align well with the 
inversion results in Figure 8, and validate that the 
primary source has a higher magnetic susceptibility 
at a shallower depth compared to the secondary 
source. Their separation may be the result of the 
Nain Dehshir-Baft fault. 

Figure 9 analyzes the difference between the 
observed and predicted magnetic anomalies. 
Figure 9(a) shows the Total Magnetic Intensity 
(TMI) anomaly after corrections (refer to Figure 
6(a)), while Figure 9(b) displays anomalies derived 
from the inverted model. Figure 9(c) presents the 
normalized residual, similar to Figure 3(c), 
representing the weighted difference between the 
observed and predicted data. While the inversion 
successfully recovered anomalies in critical zones, 
there's a potential for improvement. Future studies 
could utilize a magnetization vector inversion 
method to achieve a potentially a more accurate 
model. 

 

  

  
Figure 8. Plan view of the inversion results at different depths, revealing the distribution of the magnetized ore 

body. (a) Susceptibility model at elevation = 1708 m, (b) Elevation = 1727 m, (c) elevation = 1744 m, and (d) 
Elevation = 1759 m. 
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Figure 9. (a) Observed magnetic data after related corrections, (b) Calculated magnetic data after sparse norm inversion, (c) 

Normalized mis-fit map representing the weighted difference between the observed and calculated data. 

The convergence curves presented in Figure 10 
illustrate the behavior of the geophysical inversion 
process through iterations. The black curve, 
representing ߶ௗ  (data mis-fit), shows a rapid 
decrease from around 85,000 at iteration 0 to near 
zero by iteration 10, indicating a swift and effective 
reduction in data mis-fit. In contrast, the red curve, 
representing ߶

  (model norm), starts close to zero 
and initially rises, peaking between iterations 12 
and 15, before declining and stabilizing around 500 
by iteration 25. This pattern suggests that the 

inversion process initially increases the model 
complexity to fit the data better but then refines the 
model to balance the data fit and complexity, 
avoiding overfitting. By iteration 25, both curves 
have stabilized, indicating that the inversion 
process has successfully converged, achieving a 
low data mis-fit and a controlled, plausible model 
complexity. This reflects an effective inversion 
process, where the algorithm efficiently fits the 
observed data, while maintaining a reasonable 
model complexity, demonstrating a successful 
convergence. 

 
Figure 10. (a) Convergence curve for the case study Inversion. This plot depicts the progress of the susceptibility inversion for 
the Shavaz deposit. The x-axis represents the number of iterations completed during the inversion. The left y-axis shows the 
data mis-fit (ࣘࢊ), and its decrease after each iteration, indicating a better fit between the model and the observed data. The 
right y-axis represents the model norm (ࣘ

 ) and its variations, reflecting the complexity of the estimated subsurface model. 
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5. Geological Correlation 

To validate the inversion results, we incorporate 
data from exploratory wells drilled within the 
studied area. A total of 24 wells were drilled at 
varying depths for detailed subsurface 
characterization [35]. These wells provided 
valuable geological and geochemical information 

including iron and iron oxide content, silicon 
dioxide (SiO2) percentage, and phosphorite content 
inferred from P2O5 (phosphorus pentoxide) 
percentage [35]. While no boreholes were drilled 
directly within the geophysical target zones, Figure 
11 presents the geological columns from two wells 
situated in a relatively close proximity.  

 

 
Figure 11. (a) 3D susceptibility model resulting from the inversion, showing the locations of the exploratory 

wells. (b) Lithological column at the coordinates (727545, 3507340). (c) Lithological column at the coordinates 
(727600, 3507030). 

In Figure 11(a), we present a straightforward 
representation of the susceptibility contrast models 
obtained through inversion. We used a cut-off 
range of 0.8 SI to 1.0 SI to highlight the target 
magnetized area. The locations of the exploratory 
wells are also shown. Well-1 (Figure 11(b)), 

located at approximately (727545, 3507340), 
encountered a sequence starting with shallow 
alluvium sediments at the surface. This is followed 
by a thin layer of Low-Grade iron mineralization 
(LG) and a significant zone of a High-Grade iron 
mineralization (HG) with a thickness of about 28 
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meters. Barren units were observed below the high-
grade mineralization zone.  Well-2 (Figure 11(c)), 
situated near (727600, 3507030), revealed a thicker 
layer of alluvium sediments, compared to Well-1. 
Interestingly, Well-2 also showed a deeper and 
thinner zone of high-grade iron mineralization 
relative to Well-1 (with a thickness of about 18 
meters). Although these observations were not 
obtained directly from the targeted geophysical 
zones, they exhibit a reasonable agreement with the 
inversion results presented in Figures 7 and 8. This 
alignment suggests that the inversion process 
successfully captured the general distribution and 
characteristics of the sub-surface iron 
mineralization, providing validation for its 
effectiveness. 

6. Conclusions 

This study investigated the effectiveness of 
three-dimensional sparse norm susceptibility 
inversion for characterizing the iron oxide-apatite 
deposits. We initially evaluated the method's 
performance using a well-defined synthetic model. 
Achieving satisfactory results on the synthetic 
model, we subsequently applied the inversion to 
the real-world case studied data. Firstly, the 
existing geophysical data underwent interpretation 
using various methods, leading to the approximate 
localization of potential mineralization zones. 
Following the inversion process, we visualized the 
resulting susceptibility models at various depths 
and cross-sections. The obtained inversion results 
were then validated using lithological columns 
constructed from the data acquired at two 
exploratory boreholes drilled near the target zones. 
The alignment between the inversion results and 
the well log data supported the success and 
reliability of the sparse norm susceptibility 
inversion methodology in the context of iron oxide-
apatite exploration. However, for future studies 
aiming for potentially even more robust inversion 
and interpretation, employing a magnetization 
vector inversion technique is recommended.  
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  چکیده:

آپاتیت اسـت. -، نزدیک به کمربند متالوژنی بافق، یک منبع مهم و اقتصـادي از اکسـید آهنایران مرکزيغربی اسـتان یزد در بلوك  ، واقع در جنوبنهشـته آهن شـاواز
ــته اغلباین  ــامل هماتیت و مقداري کمی مگنتیت   نهش ــیلکه از طریق    بودهش ــدقابل    مطالعات ژئوفیزیکی میدان پتانس ــایی می باش ــناس . هدف این مطالعه  ش

. ابتدا یک مدل مصـنوع چندمنبعی با سـه مکعب  باشـدمی  مقید شـده خودپذیري مغناطیسـیسـازي با اسـتفاده از وارون  نهشـتهمگنتیت در این  کانه زایی  آشـکارسـازي
ان در عمق بیهیکسـ ازي  هاي مختلف شـ د سـ روري دادهتا رویکرد وارونشـ لاحات ضـ پس این روش پس از اصـ ود. سـ ازي نُرم پراکنده ارزیابی شـ ی به سـ هاي مغناطیسـ

دمطالعه موردي اعمال  یر ناهنجاري ارتقاعمنظور  بههمچنین  . شـ ی باقیتفسـ تیابی به بینش ـهاي مغناطیسـ  و عمق آن  نقاط کانه زاییدر مورد  ی دقیق ترمانده و دسـ
و    شـکلعدسـی  مگنتیت    نه زاییسـازي در مقاطع مختلف نشـان داد که دو کا. نتایج وارونشـده اسـتاسـتفاده   فراسـوادامه  سـیگنال تحلیلی و  روش هاي ، ازها
ط  کم تردگی عمودي متوسـ ت که یکی از  متر وجود دارد. قابل 60عمق با گسـ یرمگنتیت توده هايتوجه اسـ ل دهشـ تر  متر عمیق  30حدود   بافت-ی به علت تاثیر گسـ

ــده، موفقیت در انطباق نرمال  ،قرار دارد. مقادیر کم ــازي را تایید کرد. علاوهکردن تابع هدف در طول وارون  کمینهش ــیهاي  براین، مدلس با     خودپذیري مغناطیس
 .دهندسازي نُرم پراکنده را نشان میراستا هستند که کارایی الگوریتم واروناکتشافی هم هاي هاي چاهشناسی قبلی و دادهمطالعات زمین

 شاواز، مگنتیت، وارون سازي خودپذیري مغناطیسی، مدل مصنوع، سیگنال تحلیلی، ادامه فراسو. کلمات کلیدي:

 

 


