[1]. Moukannaa, S., Loutou, M., Benzaazoua, M., Vitola, L., Alami, J., & Hakkou, R. (2018). Recycling of phosphate mine tailings for the production of geopolymers. Journal of Cleaner Production, 185, 891–903.
[2]. Corchado-Albelo, J. L., & Alagha, L. (2023). Studies on the enrichment feasibility of rare earth-bearing minerals in mine tailings. Minerals, 13(3), 301.
[3]. Alsafasfeh, A., Alagha, L., Alzidaneen, A., & Nadendla, V. S. S. (2022). Optimization of flotation efficiency of phosphate minerals in mine tailings using polymeric depressants: Experiments and machine learning. Physicochemical Problems of Mineral Processing, 58(4), 150477.
[4]. Birken, I., Bertucci, M., Chappelin, J., & Jorda, E. (2016). Quantification of Impurities, Including Carbonates Speciation for Phosphates Beneficiation by Flotation. Procedia Engineering, 138, 72–84.
[5]. Alsafasfeh, A., Alagha, L., & Al-Hanaktah, A. (2024). The Effect of Methyl Isobutyl Carbinol “MIBC” on the Froth Stability and Flotation Performance of Low-Grade Phosphate Ore. Mining, Metallurgy and Exploration, 41(1), 353–361.
[6]. Abouzeid, A. Z. M. (2008). Physical and thermal treatment of phosphate ores — An overview. International Journal of Mineral Processing, 85(4), 59–84.
[7]. Alsafasfeh, A., Khodakarami, M., Alagha, L., Moats, M., & Molatlhegi, O. (2018). Selective depression of silicates in phosphate flotation using polyacrylamide-grafted nanoparticles. Minerals Engineering, 127, 198–207.
[8]. Bittner, J. D., Gasiorowski, S. A., Hrach, F. J., & Guicherd, H. (2015). ScienceDirect Electrostatic beneficiation of phosphate ores: Review of past work and discussion of an improved separation system.
[9]. Zafar, Z. I., Anwar, M. M., & Pritchard, D. W. (1995). Optimization of thermal beneficiation of a low grade dolomitic phosphate rock. International Journal of Mineral Processing, 43(1–2), 123–131.
[10]. Papalas, T., Antzaras, A. N., & Lemonidou, A. A. (2021). Magnesite-derived MgO promoted with molten salts and limestone as highly-efficient CO2 sorbent. Journal of CO2 Utilization, 53, 101725.
[11]. Bahmani, H., Mostafaei, H., Ghiassi, B., Mostofinejad, D., & Wu, C. (2023). A comparative study of calcium hydroxide, calcium oxide, calcined dolomite, and metasilicate as activators for slag-based HPC. Structures, 58, 105653.
[12]. Sajid, M., Bary, G., Asim, M., Ahmad, R., Irfan Ahamad, M., Alotaibi, H., Rehman, A., Khan, I., & Guoliang, Y. (2022). Synoptic view on P ore beneficiation techniques. Alexandria Engineering Journal, 61(4), 3069–3092.
[13]. Guo, F., & Li, J. (2010). Separation strategies for Jordanian phosphate rock with siliceous and calcareous gangues. International Journal of Mineral Processing, 97(1–4), 74–78.
[14]. Ruan, Y., He, D., & Chi, R. (2019). Review on beneficiation techniques and reagents used for phosphate ores. Minerals, 9(4), 253.
[15]. Derrardjia, N., Nettour, D., Chettibi, M., Chaib, R., Zeghloul, T., Dascalescu, L., & Aouimeur, D. (2024). Study of the feasibility of valorizing phosphate ore by electrostatic separation. Technology Audit and Production Reserves, 2(3(76)), 20–26.
[16]. Anawati, J., & Azimi, G. (2020). Recovery and separation of phosphorus as dicalcium phosphate dihydrate for fertilizer and livestock feed additive production from a low-grade phosphate ore. RSC Advances, 10(63), 38640–38653.
[17]. Dascalescu, L., Zeghloul, T., & Iuga, A. (2016). Electrostatic Separation of Metals and Plastics From Waste Electrical and Electronic Equipment. WEEE Recycling: Research, Development, and Policies, 75–106.
[18]. Safhi, A. el M., Amar, H., El Berdai, Y., El Ghorfi, M., Taha, Y., Hakkou, R., Al-Dahhan, M., & Benzaazoua, M. (2022). Characterizations and potential recovery pathways of phosphate mines waste rocks. Journal of Cleaner Production, 374, 134034.
[19]. Zafar Iqbal Zafar, Anwar, M. M., & Pritchard, D. W. (1996). Innovations in beneficiation technology for low grade phosphate rocks. Nutrient Cycling in Agroecosystems 46(2), 135–151.
[20]. Sobhy, A., & Tao, D. (2014). Innovative RTS Technology for Dry Beneficiation of Phosphate. Procedia Engineering, 83, 111–121.
[21]. Mezghache, H. , Toubal, A. , & Bouima, T. (1980). Typology of phosphate ores in deposits of the Djebel Onk mining basin (eastern Algeria). Phosphorus Research Bulletin, 15, 5–20.
[22]. Kechiched, R., Laouar, R., Bruguier, O., Kocsis, L., Salmi-Laouar, S., Bosch, D., & Larit, H. (2020). Comprehensive REE+ Y and sensitive redox trace elements of Algerian phosphorites (Tébessa, eastern Algeria): A geochemical study and depositional environments tracking. Journal of Geochemical Exploration, 208, 106396.
[23]. Alsafasfeh, A., & Alagha, L. (2017). Recovery of phosphate minerals from plant tailings using direct froth flotation. Minerals, 7(8).
[24]. El Ouardi, E. M., Zeroual, A., Khallouq, K., Darfi, S., & Jedaa, A. (2020). Impact of washing followed by calcination on the quality of bouchane phosphate of Morocco. International Journal of Design and Nature and Ecodynamics, 15(4), 555–563.
[25]. Cao, W., Yi, W., Peng, J., Li, J., & Yin, S. (2022). Recycling of phosphogypsum to prepare gypsum plaster: Effect of calcination temperature. Journal of Building Engineering, 45, 103511.
[26]. Han, B., Zhao, L., Wang, F., Xu, L., Yu, H., Cui, Y., Zhang, J., & Shi, W. (2020). Effect of Calcination Temperature on the Performance of the Ni@SiO2Catalyst in Methane Dry Reforming. Industrial and Engineering Chemistry Research, 59(30), 13370–13379.
[27]. Han, R., Wang, Y., Xing, S., Pang, C., Hao, Y., Song, C., & Liu, Q. (2022). Progress in reducing calcination reaction temperature of Calcium-Looping CO2 capture technology: A critical review. Chemical Engineering Journal, 450, 137952.
[28]. Kim, J. Y., Ellis, N., Lim, C. J., & Grace, J. R. (2020). Effect of calcination/carbonation and oxidation/reduction on attrition of binary solid species in sorption-enhanced chemical looping reforming. Fuel, 271, 117665.
[29]. Abouzeid, A. (2007). Upgrading of phosphate ores-a review. Powder Handling and Processing, 19(2), 92.